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Abstract
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MSC: 62P10; 26A33; 45G10

Keywords: epidemic model; q-calculus; fractional order; measure of
noncompactness

1 Introduction
In this paper, we deal with the solvability of the q-fractional integral equation

x(t) =
N∏

i=

(
fi(t) +

gi(t, x(t))
�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

)
, t ∈ I, (.)

where I = [, ], q ∈ (, ), αi > , fi : I →R, and gi, ui : I ×R →R (i = , . . . , N ).
For N = , q = , and α = , equation (.) arises in the study of the spread of an infectious

disease that does not induce permanent immunity (see [–]).
Equation (.) can be written as

x(t) =
N∏

i=

(
fi(t) + gi

(
t, x(t)

)
Iαi

q ui
(·, x(·))(t)

)
, t ∈ I,

where Iαi
q is the q-fractional integral of order αi defined by []

Iαi
q h(t) =


�q(αi)

∫ t


(t – qs)(αi–)h(s) dqs, t ∈ I.

Via noncompactness measure argument in a Banach algebra, we provide sufficient con-
ditions for the existence of at least one solution to equation (.). We also give an example
in order to illustrate our existence result.
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The concept of noncompactness measure was used by many authors in order to study
the solvability of various classes of integral equations (see [–] and references therein).
Very recently, Jleli, Mursaleen, and Samet [] studied the solvability of a functional equa-
tion involving the q-fractional integral equation

x(t) = F
(

t, x
(
a(t)

)
,

f (t, x(t))
�q(α)

∫ t


(t – qs)(α–)u

(
s, x(s)

)
dqs

)
, t ∈ [, ].

Using the noncompactness measure tool, the authors obtained an existence result for such
an equation. To the best of our knowledge, [] is the only work dealing with the solvability
of a q-fractional integral equation with noncompactness measure. In this paper, we use a
different approach in order to establish our existence result. We first establish a fixed point
theorem in a Banach algebra via a measure of noncompactness satisfying condition (m).
Next, via the obtained fixed point result, we prove that, under certain conditions, equation
(.) has at least one solution.

2 Preliminaries on quantum calculus
The concept of quantum calculus was introduced by Jackson [, ]. This subject is rich
in history and has many applications (see [–]). In this section, we recall some basic
facts on quantum calculus and present additional properties that will be used later. For
more details, we refer to [].

Let q ∈ [,∞)\{}. For x ∈ R, we define the q-real number [x]q by

[x]q =
 – qx

 – q
.

The q-factorial of x is defined by

(x, q) = , (x, q)k =
k–∏

i=

(
 – xqi), k = , , . . . ,∞.

For (a, b) ∈R
, the q-analog of (a – b)k is defined by

(a – b)() = , (a – b)(k) =
k–∏

i=

(
a – qib

)
, k = , , . . . .

For β ∈R, (a, b) ∈R
, and a ≥ ,

(a – b)(β) = aβ

∞∏

i=

a – bqi

a – bqβ+i .

Note that, for b = , we have

a(β) = aβ .

Lemma . ([]) If β >  and  ≤ a ≤ b ≤ t, then

(t – b)(β) ≤ (t – a)(β).
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The q-gamma function is given by

�q(x) =
( – q)(x–)

( – q)x– , x /∈ {, –, –, . . .}.

We have the following property:

�q(x + ) = [x]q�q(x).

Let f : [, T] →R be a given function (T > ). We define the q-integral of the function f
by

Iqf (t) =
∫ t


f (s) dqs = t( – q)

∞∑

n=

f
(
tqn)qn, t ∈ [, T].

If η ∈ [, T], then

∫ T

η

f (s) dqs =
∫ T


f (s) dqs –

∫ η


f (s) dqs.

Lemma . Let f : [, ] →R be a continuous function. Then

∣∣∣∣
∫ t


f (s) dqs

∣∣∣∣ ≤
∫ t



∣∣f (s)
∣∣dqs, t ∈ [, ].

