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Abstract
In this paper, the convergence of iterative learning control with initial state error for
some fractional equation is studied. According to the Laplace transform and the M-L
function, the concept of mild solutions is showed. The sufficient conditions of
convergence for the open and closed P-type iterative learning control are obtained.
Some examples are given to illustrate our main results.
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1 Introduction
In this paper, we will analysis the convergence of iterative learning control initial state
error of the following fractional system:

⎧
⎪⎨

⎪⎩

cDα
t x(t) = Ax(t) + Bu(t), t ∈ J = [, b],

x() = x,
y(t) = Cx(t),

()

where cDα
t denotes the Caputo fractional derivative of order α,  < α < . A, B, C ∈ Rn×n,

u(t) is a control vector.
Iterative learning control (ILC) was shown by Uchiyama in  (in Japanese), but only

few people noticed it, Arimoto et al. developed the ILC idea and studied the effective
algorithm until , they made it to be the iterative learning control theory, more and
more people paid attention to it.

The fractional calculus and fractional difference equations have attracted lots of authors
during in the past years, they published some outstanding work [–], because they de-
scribed many phenomena in engineering, physics, science, and controllability. The work
of fractional order systems in iterative learning control appeared in , and extensive
attention has been paid to this field and great progress has been made in the following 
years [–], many fractional nonlinear systems were researched [–]. To our knowl-
edge, it has not been studied very extensively. In the study of iterative control theory, as-
sume that the initial state of each run is on the desired trajectory, however, the actual
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operation often causes some error from the iterative initial state to the desired trajectory,
so we consider the system () and study the convergence of the learning law.

Motivated by the above mentioned works, the rest of this paper is organized as follows:
In Section , we will show some definitions and preliminaries which will be used in the
following parts. In Sections  and , we give some results for P-type ILC for some fractional
system. In Section , some simulation examples are given to illustrate our main results.

In this paper, the norm for the n-dimensional vector w = (w, w, . . . , wn) is defined as
‖w‖ = max≤i≤n |wi|, and the λ-norm is defined as ‖x‖λ = supt∈[,T]{e–λt|x(t)|}, λ > .

2 Some preliminaries for some fractional system
In this section, we will give some definitions and preliminaries which will be used in the
paper, for more information, one can see [–].

Definition . The integral

Iα
t f (t) =


�(α)

∫ t


(t – s)α–f (s) ds, α > ,

is called the Riemann-Liouville fractional integral of order α, where � is the gamma func-
tion.

For a function f (t) given in the interval [,∞), the expression

LDα
t f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s) dt,

where n = [α]+, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α > .

Definition . Caputo’s derivative for a function f : [,∞) → R can be written as

cDα
t f (t) = LDα

t

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, n = [α] + ,

where [α] denotes the integer part of real number α.

Definition . The definition of the two-parameter function of the Mittag-Leffler type is
described by

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, α > ,β > , z ∈ C,

if β = , we get the Mittag-Leffler function of one parameter,

Eα(z) =
∞∑

k=

zk

�(αk + )
.

Now, according to [–], we shall give the following lemma.
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Lemma . The general solution of equation () is given by

x(t) = Sα,(A, t)x +
∫ t


Sα,α(A, t – s)Bu(s) ds, ()

Sα,β (A, t) =
∞∑

k=

Aktαk+β–

�(αk + β)
.

Lemma . From Definition . in [], we know that the operators Sα,(t), Sα,α(t), Sα,α–(t)
are exponentially bounded, there is a constant C = 

α
, C = 

α
‖A‖ –α

α , C = 
α
‖A‖ –α

α , eα(t) =

e‖A‖ 
α t , M = eα(b),

∥
∥Sα,(A, t)

∥
∥ ≤ Ceα(t),

∥
∥Sα,α(A, t)

∥
∥ ≤ Ceα(t). ()

3 Open and closed-loop case
In this section, we consider the following fractional equation: k = , , , , . . . ,

{
cDα

t xk(t) = Axk(t) + Buk(t), t ∈ J = [, b],
yk(t) = Cxk(t).

()

For equation (), we apply the following open and closed-loop P-type ILC algorithm,
t ∈ [, b]:

uk+(t) = uk(t) + Lek(t) + Lek+(t), ()

where L, L are the parameters which will be determined, ek = yd(t) – yk(t), yd(t) are the
given functions. The initial state of each iterative learning is

xk+() = xk() + BLek(t). ()

We make the following assumptions:
(H):  – λ–CM‖C‖‖LB‖ > ,
(H): ‖I–CSα,(A,t)BL‖+λ–CM‖C‖‖LB‖

–λ–CM‖C‖‖LB‖ < .

