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Background
The topological properties of binary images are very useful features in the fields of pat-
tern recognition and computer vision. Among others, the Euler number of a binary 
image, which is defined as the difference between the number of connected components 
and that of holes in the image, is one of the most important topological properties (Gon-
zalez and Woods 2008). The Euler number of a binary image will not change when the 
image is stretched, flexed or rotated. Therefore, the Euler number has been used in many 
applications: processing cell images in medical diagnosis (Hashizume et al. 1990), docu-
ment image processing (Srihari 1986), shadow detection (Rosin and Ellis 1995), reflec-
tance-based object recognition (Nayar and Bolle 1996), and robot vision (Horn 1986). 
Moreover, the Euler number is the most clinically useful feature for discriminating many 
cervical disorders (Pogue et al. 2000).

In the past decades of years, many algorithms have been proposed for computing 
the Euler number of a binary image. For example, there are skeleton-based algorithm 
(Diaz-de-Leon and Sossa-Azuela 1996), which calculates the Euler number by use of 
the number of terminal points and the number of three edge points in the correspond-
ing skeleton image; bit-quad-based algorithm proposed by Gray (1971), which calcu-
lates the Euler number by counting certain 2 ×  2 pixel patterns called bit-quads, and 
is adopted by the famous commercial image processing tools MATLAB (Thompson 
and Shure 1995). There are also run-based algorithm (Bishnu et al. 2005), which calcu-
lates the Euler number by use of the numbers of runs and the neighboring runs in the 
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image, and labeling-based algorithm proposed by He et al. (2013), which calculates the 
Euler number by labeling connected components and holes in the image. Recently, an 
improved bit-quad-based algorithm was proposed (Yao et al. 2014), which reduces the 
number of pixels to be checked for processing a bit-quad from 4 to 2. For convenience, 
we denote the algorithms proposed in Ref. (Gray 1971), Ref. (Bishnu et al. 2005), Ref. (He 
et al. 2013) and Ref. (Yao et al. 2014) as GRAY algorithm, RUN algorithm, HCS algorithm 
and I-GRAY algorithm, respectively.

On the other hand, there are also parallel algorithm (Chiavetta and Gesu 1993), 
hardware algorithm (Dey S. et  al. 2000), and algorithms for images with quad-tree 
represented formats (Dyer 1980), (Samet and Tamminen 1985). In recent years, other 
algorithms have been proposed for computing the Euler number in a binary image. For 
example, Sossa-Azuelal proposed the algorithm for computing Euler number based on a 
vertex codification (Sossa-Azuelal et al. 2013), and he also proposed an alternative algo-
rithm in (Sossa-Azuela et  al. 2014). Yao (2015) improve the Euler number computing 
algorithm based on runs and neighboring runs. He and Chao (2015) proposed an algo-
rithm for labeling connected-component and computing Euler number simultaneously.

This paper presents a novel bit-quad-based Euler number computing algorithm. Based 
on graph theory, instead of counting ten bit-quad patterns in conventional bit-quad-
based algorithms, our algorithm only needs to count two bit-quad patterns for Euler 
number computing. Moreover, by use of the information obtained during processing the 
previous bit-quad similar as in the I-GRAY algorithm, the average number of pixels to 
be checked for processing a bit-quad is reduced to 1.75, which leads to more efficient 
processing. Experimental results showed that our algorithm is much more efficient than 
conventional Euler number computing algorithms on various kinds of images.

The rest of this paper is organized as follows. In “Reviews of related conventional Euler 
number computing algorithms”, we review related conventional Euler number comput-
ing algorithms. We propose our algorithm in “Our proposed algorithm”, present experi-
mental results in “Experimental results”, and make a discussion in “Discussion”. Lastly, 
we give our conclusion in “Conclusion”.

Reviews of related conventional Euler number computing algorithms
For an M ×  N-size binary image, we use p(x, y) to denote the pixel at (x, y), where 
1 ≤  x ≤  M, 1 ≤  y ≤  N. As in most image processing algorithms, we assume that the 
object (foreground) pixels and background pixels in a given binary image are repre-
sented by 1 and 0 respectively, and all pixels on the border of an image are background 
pixels. Moreover, we only consider 8-connectivity in this paper.

