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Abstract
In this article, we generalize some frequently used metrical notions such as:
completeness, continuity, g-continuity, and compatibility to order-theoretic setting
especially in ordered metric spaces besides introducing some new notions such as:
the ICC property, DCC property,MCC property etc. and utilize these relatively weaker
notions to prove some coincidence theorems for g-increasing Boyd-Wong type
contractions which enrich some recent results due to Alam et al. (Fixed Point Theory
Appl. 2014:216, 2014).
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1 Introduction
In recent years, a multitude of order-theoretic metrical fixed point theorems have been
proved for order-preserving contractions. This trend was essentially initiated by Turinici
[, ]. After over two decades, Ran and Reurings [] proved a slightly more natural version
of the corresponding fixed point theorems of Turinici (cf. [, ]) for continuous mono-
tone mappings with some applications to matrix equations. In the same lieu, Nieto and
Rodríguez-López [] proved some variants of the Ran and Reuring fixed point theorem
for increasing mappings, which were generalized by many authors (e.g. [–]) in recent
years. Most recently, Alam et al. [] extended the foregoing results for generalized ϕ-
contractions due to Boyd and Wong [].

The aim of this paper is to present some existence and uniqueness results on coinci-
dence points involving a pair of self-mappings f and g defined on ordered metric space
X such that f is g-increasing Boyd-Wong type nonlinear contraction (cf. []) employing
our newly introduced notions such as: O-completeness, O-continuity, (g, O)-continuity,
O-compatibility, MCC property, ≺�-chain etc.

2 Preliminaries
In this section, to make our exposition self-contained, we recall some basic definitions, rel-
evant notions and auxiliary results. Throughout this paper, N stands for the set of natural
numbers and N for the set of whole numbers (i.e. N = N∪ {}).
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Definition  [] A set X together with a partial order � (often denoted by (X,�)) is called
an ordered set. As expected, � denotes the dual order of � (i.e. x � y means y � x).

Definition  [] Two elements x and y of an ordered set (X,�) are called comparable if
either x � y or x � y. For brevity, we denote it by x ≺� y.

Clearly, the relation ≺� is reflexive and symmetric, but not transitive in general (cf. []).

Definition  [] A subset E of an ordered set (X,�) is called totally or linearly ordered
if every pair of elements of E are comparable, i.e.,

x ≺� y ∀x, y ∈ E.

Definition  [] A sequence {xn} in an ordered set (X,�) is said to be
(i) increasing or ascending if for any m, n ∈N,

m ≤ n ⇒ xm � xn,

(ii) decreasing or descending if for any m, n ∈ N,

m ≤ n ⇒ xm � xn,

(iii) monotone if it is either increasing or decreasing,
(iv) bounded above if there is an element u ∈ X such that

xn � u ∀n ∈N

so that u is an upper bound of {xn} and
(v) bounded below if there is an element l ∈ X such that

xn � l ∀n ∈N

so that l is a lower bound of {xn}.

Definition  [] Let f and g be two self-mappings defined on an ordered set (X,�). We
say that f is g-increasing (resp. g-decreasing) if for any x, y ∈ X, g(x) � g(y) ⇒ f (x) � f (y)
(resp. f (x) � f (y)). In all, f is called g-monotone if f is either g-increasing or g-decreasing.

Notice that under the restriction g = I , the identity mapping on X, the notions of g-
increasing, g-decreasing and g-monotone mappings reduce to increasing, decreasing and
monotone mappings, respectively.

Definition  [, ] Let f and g be two self-mappings on a nonempty set X. Then
(i) an element x ∈ X is called a coincidence point of f and g if

g(x) = f (x),
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(ii) an element x ∈ X with x = g(x) = f (x), for some x ∈ X , is called a point of
coincidence of f and g ,

(iii) an element x ∈ X is called a common fixed point of f and g if x = g(x) = f (x),
(iv) the pair (f , g) is said to be commuting if for all x ∈ X ,

g(fx) = f (gx) and

(v) the pair (f , g) is said to be weakly compatible (or partially commuting or
coincidentally commuting) if the pair (f , g) commutes at their coincidence points,
i.e., for any x ∈ X ,

g(x) = f (x) ⇒ g(fx) = f (gx).