Remark . If  ≤ t ≤ t ≤  and f : [, ] → R is a continuous function, then the in-
equality

∣∣∣∣
∫ t

t

f (s) dqs
∣∣∣∣ ≤

∫ t

t

∣∣f (s)
∣∣dqs

is not satisfied in general. As a counterexample, we refer to [], p..

Let f : [, ] → R be a given function. The fractional q-integral of order α ≥  of the
function f is given by I

q f (t) = f (t) and

Iα
q f (t) =


�q(α)

∫ t


(t – qs)(α–)f (s) dqs, t ∈ [, ],α > .

Note that, for α = , we have

I
qf (t) = Iqf (t), t ∈ [, ].

For f ≡ ,

Iα
q (t) =


�q(α + )

tα , t ∈ [, ].
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3 A fixed point theorem in a Banach algebra via a measure of noncompactness
satisfying condition (m)

In this section, we recall the axiomatic approach of noncompactness measure introduced
by Banas and Goebel []. Next, we establish a fixed point theorem in a Banach algebra
via a measure of noncompactness satisfying condition (m). This fixed point result plays
an important rule in the proof of our existence result.

Let (E, ·) be a Banach Algebra over R with respect to a certain norm ‖ · ‖E . We denote
by E the zero vector of E. For x ∈ E and r > , we denote by B(x, r) the open ball in E of
center x and radius r, that is,

B(x, r) =
{

y ∈ E : ‖x – y‖E < r
}

.

We denote by P(E) the set of all nonempty subsets of E. If M ∈ P(E), then the symbol
M denotes the closure of M. The symbol Conv(M) stands for the convex hull of M. For
(M, N) ∈P(E) ×P(E) and α ∈ R, we denote

M + N =
{

x + y : (x, y) ∈ M × N
}

and

αM = {αx : x ∈ M}.

We denote by Pb(E) the set of all nonempty bounded subsets of E. For M ∈ Pb(E), we
denote by ‖M‖ the norm of M, that is,

‖M‖ = sup
{‖x‖E : x ∈ M

}
.

We denote by Prc(E) the set of all relatively compact subsets of E. For M, N ∈ P(E), we
denote by MN the product set

MN =
{

x · y : (x, y) ∈ M × N
}

.

In what follows, we recall the axiomatic approach of a measure of noncompactness in-
troduced by Banas and Goebel [].

Definition . Let μ : Pb(E) → [,∞) be a given mapping. We say that μ is a measure of
noncompactness in E if it satisfies the following axioms:

(A) The family kerμ = μ–({}) is a subset of Prc(E).
(A) (M, N) ∈Pb(E) ×Pb(E), M ⊂ N 
⇒ μ(M) ≤ μ(N).
(A) μ(M) = μ(M), M ∈Pb(E).
(A) μ(Conv(M)) = μ(M), M ∈Pb(E).
(A) μ(λM + ( – λ)N) ≤ λμ(M) + ( – λ)μ(N) for λ ∈ [, ] and

(M, N) ∈Pb(E) ×Pb(E).
(A) If {Mn} is a sequence of closed sets from Pb(E) such that Mn+ ⊂ Mn for n = , , . . .

and if limn→∞ μ(Mn) = , then the intersection set M∞ =
⋂∞

n= Mn is nonempty.

Now, let us recall the following important result, which is called Drabo’s fixed point
theorem [, ].
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Lemma . Let D be a nonempty, bounded, closed, and convex subset of E, and let T : D →
D be a continuous mapping. Suppose that there exists a constant k ∈ (, ) such that

μ(TM) ≤ kμ(M)

for any nonempty subset M of D, where μ is a measure of noncompactness in E. Then T has
at least one fixed point in D.

The following concept was introduced by Banas and Olszowy [].

Definition . Let μ be a measure of noncompactness in E. We say that μ satisfies con-
dition (m) if

μ(MN) ≤ ‖M‖μ(N) + ‖N‖μ(M), (M, N) ∈Pb(E) ×Pb(E).