GRAY algorithm

The GRAY algorithm (Gray 1971) for calculating the Euler number of a binary image is 
based on counting certain 2 × 2 pixel patterns called bit-quads. While computing the 
Euler number of a binary image, it needs to scan the image from left to right and from 
top to bottom. In the scanning, each pixel and other three pixels in the corresponding 
bit-quad need to be checked for finding the patterns of the bit-quad shown in Fig. 1. For 
example, for the pixel p(x, y) in the image, it checks whether the corresponding bit-quad, 
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i.e., 
[

p(x − 1, y − 1) p(x, y − 1)
p(x − 1, y) p(x, y)

]

, is one of patterns P1, P2, and P3. When the scanning is 

completed, we can obtain the numbers of patterns P1, P2, and P3. Let N1, N2, and N3 be 
the numbers of patterns P1, P2, and P3 in the image, respectively, then, the Euler number 
of the image, denoted as E, can be calculated by the following formula. 

Obviously, for processing a pixel, it will take four pixel accesses in a bit-quad in the 
GRAY algorithm. Thus, for calculating the Euler number of an M × N-size binary image, 
it will take 4 × M × N pixel accesses in total.

RUN algorithm

The RUN algorithm (Bishnu et al. 2005) calculates the Euler number by use of the num-
ber of runs and the number of neighboring runs in the given image.

A run is defined to be a maximal sequence of consecutive object pixels in a row. A run 
R1 is said to be a neighboring run of another run R2 if there is at least a pixel in R1 such 
that it is 8-connected with a pixel in R2. For example, in Fig. 2, there are three runs in the 
first row, two runs in the second row and three neighboring runs marked by black oval 

(1)E = (N1 − N2 − 2N3)/4

P1

P2

P3

object pixel background pixel

Fig. 1  Patterns of bit-quads for calculating the Euler number in the GRAY algorithm

background pixel object  pixel

Fig. 2  An example for explaining the runs and the neighboring runs
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shape between two rows. We denote the numbers of runs and neighboring runs as R and 
O in the given image, respectively.

Having counted all runs and neighboring runs in the given image, the Euler number of 
the image can be calculated by the following formula.

HCS algorithm

The HCS algorithm (He et  al. 2013) calculates the Euler number of a binary image 
according to the definition of the Euler number:

where C is the number of the connected components, and H is that of the holes in the 
image, respectively.

For calculating C and H, this algorithm extended the labeling algorithm proposed 
in Ref. (He et  al. 2010) to label connected components and holes in the binary image 
simultaneously. At any moment in the raster scan, all provisional labels assigned to an 
8-connected component or a 4-connected hole in the processed area of the image are 
combined in an equivalent label set, respectively. Thus, after the raster scan, all provi-
sional labels assigned to a connected component or a hole in the image will be combined 
in an equivalent label set, respectively. Then, by counting the number of the equivalent 
label sets corresponding to connected components and that for holes, we can obtain the 
number of connected components, i.e., C, and that of holes, i.e., H, respectively.

I‑GRAY algorithm

The I-GRAY algorithm (Yao et al. 2014) is an improvement on the GRAY algorithm. It 
also needs to process all bit-quads in the given image and count the number of the spe-
cial bit-quad patterns in the same way as in the GRAY algorithm. However, by use of the 
already-known information obtained during processing the previous pixel, it reduces the 
number of pixels necessary to be checked for processing a bit-quad from 4 to 2.

Our proposed algorithm
As one of topological properties, the Euler number of a binary image can also be calcu-
lated according to graph theory. Chen and Yan proposed a graph-based algorithm for 
calculating the Euler number of a binary image for 4-connectivity (Chen and Yan 1988) 
by counting all vertices, edges and faces in the graph corresponding to the image. In this 
section, we first introduce how to use graph theory to calculate the Euler number of a 
binary image for 8-connectivity. Then, we show that only two kinds of bit-quad patterns 
need to be considered for calculating the Euler number.