Definition  [, ] Let f and g be two self-mappings on a metric space (X, d). Then
(i) the pair (f , g) is said to be weakly commuting if for all x ∈ X ,

d(gfx, fgx) ≤ d(gx, fx) and

(ii) the pair (f , g) is said to be compatible if for any sequence {xn} ⊂ X and for any z ∈ X ,

lim
n→∞ g(xn) = lim

n→∞ f (xn) = z ⇒ lim
n→∞ d(gfxn, fgxn) = .

Definition  [] Let f and g be two self-mappings on a metric space (X, d) and x ∈ X.
We say that f is g-continuous at x if for any sequence {xn} ⊂ X,

g(xn)
d−→ g(x) ⇒ f (xn)

d−→ f (x).

Moreover, f is called g-continuous if it is g-continuous at each point of X.

Notice that particularly with g = I , the identity mapping on X, Definition  reduces to
the definition of continuity.

Definition  [] A triplet (X, d,�) is called an ordered metric space if (X, d) is a metric
space and (X,�) is an ordered set.

Let (X, d,�) be an ordered metric space and {xn} a sequence in X. We adopt the following
notations.

(i) If {xn} is increasing and xn
d−→ x, then we denote it symbolically by xn ↑ x.

(ii) If {xn} is decreasing and xn
d−→ x, then we denote it symbolically by xn ↓ x.

(iii) If {xn} is monotone and xn
d−→ x, then we denote it symbolically by xn ↑↓ x.

In order to avoid the continuity requirement of underlying mapping, the following no-
tions are formulated using suitable properties of ordered metric spaces utilized by earlier
authors especially those contained in [, , , ] besides some other ones.

Definition  [] Let (X, d,�) be an ordered metric space and g a self-mapping on X.
We say that
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(i) (X, d,�) has the g-ICU (increasing-convergence-upper bound) property if g-image
of every increasing convergent sequence {xn} in X is bounded above by g-image of
its limit (as an upper bound), i.e.,

xn ↑ x ⇒ g(xn) � g(x) ∀n ∈ N,

(ii) (X, d,�) has the g-DCL (decreasing-convergence-lower bound) property if g-image
of every decreasing convergent sequence {xn} in X is bounded below by g-image of
its limit (as a lower bound), i.e.,

xn ↓ x ⇒ g(xn) � g(x) ∀n ∈ N and

(iii) (X, d,�) has the g-MCB (monotone-convergence-boundedness) property if it has
both the g-ICU and the g-DCL properties.

Notice that under the restriction g = I , the identity mapping on X, the notions of g-ICU
property, g-DCL property, and g-MCB property reduce to ICU property, DCL property,
and MCB property, respectively.

Inspired by Jleli et al. [], Alam and Imdad [] defined the following.

Definition  [] Let (X,�) be an ordered set and f and g two self-mappings on X. We
say that (X,�) is (f , g)-directed if for every pair x, y ∈ X, ∃z ∈ X such that f (x) ≺� g(z) and
f (y) ≺� g(z).

In the cases g = I and f = g = I (where I denotes the identity mapping on X), (X,�) is
called f -directed and directed, respectively.

Inspired by Turinici [], Alam and Imdad [] defined the following.

Definition  [] Let (X,�) be an ordered set, E ⊆ X and a, b ∈ E. A finite subset
{e, e, . . . , ek} of E is called a ≺�-chain between a and b in E if

(i) k ≥ ,
(ii) e = a and ek = b,

(iii) ei ≺� ei+ for each i ( ≤ i ≤ k – ).

We denote by C(a, b,≺�, E) the class of all ≺�-chains between a and b in E. In particular
for E = X, we write C(x, y,≺�) instead of C(x, y,≺�, X).

Definition  [, ] We denote by � the family of functions ϕ : [,∞) → [,∞) satis-
fying

(a) ϕ(t) < t for each t > ,
(b) lim supr→t+ ϕ(r) < t for each t > .

We need the following well-known results in the proof of our main results.