Lemma . Let μ be a measure of noncompactness in E satisfying condition (m). Let
{Mi}i=,...,q be a finite sequence in Pb(E), q ≥ . Then

μ

( q∏

i=

Mi

)
≤

q∑

i=

q∏

j=,j �=i

‖Mj‖μ(Mi). (.)

Proof We shall use the induction principle. For q = , (.) follows immediately from Def-
inition .. Suppose now that (.) is satisfied for some q ≥ . We have to prove that

μ

(q+∏

i=

Mi

)
≤

q+∑

i=

q+∏

j=,j �=i

‖Mj‖μ(Mi). (.)

Using (.) and Definition ., we have

μ

(q+∏

i=

Mi

)
= μ

(( q∏

i=

Mi

)
Mq+

)

≤ μ

( q∏

i=

Mi

)
‖Mq+‖ + μ(Mq+)

∥∥∥∥∥

q∏

i=

Mi

∥∥∥∥∥

≤ μ

( q∏

i=

Mi

)
‖Mq+‖ + μ(Mq+)

q∏

j=

‖Mj‖

≤
q∑

i=

q∏

j=,j �=i

‖Mj‖μ(Mi)‖Mq+‖ + μ(Mq+)
q∏

j=

‖Mj‖

=
q∑

i=

q+∏

j=,j �=i

‖Mj‖μ(Mi)‖Mq+‖ + μ(Mq+)
q∏

j=

‖Mj‖

=
q+∑

i=

q+∏

j=,j �=i

‖Mj‖μ(Mi).

Thus, we proved (.). Finally, (.) follows by the induction principle. �
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Now, we deal with the fixed point problem

{
Find x ∈ D such that
x =

∏N
i= Tix,

(.)

where D ∈P(E) and Ti : D → E, i = , . . . , N , N ≥ , are given operators.
We have the following fixed point result.

Theorem . Assume that D is nonempty, bounded, closed, and convex subset of the Ba-
nach algebra E. Assume also that the following conditions are satisfied:

(i) Ti is continuous, i = , . . . , N .
(ii) TiD is bounded, i = , . . . , N .

(iii) TD ⊂ D, where Tx =
∏N

i= Tix.
(iv) There exists a finite sequence {ki}q

i= ⊂ (,∞) such that

μ(TiM) ≤ kiμ(M), i = , . . . , N ,

for any nonempty subset M of D, where μ is a measure of noncompactness in E
satisfying condition (m).

(v)
∑q

i= ki
∏q

j=,j �=i ‖TjD‖ < .
Then problem (.) has at least one solution in D.

Proof Let M be nonempty subset of D. Using Lemma . and the considered assumptions,
we obtain

μ(TM) = μ

( N∏

i=

TiM

)
≤

N∑

i=

N∏

j=,j �=i

‖TjM‖μ(TiM)

≤
N∑

i=

ki

N∏

j=,j �=i

‖TjM‖μ(M) ≤
( N∑

i=

ki

N∏

j=,j �=i

‖TjD‖
)

μ(M).

Thus, we have proved that

μ(TM) ≤ kμ(M)

for every nonempty subset M of D, where

k =
N∑

i=

ki

N∏

j=,j �=i

‖TjD‖ < .

The result follows by Lemma .. �

Remark . For N = , Theorem . reduces to a fixed point theorem established in [].

Remark . For N = , Theorem . reduces to Lemma ..
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4 Main result
In this section, we state and prove our main result concerning the existence of solutions
to equation (.).

Let E = C(I;R) be the Banach space of all real-valued continuous functions in I equipped
with the norm

‖u‖E = max
{∣∣u(t)

∣∣ : t ∈ I
}

, u ∈ E.

Clearly, E is a Banach algebra with respect to the operation · defined by

(u · v)(t) = u(t)v(t), t ∈ I, (u, v) ∈ E × E.