In order to use graph theory to calculate the Euler number of a binary image, we con-
struct a square graph corresponding to the image. To do that, we take all object pixels in 
the image as vertices and add an edge between two object pixels if and only if they are 
8-connected neighbors for each other unless the edge crosses with another edge. For 
example, for the given image shown in Fig. 3a, according to the constructing method, 
the vertices and edges can be added as in Fig. 3b. Thus, we can obtain a square graph 
corresponding to the image as shown in Fig. 3c.

(2)E = R− O

(3)E = C − H
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Euler’s theorem in graph theory can be described as follows (West 2001).

Euler’s theorem

If G is a square graph, v, e, r and C are the numbers of vertices, edges, squares and the 
connected components in G, respectively. Then, v − e + r = C + 1.

In Euler’s theorem, the squares in graph G include holes, basic faces and an infinite 
square outside of G. Let H and s be the number of holes and basic faces in graph G, 
respectively. Accordingly, r = H + s + 1. Then we have v − e + (H + s + 1) = C + 1. 
Thus, the Euler number E can be represented as:

(4)E = C −H = v − e + s

background pixel

object pixel

background pixel

object pixel

(a)                               (b)

basic right-angled
triangle faces

Hole

(c)
Fig. 3  An example for constructing a graph corresponding to a binary image
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In this way, we can calculate the Euler number of a binary image by use of the numbers 
of vertices, edges and basic faces in its corresponding graph. Notice that in the case of 
8-connectivity, the number of basic faces s in the formula (4) refers to the number of 
basic right-angled triangle faces.

In practice, when using the formula (4) to calculate the Euler number of a binary 
image, we can count the number of vertices, edges, and basic faces without constructing 
a corresponding square graph but by checking all bit-quads in the given image.

Obviously, the number of vertices in the corresponding graph is equal to the number of 
object pixels in the image. For a bit-quad shown in Fig. 4, pixel p(x, y) is said to be the repre-
sentative pixel of the bit-quad. For convenience, a bit-quad with q as the representative pixel 
is denoted as B(q). It is obvious that only if pixel p(x, y) is an object pixel, the number of ver-
tices will be increased by 1. Notice that the vertex corresponding to each of other object 
pixels in the bit-quad, says, t, has been considered when processing the bit-quad B(t).1

On the other hand, for calculating the number of new edges in the bit-quad, we should 
consider whether there are edges between p(x, y) and p(x, y − 1), p(x, y) and p(x − 1, 
y), p(x, y) and p(x − 1, y − 1), and p(x − 1, y) and p(x, y − 1), respectively. Notice that 
whether there are edges between p(x − 1, y) and p(x − 1, y − 1), and p(x − 1, y − 1) 
and p(x, y − 1) have already been considered when processing B(p(x − 1, y)) and B(p(x, 
y −  1)), respectively. Furthermore, in the case where both edges p(x, y) and p(x −  1, 
y −  1), and p(x −  1, y) and p(x, y −  1) might exist, only one should be considered. 
Because there is an edge between p1 and p2 if and only if p1 and p2 are object pixels, the 
rules for calculating the number of edges can be shown as follows, where e(u, v) denotes 
the edge between object pixels u and v.

a.	 If p(x, y) is a background pixel, no edge between p(x, y) and p(x, y − 1), between p(x, 
y) and p(x − 1, y), and between p(x, y) and p(x − 1, y − 1). On the other hand, when 
and only when both p(x − 1, y) and p(x, y − 1) are object pixels, the edge e(p(x − 1, 
y), p(x, y − 1)) should be counted (Fig. 5a);

b.	 If p(x, y) is an object pixel, in the case where p(x − 1, y) and p(x, y − 1) are object 
pixels and p(x − 1, y − 1) is a background pixel (Fig. 5b), the three edges e(p(x, y), 
p(x − 1, y)), e(p(x, y), p(x, y − 1)), and e(p(x − 1, y), p(x, y − 1)) should be counted; 

1  Because pixels in the image are processed in the raster scan, all pixels in the bit-quad except the representative pixels 
have been processed before processing the representative pixel.