Lemma  [] Let f and g be two self-mappings defined on an ordered set (X,�). If f is
g-monotone and g(x) = g(y), then f (x) = f (y).
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Lemma  [] Let ϕ ∈ �. If {an} ⊂ (,∞) is a sequence such that an+ ≤ ϕ(an) ∀n ∈ N,
then limn→∞ an = .

Lemma  [] Let f and g be two self-mappings defined on a nonempty set X. If the pair
(f , g) is weakly compatible, then every point of coincidence of f and g is also a coincidence
point of f and g .

3 Order-theoretic metrical notions
Firstly, we adopt several well-known metrical notions to order-theoretic metric setting.

Definition  An ordered metric space (X, d,�) is called
(i) O-complete if every increasing Cauchy sequence in X converges,

(ii) O-complete if every decreasing Cauchy sequence in X converges, and
(iii) O-complete if every monotone Cauchy sequence in X converges.

Here it can be pointed out that the notion of O-completeness was already defined by
Turinici [] stating that d is (�)-complete.

Remark  In an ordered metric space, completeness ⇒ O-completeness ⇒ O-complete-
ness as well as O-completeness.

Definition  Let (X, d,�) be an ordered metric space, f : X → X a mapping and x ∈ X.
Then f is called:

(i) O-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

xn ↑ x ⇒ f (xn)
d−→ f (x),

(ii) O-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

xn ↓ x ⇒ f (xn)
d−→ f (x) and

(iii) O-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

xn ↑↓ x ⇒ f (xn)
d−→ f (x).

Moreover, f is called O-continuous (resp. O-continuous, O-continuous) if it is O-
continuous (resp. O-continuous, O-continuous) at each point of X.

Here it can be pointed out that the notion of O-continuity was earlier defined by Turinici
[] wherein he said that f is (d,�)-continuous.

Remark  In an ordered metric space, continuity ⇒ O-continuity ⇒ O-continuity as well
as O-continuity.

Definition  Let (X, d,�) be an ordered metric space, f and g two self-mappings on X
and x ∈ X. Then f is called:

(i) (g, O)-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

g(xn) ↑ g(x) ⇒ f (xn)
d−→ f (x),
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(ii) (g, O)-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

g(xn) ↓ g(x) ⇒ f (xn)
d−→ f (x) and

(iii) (g, O)-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

g(xn) ↑↓ g(x) ⇒ f (xn)
d−→ f (x).

Moreover, f is called (g, O)-continuous (resp. (g, O)-continuous, (g, O)-continuous) if it is
(g, O)-continuous (resp. (g, O)-continuous, (g, O)-continuous) at each point of X.

Notice that on setting g = I (the identity mapping on X), Definition  reduces to Defi-
nition .

Remark  In an ordered metric space, g-continuity ⇒ (g, O)-continuity ⇒ (g, O)-
continuity as well as (g, O)-continuity.

Definition  Let (X, d,�) be an ordered metric space and f and g two self-mappings
on X. We say that the pair (f , g) is

(i) O-compatible if for any sequence {xn} ⊂ X and for any z ∈ X ,

g(xn) ↑ z and f (xn) ↑ z ⇒ lim
n→∞ d(gfxn, fgxn) = ,

(ii) O-compatible if for any sequence {xn} ⊂ X and for any z ∈ X ,

g(xn) ↓ z and f (xn) ↓ z ⇒ lim
n→∞ d(gfxn, fgxn) =  and

(iii) O-compatible if for any sequence {xn} ⊂ X and for any z ∈ X ,

g(xn) ↑↓ z and f (xn) ↑↓ z ⇒ lim
n→∞ d(gfxn, fgxn) = .

Here it can be pointed out that the notion of O-compatibility is slightly weaker than the
notion of O-compatibility defined by Luong and Thuan []. Luong and Thuan [] as-
sumed that only the sequence {gxn} is monotone but we assume that both {gxn} and {fxn}
are monotone.

Remark  In an ordered metric space, commutativity ⇒ weak commutativity ⇒ com-
patibility ⇒ O-compatibility ⇒ O-compatibility as well as O-compatibility ⇒ weak com-
patibility.

Now, we define the following notions, which are weaker than those of Definition .