Let M ∈Pb(E). For x ∈ M and ε > , set

ω(x, ε) = sup
{∣∣x(t) – x(s)

∣∣ : t, s ∈ I, |t – s| ≤ ε
}

,

ω(M, ε) = sup
{
ω(x, ε) : x ∈ M

}
.

It was proved in [] that the mapping μ : Pb(E) → [,∞) defined by

μ(M) = lim
ε→+

ω(M, ε), M ∈Pb(E), (.)

is a measure of noncompactness in E. Moreover, μ satisfies condition (m) (see []).
Equation (.) can be written as

x = Tx =
N∏

i=

Tix, (.)

where fo,r i = , . . . , N ,

(Tix)(t) = fi(t) +
gi(t, x(t))
�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs, t ∈ I.

We consider the following assumption:
(A) For i = , . . . , N , the functions fi : I →R and gi, ui : I ×R→R are continuous.

Lemma . For every i = , . . . , N , the operator Ti : E → E is well defined.

Proof Fix i ∈ {, . . . , N}. We have just to prove that the operator

(Six)(t) =
∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs, t ∈ I, (.)

maps E into it self. To do this, let us fix x ∈ E. For all t ∈ I , we have

(Six)(t) = t( – q)
∞∑

n=

qn(t – qn+t
)(αi–)ui

(
tqn, x

(
tqn))

= tαi ( – q)
∞∑

n=

qn( – qn+)(αi–)ui
(
tqn, x

(
tqn)).
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Since qn+ ∈ (, ), by Lemma . we have

(
 – qn+)(αi–) ≤ ( – )(αi–) = .

Therefore, the continuity of ui and the Weierstrass convergence theorem give us the de-
sired result. �

We suppose also that the following assumptions are satisfied:
(A) For all i = , . . . , N , there exist constants Ci >  and di >  such that

∣∣gi(t, x) – gi(t, y)
∣∣ ≤ Ci|x – y|di , (t, x, y) ∈ I × I ×R.

(A) For all i = , . . . , N , there exist a constant ei >  and a nondecreasing continuous
function ϕi : [,∞) → [,∞) such that

∣∣ui(t, x) – ui(t, y)
∣∣ ≤ ϕi

(|x – y|ei
)
, (t, x, y) ∈ I × I ×R.

(A) For all i = , . . . , N , we have

ui(t, ) = , t ∈ I.

(A) There exists r >  such that

‖fi‖E +
(Cirdi + g∗

i )ϕi(rei )
�q(αi + )

≤ r/N ,

where

g∗
i = max

{∣∣gi(t, )
∣∣ : t ∈ I

}
.

Lemma . Under Assumptions (A)-(A), for all i = , . . . , N , we have

TiB(E, r) ⊂ B
(
E , r/N

)
.

Proof Let i ∈ {, . . . , N} be fixed, and let x ∈ B(E, r). For all t ∈ I , we have

∣∣(Tix)(t)
∣∣ ≤ ∣∣fi(t)

∣∣ +
|gi(t, x(t))|

�q(αi)

∫ t


(t – qs)(αi–)∣∣ui

(
s, x(s)

)∣∣dqs

≤ ‖fi‖E +
|gi(t, x(t))|

�q(αi)

∫ t


(t – qs)(αi–)∣∣ui

(
s, x(s)

)∣∣dqs

≤ ‖fi‖E +
|gi(t, x(t)) – gi(t, )| + |gi(t, )|

�q(αi)

∫ t


(t – qs)(αi–)∣∣ui

(
s, x(s)

)∣∣dqs.

Using Assumption (A), we obtain

∣∣gi
(
t, x(t)

)
– gi(t, )

∣∣ +
∣∣gi(t, )

∣∣ ≤ Cirdi + g∗
i ,
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By Assumptions (A) and (A) we have

∣∣ui
(
s, x(s)

)∣∣ =
∣∣ui

(
s, x(s)

)
– ui(s, )

∣∣ ≤ ϕi
(
rei

)
.