Fig. 4  A diagram for processing a bit-quad
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in the other cases, for each object pixel q among pixels p(x − 1, y), p(x, y − 1) and 
p(x − 1, y − 1), an edge e(p(x, y), q) should be counted (Fig. 5c).

As for calculating the number of basic right-angled triangle faces in the bit-quad, we 
only need to check the number of object pixels in the bit-quad. The number of basic 
right-angled triangle faces will be two if all pixels in the bit-quad are object pixels 
(Fig. 6a), and one if there are three object pixels (Fig. 6b–e). Otherwise, no basic right-
angled triangle face exists.

When all bit-quads in the given image are processed, we can obtain the number of 
vertices, edges and basic right-angled triangle faces in the corresponding graph, and cal-
culate the Euler number of the image by use of formula (4) easily.

However, calculating the Euler number of a binary image by counting the numbers of 
vertices, edges and faces directly will be inefficient. In order to do this work more effi-
ciently, we analyze all 16 patterns of a bit-quad. For each pattern, according to the above 
calculating methods, we can obtain the increments of the numbers of vertices, edges 

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

p(x-1, y-1) p(x, y- 1)

p(x-1, y) p(x, y)
either

background pixel

object pixel

(a)                (b)               (c)
Fig. 5  Illustration for calculating the number of edges in a bit-quad

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

 (a)                     (b)                     (c) 

background pixel

object pixel

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

(d)                     (e) 
Fig. 6  Illustration for calculating the number of basic right-angled triangle faces in a bit-quad
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and faces, and the Euler number, which are denoted by ∆v, ∆e, ∆s, and ∆E, respectively, 
where ∆E = ∆v − ∆e + ∆s, as shown in Table 1.

According to Table 1, when processing a bit-quad shown in Fig. 7a, the Euler number 
will increase by 1 only when it is pattern Q2, and will decrease by 1 only if it is either pat-
tern Q7 or pattern Q8. Obviously, the conditions for a bit-quad to be pattern Q2 are that 
the representative pixel is object pixel and all other pixels in the bit-quad are background 
pixels. On the other hand, the conditions for a bit-quad to be patterns Q7 or Q8, which 
can be derived by use of the Karnaugh map (Karnaugh 1953) shown in Fig. 7b, are that 
p(x − 1, y − 1) is a background pixel, and p(x, y − 1) and p(x − 1, y) are object pixels. 
Notice that it does not matter whether the representative pixel p(x, y) is an object pixel or 
not. Therefore, we can combine the two patterns Q7 and Q8 to one pattern Qc, as shown in 

Table 1  The increments of the numbers of v, e and s, and the Euler number ΔE for a bit-quad 
pattern

Pa�ern 2×2 bit-quad pa�erns ∆v ∆e ∆s ∆E

Q1 0 0 0 0

Q2 1 0 0 1

Q3 0 0 0 0

Q4 1 1 0 0

Q5 0 0 0 0

Q6 1 1 0 0

Q7 0 1 0 −1

Q8 1 3 1 −1

Q9 0 0 0 0

Q10 1 1 0 0

Q11 0 0 0 0

Q12 1 2 1 0

Q13 0 0 0 0

Q14 1 2 1 0

Q15 0 1 1 0

Q16 1 3 2 0
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Fig. 8. Thus, let W2 and Wc be the numbers of Q2 and Qc in the given image, respectively, 
we can use the following formula to calculate the Euler number of the image.  

Now we introduce how to check whether a bit-quad is a pattern of Q2 or Qc when pro-
cessing the given image in the raster scan.

If p(x − 1, y − 1) is an object pixel, the current bit-quad will be neither Q2 nor Qc, so 
we can skip the bit-quad and go to process the next bit-quad.

If p(x − 1, y − 1) is a background pixel, we need to check other pixels in the bit-quad. 
Because p(x − 1, y) is either 0 or 1, there are two states as shown in Fig. 9.