Definition  Let (X, d,�) be an ordered metric space. We say that:
(i) (X, d,�) has the ICC (increasing-convergence-comparable) property if every

increasing convergent sequence {xn} in X has a subsequence {xnk } such that every
term of {xnk } is comparable with the limit of {xn}, i.e.,

xn ↑ x ⇒ ∃ a subsequence {xnk } of {xn} with xnk ≺� x ∀k ∈N,
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(ii) (X, d,�) has the DCC (decreasing-convergence-comparable) property if every
decreasing convergent sequence {xn} in X has a subsequence {xnk } such that every
term of {xnk } is comparable with the limit of {xn}, i.e.,

xn ↓ x ⇒ ∃ a subsequence {xnk } of {xn} with xnk ≺� x ∀k ∈N and

(iii) (X, d,�) has the MCC (monotone-convergence-comparable) property if every
monotone convergent sequence {xn} in X has a subsequence {xnk } such that every
term of {xnk } is comparable with the limit of {xn}, i.e.,

xn ↑↓ x ⇒ ∃ a subsequence {xnk } of {xn} with xnk ≺� x ∀k ∈ N.

Remark  For an ordered metric space:
ICU property ⇒ ICC property.
DCL property ⇒ DCC property.
MCB property ⇒ MCC property ⇒ ICC property as well as DCC property.

Definition  Let (X, d,�) be an ordered metric space and g a self-mapping on X. We say
that:

(i) (X, d,�) has the g-ICC property if every increasing convergent sequence {xn} in X
has a subsequence {xnk } such that every term of {gxnk } is comparable with g-image
of the limit of {xn}, i.e.,

xn ↑ x ⇒ ∃ a subsequence {xnk } of {xn} with g(xnk ) ≺� g(x) ∀k ∈N,

(ii) (X, d,�) has the g-DCC property if each decreasing convergent sequence {xn} in X
has a subsequence {xnk } such that every term of {gxnk } is comparable with g-image
of the limit of {xn}, i.e.,

xn ↓ x ⇒ ∃ a subsequence {xnk } of {xn} with g(xnk ) ≺� g(x) ∀k ∈N and

(iii) (X, d,�) has the g-MCC property if each monotone convergent sequence {xn} in X
has a subsequence {xnk } such that every term of {gxnk } is comparable with g-image
of the limit of {xn}, i.e.,

xn ↑↓ x ⇒ ∃ a subsequence {xnk } of {xn} with g(xnk ) ≺� g(x) ∀k ∈N.

Notice that on setting g = I (the identity mapping on X), Definition  reduces to Defi-
nition .

Remark  For an ordered metric space:
g-ICU property ⇒ g-ICC property.
g-DCL property ⇒ g-DCC property.
g-MCB property ⇒ g-MCC property ⇒ g-ICC property as well as g-DCC property.
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4 Main results
Firstly, we prove some results which ensure the existence of coincidence points.

Theorem  Let (X, d,�) be an ordered metric space and f and g two self-mappings on X.
Suppose that the following conditions hold:

(a) f (X) ⊆ g(X),
(b) f is g-increasing,
(c) there exists x ∈ X such that g(x) � f (x),
(d) there exists ϕ ∈ � such that

d(fx, fy) ≤ ϕ
(
d(gx, gy)

) ∀x, y ∈ X with g(x) ≺� g(y),

(e) (e) (X, d,�) is O-complete,
(e) (f , g) is O-compatible pair,
(e) g is O-continuous,
(e) either f is O-continuous or (X, d,�) has the g-ICC property,
or alternately

(e′) (e′) there exists a subset Y of X such that f (X) ⊆ Y ⊆ g(X) and (Y , d,�) is O-complete,
(e′) either f is (g, O)-continuous or f and g are continuous or (Y , d,�) has the ICC

property.

Then f and g have a coincidence point.

Proof The proof of this theorem runs along the lines of the proof of Theorem  proved in
[]. We define a sequence {xn} ⊂ X (of joint iterates) such that

g(xn+) = f (xn) ∀n ∈N. ()

Following the lines of the proof of Theorem  of [], we can show that the sequence
{gxn} (and hence {fxn} also) is increasing and Cauchy.