Therefore, we obtain

∣∣(Tix)(t)
∣∣ ≤ ‖fi‖E +

(Cirdi + g∗
i )ϕi(rei )

�q(αi)

∫ t


(t – qs)(αi–) dqs

= ‖fi‖E +
(Cirdi + g∗

i )ϕi(rei )
�q(αi + )

tαi

≤ ‖fi‖E +
(Cirdi + g∗

i )ϕi(rei )
�q(αi + )

.

By Assumption (A) we get

‖Tix‖E ≤ r/N ,

which proves the desired result. �

Lemma . Under Assumptions (A)-(A), for all i = , . . . , N ,

Ti : B(E, r) → B
(
E, r/N

)

is continuous.

Proof Under the considered assumptions, we have just to prove that, for all i = , . . . , N , the
operator Si : B(E, r) → E defined by (.) is continuous. To do this, let us fix i ∈ {, . . . , N}
and ε >  such that ‖x – y‖E ≤ ε, (x, y) ∈ B(E, r) × B(E , r). For all t ∈ I , we have

∣∣(Six)(t) – (Siy)(t)
∣∣ =

∣∣∣∣
∫ t


(t – qs)(αi–)(ui

(
s, x(s)

)
– ui

(
s, y(s)

))
dqs

∣∣∣∣

≤
∫ t


(t – qs)(αi–)∣∣ui

(
s, x(s)

)
– ui

(
s, y(s)

)∣∣dqs

≤ ui
r(ε)tαi

[αi]q

≤ ui
r(ε)

[αi]q
,

where

ui
r(ε) = sup

{∣∣ui(t, x) – ui(t, y)
∣∣ : t ∈ I, x, y ∈ [–r, r], |x – y| ≤ ε

}
.

Therefore,

‖Six – Siy‖E ≤ ui
r(ε)

[αi]q
.
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Passing to the limit as ε →  and using the uniform continuity of ui on the compact set
I × [–r, r], we obtain

lim
ε→

ui
r(ε)

[αi]q
= ,

which yields the desired result. �

Next, we need the following additional assumption:
(A) For all i = , . . . , N , there exists a constant λi >  such that

tdi + ϕi
(
tei

) ≤ λit, t ≥ .

Lemma . Under assumptions (A)-(A), for all i = , . . . , N , we have

μ(TiM) ≤ kiμ(M)

for every nonempty subset M of B(E , r), where

ki = λi max

{
Ciϕi(rei )
�q(αi + )

,
(Cirdi + g∗

i )
�q(αi)

}
.

Proof Fix i ∈ {, . . . , N}. Let M be a nonempty subset of B(E , r), ε > , and x ∈ M. Let
(t, t) ∈ I × I be such that |t – t| ≤ ε. Without loss of the generality, we may assume that
t ≥ t. Therefore, we have

∣∣(Tix)(t) – (Tix)(t)
∣∣

≤ ∣∣fi(t) – fi(t)
∣∣ +

∣∣∣∣
gi(t, x(t))

�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

–
gi(t, x(t))

�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

∣∣∣∣

≤ ω(fi, ε) +
∣∣∣∣
gi(t, x(t))

�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

–
gi(t, x(t))

�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

∣∣∣∣

+
∣∣∣∣
gi(t, x(t))

�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

–
gi(t, x(t))

�q(αi)

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

∣∣∣∣

≤ ω(fi, ε) +
|gi(t, x(t)) – gi(t, x(t))|

�q(αi)

∫ t


(t – qs)(αi–)∣∣ui

(
s, x(s)

)∣∣dqs

+
|gi(t, x(t))|

�q(αi)

∣∣∣∣
∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs –

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

∣∣∣∣

:= ω(fi, ε) + (I) + (II),



Jleli and Samet Advances in Difference Equations  (2017) 2017:21 Page 11 of 15

where

ω(fi, ε) = sup
{∣∣fi(t) – fi(s)

∣∣ : t, s ∈ I, |t – s| ≤ ε
}

.