For state S1, we need to check both pixel X and pixel Y. There are following three cases: (1) 
if pixel X is 1, the current bit-quad and the next bit-quad to be processed will be none of pat-
terns Q2 and Qc, we do nothing else for the current bit-quad and skip the next bit-quad over; 

(5)E = W2 −Wc

p(x-1, y-1) p(x, y-1)

p(x-1, y) p(x, y)

0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

UV
XY

00

10

11

01

1000 1101

(a) (b) 
Fig. 7  A bit-quad to be processed and the Karnaugh map for a bit-quad to be pattern Q7 or Q8

QcQ2

background pixel object pixel either

Fig. 8  Bit-quad patterns used in our algorithm

Y0 Y1

X0 X0
background pixel

object pixel

pixel to be checked

S1 S2

(a) (b)
Fig. 9  Two states for the case where pixel p(x-1, y-1) is 0 in our algorithm
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(2) if both pixel X and pixel Y are 0, the current bit-quad will be none of patterns Q2 and Qc, 
then we go to process the next bit-quad, which obviously will be a case of state S1 (Fig. 9a); (3) 
if pixel X is 0 and pixel Y is 1, the current bit-quad is pattern Q2, thus, W2 increases by 1, then 
we go to process the next bit-quad, which will be a case of state S2 (Fig. 9b).

For state S2, we also need to check pixel X and pixel Y. There are the following three 
cases: (1) if pixel X is 1, the current bit-quad is pattern Qc, thus, Wc increases by 1. At the 
same time, we know the next bit-quad will be none of patterns Q2 or Qc, so we can skip 
the next bit-quad over; (2) if both pixel X and pixel Y are 0, the current bit-quad will be 
none of patterns Q2 and Qc, then we go to process the next bit-quad, which will be a case 
of state S1; (3) if pixel X is 0 and pixel Y is 1, the current bit-quad will be none of patterns 
Q2 or Qc, then we go to process the next bit-quad, which will be a case of state S2.

After processing all bit-quads in the given image, we can obtain the numbers of the 
patterns Q2 and Qc, i.e., W2 and Wc, then, we can calculate the Euler number by use of 
the formula (5).

The pseudo codes of our algorithm can be shown as follows. 
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Experimental results
Images used for evaluating the algorithms were composed of artificial images (including 
41 noise images and 4 specialized pattern images), 50 natural images obtained from the 
Standard Image Database (SIDBA) developed by the University of Tokyo2 and the image 
database of the University of Southern California,3 7 texture images downloaded from 
the Columbia-Utrecht Reflectance and Texture Database,4 and 25 medical images 
obtained from a medical image database of the University of Chicago.

In the experiments, we compared our algorithm with the GRAY algorithm, the RUN 
algorithm, the HCS algorithm, and the I-GRAY algorithm. All algorithms used for our 
comparison were implemented in the C language on a PC-based workstation (Intel Core 
i5-3470 CPU@3.20 GHz, 4 GB Memory, Ubuntu Linux OS), and compiled by the GNU 
C compiler (version 4.2.3) with the option –O. All experimental results presented in this 
section were obtained by averaging of the execution time for 5000 runs.

Execution time versus the density of an image

Because connected components in noise images have complicated geometric shapes and 
complex connectivity, severe evaluations of algorithms can be performed with these 
images. 41 noise images with a size of 512 × 512 pixels, which were generated by thresh-
olding of the images containing uniform random noise with 41 different threshold values 
from 0 to 1000 in steps of 25, were used for testing the execution time versus the density 
of the foreground pixels5 in an image. The results are shown in Fig. 10. We can find that 
our algorithm is much better than the GRAY algorithm for all images, is better than the 
HCS algorithm for all images except for the images whose densities are over 97 %, and is 
also much better than the RUN algorithm and the I-GRAY algorithm for all images 
whose densities are over 5 %.

Comparisons in terms of the maximum, mean, and minimum execution times on various 

kinds of real images

In this test, all the 50 natural images, 25 medical images, 7 texture images, and 4 artificial 
images with specialized shape patterns (saw-tooth-like, checker-board-like, stair-like, 
and honey comb-like connected components) were used for evaluating the algorithms. 
The resolution of all of these images is 512 × 512 pixels. The results are shown in Table 2.