Assume that (e) holds. Then O-completeness of X implies the existence of z ∈ X such
that

g(xn) ↑ z and f (xn) ↑ z. ()

Owing to (), we use O-continuity and O-compatibility instead of continuity and O-
compatibility. To prove that z ∈ X is a coincidence point of f and g , firstly we suppose
that f is O-continuous, then proceeding along the lines of the proof of Theorem  of [],
we show that f (z) = g(z). Otherwise suppose that (X, d,�) has the g-ICC property, then
owing to (), there exists a subsequence {gxnk } of {gxn} such that

g(gxnk ) ≺� g(z) ∀k ∈N. ()

As g(xnk ) ↑ z, proceeding on the lines of the proof of Theorem  of [] for the g-ICU
property, we get g(z) = f (z).
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Next, assume that (e′) holds. Then the assumption f (X) ⊆ Y and O-completeness of Y
implies the existence of y ∈ Y such that f (xn) ↑ y. Again owing to assumption Y ⊆ g(X),
we can find u ∈ X such that y = g(u). Hence, on using (), we get

g(xn) ↑ g(u). ()

To prove that u ∈ X is a coincidence point of f and g , firstly we suppose that f is (g, O)-

continuous, then g(xn+) = f (xn)
d−→ f (u). Using uniqueness of the limit, g(u) = f (u), and

hence we are through. Next, suppose that f and g are continuous, then our proof runs on
the lines of Theorem  of []. Finally, suppose that (Y , d,�) has the ICC property, then
due to (), there exists a subsequence {gxnk } of {gxn} such that

g(xnk ) ≺� g(u) ∀k ∈N. ()

As g(xnk ) ↑ g(u), proceeding on the lines of the proof of Theorem  of [] for the ICU
property, the desired result can also be proved. �

Theorem  Theorem  remains true if certain involved terms namely: O-complete, O-
compatible pair, O-continuous, (g, O)-continuous, ICC property, and g-ICC property are,
respectively, replaced by O-complete, O-compatible pair, O-continuous, (g, O)-continuous,
DCC property, and g-DCC property provided the assumption (c) is replaced by the following
(besides retaining the rest of the hypotheses):

(c)′ there exists x ∈ X such that g(x) � f (x).

Proof The proof is similar to Theorem  of []. We define a sequence {xn} ⊂ X (of joint
iterates) such that

g(xn+) = f (xn) ∀n ∈N. ()

Following the lines of the proof of Theorem  in [], we show that the sequence {gxn}
(and hence also {fxn}) is decreasing and Cauchy.

Assume that (e) holds. The O-completeness of X implies the existence of z ∈ X such that

g(xn) ↓ z and f (xn) ↓ z. ()

In view of (), we use O-continuity and O-compatibility instead of continuity and O-
compatibility. To prove that z ∈ X is a coincidence point of f and g , firstly we suppose
that f is O-continuous, then proceeding on the lines of the proof of Theorem  of [],
we show that f (z) = g(z). Otherwise suppose that (X, d,�) has the g-DCC property, then
owing to (), there exists a subsequence {gxnk } of {gxn} such that

g(gxnk ) ≺� g(z) ∀k ∈N. ()

As g(xnk ) ↓ z, proceeding on the lines of the proof of Theorem  of [] for the g-DCL
property, we get g(z) = f (z).
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On the other hand, assume that (e′) holds. Then due to availability of an analogous to
(), the O-completeness of Y implies the existence of u ∈ X such that

g(xn) ↓ g(u). ()

To prove that u ∈ X is a coincidence point of f and g , firstly we suppose that f is (g, O)-

continuous, then g(xn+) = f (xn)
d−→ f (u). Using the uniqueness of the limit, g(u) = f (u),

and hence we are done. Next, suppose that f and g are continuous, then a proof can be
completed along the lines of the proof of Theorem  of []. Finally, suppose that (Y , d,�)
has the DCC property, then, due to (), there exists a subsequence {gxnk } of {gxn} such that

g(xnk ) ≺� g(u) ∀k ∈N. ()

As g(xnk ) ↓ g(u), proceeding on the lines of the proof of Theorem  of [] for the DCL
property, this result can be proved. �

Now, combining Theorems  and  and making use of Remarks -, we obtain the fol-
lowing result.