Now, let us estimate (I) and (II).
• Estimate of (I). We have


�q(αi)

∫ t


(t – qs)(αi–)∣∣ui

(
s, x(s)

)∣∣dqs ≤ ϕi(rei )
�q(αi + )

.

On the other hand,

∣∣gi
(
t, x(t)

)
– gi

(
t, x(t)

)∣∣ ≤ ∣∣gi
(
t, x(t)

)
– gi

(
t, x(t)

)∣∣ +
∣∣gi

(
t, x(t)

)
– gi

(
t, x(t)

)∣∣

≤ Ci
∣∣x(t) – x(t)

∣∣di + ω(gi, ε)

≤ Ciω(x, ε)di + ω(gi, ε),

where

ω(gi, ε) = sup
{∣∣gi(t, x) – gi(s, x)

∣∣ : t, s ∈ I, |t – s| ≤ ε, x ∈ [–r, r]
}

.

Therefore,

(I) ≤ (Ciω(x, ε)di + ω(gi, ε))ϕi(rei )
�q(αi + )

. (.)

• Estimate of (II). First, observe that

∣∣gi
(
t, x(t)

)∣∣ ≤ ∣∣gi
(
t, x(t)

)
– gi(t, )

∣∣ + g∗
i .

Therefore, by Assumption (A),

∣∣gi
(
t, x(t)

)∣∣ ≤ Cirdi + g∗
i .

Next, we have

∣∣∣∣
∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs –

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

∣∣∣∣

= ( – q)
∞∑

n=

qn( – qn+)(αi–)∣∣tαi
 ui

(
qnt, x

(
qnt

))
– tαi

 ui
(
qnt, x

(
qnt

))∣∣.

On the other hand,

∣∣tαi
 ui

(
qnt, x

(
qnt

))
– tαi

 ui
(
qnt, x

(
qnt

))∣∣

≤ tαi


∣∣ui
(
qnt, x

(
qnt

))
– ui

(
qnt, x

(
qnt

))∣∣

+
∣∣tαi

 ui
(
qnt, x

(
qnt

))
– tαi

 ui
(
qnt, x

(
qnt

))∣∣
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≤ ϕi
(∣∣x

(
qnt

)
– x

(
qnt

)∣∣ei) + Ai(ε)

≤ ϕi
(
ω(x, ε)ei

)
+ Ai(ε),

where

Ai(ε) = sup
{∣∣H(τ , s, x) – H

(
τ ′, s′, x

)∣∣ : τ , s, τ ′, s′ ∈ I,
∣∣τ – τ ′∣∣ ≤ ε,

∣∣s – s′∣∣ ≤ ε, x ∈ [–r, r]
}

and

H(τ , s, x) = ταi ui(s, x), (τ , s, x) ∈ I × I ×R.

As a consequence, we get

∣∣∣∣
∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs –

∫ t


(t – qs)(αi–)ui

(
s, x(s)

)
dqs

∣∣∣∣

≤ ϕi
(
ω(x, ε)ei

)
+ Ai(ε).

Then

(II) ≤ (Cirdi + g∗
i )(ϕi(ω(x, ε)ei ) + Ai(ε))

�q(αi)
. (.)

Now, combining (.) with (.), we get

ω(Tix, ε) ≤ ω(fi, ε) +
(Ciω(x, ε)di + ω(gi, ε))ϕi(rei )

�q(αi + )
+

(Cirdi + g∗
i )(ϕi(ω(x, ε)ei ) + Ai(ε))

�q(αi)
.

Therefore,

ω(TiM, ε) ≤ ω(fi, ε) +
(Ciω(M, ε)di + ω(gi, ε))ϕi(rei )

�q(αi + )

+
(Cirdi + g∗

i )(ϕi(ω(M, ε)ei ) + Ai(ε))
�q(αi)

.

Passing to the limit as ε → , we obtain

μ(TiM) ≤ Ciμ(M)diϕi(rei )
�q(αi + )

+
(Cirdi + g∗

i )ϕi(μ(M)ei )
�q(αi)

.