From Table 2, for all types of images, our algorithm is much more efficient than both 
of the GRAY algorithm and the RUN algorithm for all of the minimum time, the average 
time and the maximum time. Compared to the I-GRAY algorithm and the HCS algo-
rithm, our algorithm is more efficient than either of the two algorithms for the average 
time and the maximum time. In fact, for the images used in this test, our algorithm is 
better than any of the other algorithms in comparison except for one texture image. The 
execution time (ms) for the selected six images are illustrated in Fig. 11, where the object 
pixels are displayed in black.

2  The images can be downloaded at http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm.
3  The images can be downloaded at http://sipi.usc.edu/database/.
4  The images can be downloaded at http://www1.cs.columbia.edu/CAVE/software/curet/.
5  The density of foreground pixels in a binary image refers to the proportion of foreground pixels in the image. Thus, if 
all pixels in a binary image are background pixels, the density of the image will be 0. On the other hand, if all the pixels 
are foreground pixels, the density will be 1.

http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm
http://sipi.usc.edu/database/
http://www1.cs.columbia.edu/CAVE/software/curet/
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Discussion
Other groups of patterns for calculating the Euler number

According to the analysis in “Our proposed algorithm”, we can calculate the Euler num-
ber of a binary image by the numbers of the bit-quad patterns in the image shown in 
Fig. 12a. Because the Euler number of a binary image will not change when the image is 

Fig. 10  Execution time versus density of an image

Table 2  Maximum, mean, and minimum execution times (ms) on various types of images

Image
Type

GRAY RUN HCS I-GRAY Ours

Natural

 Max. 1.86 1.69 1.97 1.34 1.02

 Mean 1.42 1.07 1.40 0.86 0.71

 Min. 1.10 0.61 0.87 0.55 0.49

Medical

 Max. 1.47 1.07 1.50 0.89 0.73

 Mean 1.29 0.92 1.25 0.72 0.62

 Min. 1.17 0.75 0.91 0.63 0.54

Textural

 Max. 1.73 1.66 1.60 1.16 0.92

 Mean 1.38 1.35 1.10 0.83 0.68

 Min. 1.00 1.04 0.51 0.49 0.51

Artificial

 Max. 1.11 1.03 1.35 0.56 0.49

 Mean 0.70 0.67 0.70 0.35 0.28

 Min. 0.28 0.24 0.32 0.16 0.11
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rotated, therefore, for a binary image, if we rotate it by 90°, 180° and 270° clockwise, the 
bit-quad patterns Q2 and Qc needed to be counted will become to the patterns shown in 
Fig. 12b–d, respectively. Theoretically, we can use any of the groups of the patterns to 
compute the Euler number of a binary image.

Time complexity

According to the analysis results given in related references, for calculating the Euler 
number of an M × N-size binary image, the skeleton-based algorithm will take about 
8  M ×  N pixel accesses (Diaz-de-Leon and Sossa-Azuela 1996), the GRAY algorithm 
will take 4  M ×  N pixel accesses, the RUN algorithm will take about 4  M ×  N pixel 
accesses in the worst case, and about 3 M × N pixel accesses in average (Bishnu et al. 
2005). Moreover, the HCS algorithm will take 2.375 M × N pixel accesses in average (He 
et al. 2013). Taking advantage of the information obtained during processing the previ-
ous bit-quad, the I-GRAY algorithm will only take 2  M × N pixel accesses (Yao et  al. 

(a) (b) (c)

GRAY: 1.38  RUN: 0.73         GRAY: 1.84  RUN: 1.75         GRAY: 1.17  RUN: 0.98 

HCS: 1.61    I-GRAY: 0.77      HCS: 1.81    I-GRAY: 1.33      HCS: 0.91    I-GRAY: 0.63

Ours: 0.67                      Ours: 1.08                      Ours: 0.61 

(d) (e) (f)

GRAY: 1.32  RUN: 1.18         GRAY: 1.11  RUN: 0.97        GRAY: 1.42  RUN: 0.99 

HCS: 1.06    I-GRAY: 0.80      HCS: 1.35    I-GRAY: 0.56     HCS: 1.42    I-GRAY: 0.84

Ours: 0.69                      Ours: 0.48                    Ours: 0.73 
Fig. 11  Execution time (ms) for the selected six images: a a text image; b a portrait image; c a medical image; 
d a texture image; e an artificial image; f a fingerprint image
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2014). Therefore, the I-GRAY algorithm is better than the skeleton-based algorithm, the 
GRAY algorithm, the RUN algorithm, and the HCS algorithm.