Theorem  Theorem  remains true if certain involved terms namely: O-complete, O-
compatible pair, O-continuous, (g, O)-continuous, ICC property, and g-ICC property are,
respectively, replaced by O-complete, O-compatible pair, O-continuous, (g, O)-continuous,
MCC property, and g-MCC property provided the assumption (c) is replaced by the follow-
ing (besides retaining the rest):

(c)′′ there exists x ∈ X such that g(x) ≺� f (x).

Remark  In view of Remarks -, it is clear that Theorems ,  and  enrich, respectively,
Theorems , , and  of Alam et al. [].

Taking ϕ(t) = αt with α ∈ [, ), in Theorem  (resp. in Theorem  or Theorem ), we
get the corresponding results for linear contractions as follows.

Corollary  Theorem  (resp. Theorem  or Theorem ) remains true if we replace condi-
tion (d) by the following condition (besides retaining the rest of the hypotheses):

(d)′ there exists α ∈ [, ) such that

d(fx, fy) ≤ αd(gx, gy) ∀x, y ∈ X with g(x) ≺� g(y).

Now, we prove certain results ensuring the uniqueness of coincidence point, point of
coincidence, and common fixed point corresponding to some earlier results. For a pair f
and g of self-mappings on a nonempty set X, we adopt the following notations:

C(f , g) = {x ∈ X : gx = fx}, i.e., the set of all coincidence points of f and g,

C(f , g) = {x ∈ X : there exists an x ∈ X such that x = gx = fx},
i.e., the set of all points of coincidence of f and g.
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Theorem  In addition to the hypotheses (a)-(d) along with (e′) of Theorem  (resp. Theo-
rem  or Theorem ), suppose that the following condition (see Definition ) holds:

(u) C(fx, fy,≺�, gX) is nonempty, for each x, y ∈ X .

Then f and g have a unique point of coincidence.

Proof In view of Theorem  (resp. Theorem  or Theorem ), C(f , g) �= ∅. Take x, y ∈
C(f , g), then ∃x, y ∈ X such that

x = g(x) = f (x) and y = g(y) = f (y). ()

Now, we show that x = y. As f (x), f (y) ∈ f (X) ⊆ g(X), by (u), there exists a ≺�-chain
{gz, gz, . . . , gzk} between f (x) and f (y) in g(X), where z, z, . . . , zk ∈ X. Owing to (), with-
out loss of generality, we can choose z = x and zk = y. We have

g(zi) ≺� g(zi+) for each i ( ≤ i ≤ k – ). ()

Define the constant sequences z
n = z = x and zk

n = zk = y, then using (), we have
g(z

n+) = f (z
n) and g(zk

n+) = f (zk
n) ∀n ∈ N. Put z

 = z, z
 = z, . . . , zk–

 = zk–. Since f (X) ⊆
g(X), we can define sequences {z

n}, {z
n}, . . . , {zk–

n } in X such that g(z
n+) = f (z

n), g(z
n+) =

f (z
n), . . . , g(zk–

n+) = f (zk–
n ) ∀n ∈N. Hence, we have

g
(
zi

n+
)

= f
(
zi

n
) ∀n ∈N and for each i ( ≤ i ≤ k). ()

Now, we claim that

g
(
zi

n
) ≺� g

(
zi+

n
) ∀n ∈ N and for each i ( ≤ i ≤ k – ). ()

We prove this fact by induction. It follows from () that () holds for n = . Suppose that
() holds for n = r > , i.e.,

g
(
zi

r
) ≺� g

(
zi+

r
)

for each i ( ≤ i ≤ k – ).

As f is g-increasing, we obtain

f
(
zi

r
) ≺� f

(
zi+

r
)

for each i ( ≤ i ≤ k – ),

which on using (), gives rise to

g
(
zi

r+
) ≺� g

(
zi+

r+
)

for each i ( ≤ i ≤ k – ).