Then

μ(TiM) ≤ max

{
Ciϕi(rei )
�q(αi + )

,
(Cirdi + g∗

i )
�q(αi)

}(
μ(M)di + ϕi

(
μ(M)ei

))
.

By Assumption (A) we obtain

μ(TiM) ≤ λi max

{
Ciϕi(rei )
�q(αi + )

,
(Cirdi + g∗

i )
�q(αi)

}
μ(M),

which proves the desired result. �
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Now, we are able to state and prove our main result.

Theorem . Suppose that Assumptions (A)-(A) are satisfied. If

r
N–

N

N∑

i=

λi max

{
Ciϕi(rei )
�q(αi + )

,
(Cirdi + g∗

i )
�q(αi)

}
< , (.)

then equation (.) has at least one solution x∗ ∈ B(E, r).

Proof Observe that x ∈ B(E , r) is a solution to equation (.) if and only if x is a solution
to (.), where D = B(E, r), and T is given by (.). In order to prove our existence result,
we have to check that all the assumptions of Theorem . are satisfied. By Lemma ., for
all i = , . . . , N , Ti : B(E , r) → E is a continuous operator. By Lemma ., for all i = , . . . , N ,
TiB(E, r) is bounded. Moreover, for all x ∈ B(E, r), we have

‖Tx‖E =

∥∥∥∥∥

N∏

i=

Tix

∥∥∥∥∥
E

≤
N∏

i=

‖Tix‖E ≤
N∏

i=

r/N = r.

Therefore, TB(E, r) ⊂ B(E , r). By Lemma . condition (iv) of Theorem . is satisfied
with

ki = λi max

{
Ciϕi(rei )
�q(αi + )

,
(Cirdi + g∗

i )
�q(αi)

}
, i = , . . . , N .

On the other hand, from Lemma . and (.) we have

q∑

i=

ki

q∏

j=,j �=i

∥∥TjB(E, r)
∥∥ ≤ r

N–
N

N∑

i=

λi max

{
Ciϕi(rei )
�q(αi + )

,
(Cirdi + g∗

i )
�q(αi)

}
< .

Therefore, all conditions of Theorem . are satisfied, and the desired result follows. �

We end the paper with the following illustrative example.

Example Consider the functional equation

x(t) =
t


+

[



]




(
t


+
x(t)



)∫ t


(t – s/)(/) x(s)

( + s)
dqs, t ∈ [, ]. (.)

Equation (.) is a a particular case of equation (.) with

N = , q =



, α =



, f(t) =
t


,

g(t, x) =
(

t


+
x


)
� 



(



)
, u(t, x) =

x
 + t .

Obviously, the functions f : [, ] → R and g, u : [, ] × R → R are continuous. Then
Assumption (A) of Theorem . is satisfied. For all (t, x, y) ∈ [, ] ×R×R, we have

∣∣g(t, x) – g(t, y)
∣∣ ≤

� 


( 
 )


|x – y|.
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Therefore, Assumption (A) is satisfied with

C =
� 


( 

 )


, d = .

For all (t, x, y) ∈ [, ] ×R×R, we have

∣∣u(t, x) – u(t, y)
∣∣ ≤ 


|x – y|.

Moreover, u(t, ) =  for all t ∈ [, ]. Therefore, Assumptions (A) and (A) are satisfied
with

ϕ(t) =
t


, e = .

Note that, in this case, we have

‖f‖E =



, g∗

 =
� 


( 

 )


.

It is not difficult to check that Assumption (A) is satisfied for every r ≥ 
 . For every

t ≥ , we have

td + ϕ
(
te

)
=




t.

Then Assumption (A) is satisfied with λ = 
 . Moreover, for r = 

 , we have

λ max

{
Cϕ(re )
�q(α + )

,
(Crd + g∗

 )
�q(α)

}
= . < .

By Theorem . we deduce that equation (.) admits at least one solution x∗ ∈ B(E, 
 ).
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