In our algorithm, as introduced in “Our proposed algorithm”, for processing a bit-quad 
[

U X

V Y

]

, the pixels in the bit-quad will be checked in the order U → V → X → Y. If U 

is an object pixel, i.e., the bit-quad is 
[

1 X

V Y

]

 (the patterns Q9–Q16 in Table 3), denoted 

as R1, we will do nothing else. Thus, we only need to check one pixel. Otherwise, if U is 

a background pixel, we will check V and X. For a bit-quad such as 
[

0 1
0 Y

]

 or 
[

0 1
1 Y

]

 (the 

patterns Q5–Q8 in Table 3), denoted as R2, we need to check three pixels, but we can 
skip over the next bit-quad, thus, we need to check 1.5 pixels for processing a bit-quad 

in average. For each of the rest patterns such as 
[

0 0
1 0

]

, 
[

0 0
1 1

]

, 
[

0 0
0 1

]

 or 
[

0 0
0 0

]

 (the pat-

terns Q1–Q4 in Table 3), denoted as R3, we need to check two pixels for processing the 
bit-quad if it follows another such a pattern of R3. Otherwise, all the four pixels in the 
bit-quad will be checked. Suppose that all patterns of bit-quads occur in same probabil-
ity, then, the probability that a pattern of R3 follows another pattern of R3 is 4/16 = 1/4. 
Thus, the average number of pixels to be checked for processing a bit-quad of pattern R3 
will be 2 × 4/16 + 4 × 12/16 = 3.5.

According to above analysis, by our algorithm,the average number of pixels to be 
checked for processing a bit-quad will be (1  ×  8  +  1.5  ×  4  +  3.5  ×  4)/16  =  1.75. 
Thus, for an M × N-size binary image, our algorithm will take about 1.75 M × N pixel 
accesses, which is less than the number of pixel accesses in any of conventional Euler 
number computing algorithms. Therefore, our algorithm will be more efficient than any 
of conventional algorithms.

The above analysis results are consistent with our experimental results. As mentioned 
in “Experimental results”, except one image, our algorithm is more efficient than all con-
ventional Euler number computing algorithm in comparison for all images used in our 
test.

Conclusion
In this paper, we presented a novel bit-quad-based algorithm for Euler number com-
puting. According to graph theory and analysis on bit-quad patterns, we only need to 
count two bit-quad patterns, much less than ten patterns counted in conventional 

Qc

Q2 background pixel

object pixel

either

(a) (b) (c) (d)
Fig. 12  Four groups of patterns used for calculating the Euler number
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bit-quad-based algorithms. Together with use of the information obtained during pro-
cessing the previous bit-quad, our algorithm checks only 1.75 pixels for processing a bit-
quad in average. Experimental results on various types of images demonstrated that our 
algorithm outperformed conventional Euler number computing algorithms. For future 
work, we will consider hardware implementation and parallel implementation of our 
algorithm.

Table 3  The number of pixels needs to be checked in every bit-quad pattern in the GRAY 
algorithm, the I-GRAY algorithm and our algorithm

Pa�ern 2×2 bit-quad pa�erns GRAY I-GRAY Ours

Q1 4 2 3.5

Q2 4 2 3.5

Q3 4 2 3.5

Q4 4 2 3.5

Q5 4 2 1.5

Q6 4 2 1.5

Q7 4 2 1.5

Q8 4 2 1.5

Q9 4 2 1

Q10 4 2 1

Q11 4 2 1

Q12 4 2 1

Q13 4 2 1

Q14 4 2 1

Q15 4 2 1

Q16 4 2 1

Avg. 4 2 1.75
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