It follows that () holds for n = r + . Thus, by induction, () holds for all n ∈ N. Now,
for each n ∈ N and for each i ( ≤ i ≤ k – ), define ti

n := d(gzi
n, gzi+

n ). We claim that

lim
n→∞ ti

n =  for each i ( ≤ i ≤ k – ). ()
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On fixing i, two cases arise. Firstly, suppose that ti
n = d(gzi

n , gzi+
n ) =  for some n ∈ N,

then by Lemma , we obtain d(fzi
n , fzi+

n ) = . Consequently on using (), we get ti
n+ =

d(gzi
n+, gzi+

n+) = d(fzi
n , fzi+

n ) = . Thus by induction, we get ti
n =  ∀n ≥ n, yielding

thereby limn→∞ ti
n = . Secondly, suppose that tn >  ∀n ∈ N, then on using (), (),

and assumption (d), we have

ti
n+ = d

(
gzi

n+, gzi+
n+

)

= d
(
fzi

n, fzi+
n

)

≤ ϕ
(
d
(
gzi

n, zi+
n

))

= ϕ
(
ti
n
)
,

so that

ti
n+ ≤ ϕ

(
ti
n
)
.

Now, on applying Lemma , we obtain limn→∞ ti
n = . Thus, in both cases, () is proved

for each i ( ≤ i ≤ k – ). On using the triangular inequality and (), we obtain

d(x, y) ≤ t
n + t

n + · · · + tk–
n →  as n → ∞

so that

x = y. �

Theorem  In addition to the hypotheses of Theorem , suppose that the following condi-
tion holds:

(u) one of f and g is one-one.

Then f and g have a unique coincidence point.

Proof In view of Theorem  (or Theorem  or Theorem ), C(f , g) �= ∅. Take x, y ∈ C(f , g),
then using Theorem , we can write

g(x) = f (x) = f (y) = g(y).

As f or g is one-one, we have

x = y. �

Theorem  In addition to the hypotheses of Theorem , suppose that the following condi-
tion holds:

(u) (f , g) is weakly compatible pair.

Then f and g have a unique common fixed point.
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Proof Let x be a coincidence point of f and g . Write g(x) = f (x) = x. In view of Lemma 
and (u), x is also a coincidence point of f and g . It follows from Theorem  with y = x that
g(x) = g(x), i.e., x = g(x), which shows

x = g(x) = f (x).

Hence, x is a common fixed point of f and g . To prove uniqueness, assume that x∗ is an-
other common fixed point of f and g . Then again from Theorem , we have

x∗ = g
(
x∗) = g(x) = x.

This completes the proof. �

Theorem  In addition to the hypotheses (a)-(e) of Theorem  (resp. Theorem  or Theo-
rem ), suppose that the condition (u) (of Theorem ) holds. Then f and g have a unique
common fixed point.

Proof We know that in an ordered metric space, each of an O-compatible pair, an O-
compatible pair, and an O-compatible pair is weakly compatible so that (u) is trivially
satisfied. Hence proceeding along the lines of the proofs of Theorems  and  our result
follows. �

Corollary  Theorem  (resp. Theorem ) remains true if we replace the condition (u) by
one of the following conditions (besides retaining rest of the hypotheses):

(u
) (fX,�) is totally ordered,

(u
) (X,�) is (f , g)-directed.

Proof Suppose that (u
) holds, then for each pair x, y ∈ X, we have

f (x) ≺� f (y),

which implies that {fx, fy} is a ≺�-chain between f (x) and f (y) in g(X). It follows that
C(fx, fy,≺�, gX) is nonempty for each x, y ∈ X, i.e., (u) holds and hence Theorem  (resp.
Theorem ) is applicable.

Next, assume that (u
) holds, then for each pair x, y ∈ X, ∃z ∈ X such that

f (x) ≺� g(z) ≺� f (y),

which implies that {fx, gz, fy} is a ≺�-chain between f (x) and f (y) in g(X). It follows that
C(fx, fy,≺�, gX) is nonempty for each x, y ∈ X, i.e., (u) holds and hence Theorem  (resp.
Theorem ) is applicable. �

Remark  Notice that Alam et al. [] used condition (u
) to prove uniqueness results

(see Theorem  [] along with comments). Here, we use condition (u), which is relatively
weak in view of Corollary .
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