Theorem . Assume that the open and closed-loop P-type ILC algorithm () is used, (H)
and (H) hold, let yk(·) be the output of equation (), if the initial state of each iterative
learning satisfy (), limk→∞ ‖ek‖λ = , t ∈ J .

Proof According to (), (), and (), we know

xk+(t) = Sα,(A, t)xk+() +
∫ t


Sα,α(A, t – s)Buk+(s) ds

= Sα,(A, t)
(
xk() + BLek(t)

)

+
∫ t


Sα,α(A, t – s)B

(
uk(s) + Lek(s) + Lek+(s)

)
ds

= xk(t) + Sα,(A, t)BLek(t) +
∫ t


Sα,α(A, t – s)BLek(s) ds

+
∫ t


Sα,α(A, t – s)BLek+(s) ds,
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so the (k + )th iterative error is

ek+(t) = yd(t) – Cxk+(t)

= yd(t) – C
(

xk(t) + Sα,(A, t)BLek(t) +
∫ t


Sα,α(A, t – s)BLek(s) ds

+
∫ t


Sα,α(A, t – s)BLek+(s) ds

)

= ek(t) – C
(

Sα,(A, t)BLek(t) +
∫ t


Sα,α(A, t – s)BLek(s) ds

+
∫ t


Sα,α(A, t – s)BLek+(s) ds

)

=
(
I – CSα,(A, t)BL

)
ek(t) – C

∫ t


Sα,α(A, t – s)BLek(s) ds

– C
∫ t


Sα,α(A, t – s)BLek+(s) ds; ()

take the norm of (),

∥
∥ek+(t)

∥
∥ ≤ ∥

∥I – CSα,(A, t)BL
∥
∥
∥
∥ek(t)

∥
∥

+ ‖C‖
∫ t



∥
∥Ceα(s)

∥
∥‖BL‖

∥
∥ek(s)

∥
∥ds

+ ‖C‖
∫ t



∥
∥Ceα(s)

∥
∥‖BL‖

∥
∥ek+(s)

∥
∥ds, ()

take the λ-norm of (),

‖ek+‖λ ≤ ∥
∥I – CSα,(A, t)BL

∥
∥‖ek‖λ

+ sup
t∈[,T]

e–λt‖CCBL‖
∫ t



∥
∥eα(s)

∥
∥
∥
∥ek(s)

∥
∥ds

+ sup
t∈[,T]

e–λt‖C‖
∫ t



∥
∥Ceα(s)

∥
∥‖BL‖

∥
∥ek+(s)

∥
∥ds

≤ ∥
∥I – CSα,(A, t)BL

∥
∥‖ek‖λ

+ sup
t∈[,T]

e–λt‖CCBL‖
∫ t



∥
∥eα(s)

∥
∥eλs ds‖ek‖λ

+ sup
t∈[,T]

e–λt‖C‖
∫ t



∥
∥Ceα(s)

∥
∥‖BL‖eλs ds‖ek+‖λ, ()

if  – λ–CM‖C‖‖LB‖ > ,

‖ek+‖λ ≤ ‖I – CSα,(A, t)BL‖ + λ–CM‖C‖‖LB‖
 – λ–CM‖C‖‖LB‖ ‖ek‖λ, ()

let ‖I–CSα,(A,t)BL‖+λ–CLM‖C‖‖B‖
–λ–CLM‖C‖‖B‖ < , () is a contraction mapping, and it follows from the

contraction mapping that limk→∞ ‖ek‖λ = , t ∈ J . This completes the proof. �
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Theorem . implied that the tracking error ek(t) depends on C and xk(t), it is also ob-
served for () that the boundedness of the parameters C, B, L, L implies the bounded-
ness of the ‖ek‖λ, so Theorem . indirectly indicated that the output error also depend
on ‖I–CSα,(A,t)BL‖+λ–CM‖C‖‖LB‖

–λ–CM‖C‖‖LB‖ . From the result, we can do a more in-depth discussion.

Corollary . Suppose that all conditions are the same with Theorem ., limk→∞ ‖ek‖λ =
, then

ln CM‖L‖+CM‖L‖
λC‖L‖
‖A‖ 

α

< t < b.

Proof From Theorem ., the important condition is ‖I–CSα,(A,t)BL‖+λ–CM‖C‖‖LB‖
–λ–CM‖C‖‖LB‖ < ,

which implies that

 – Ceα(t)‖C‖‖LB‖ + λ–CM‖C‖‖LB‖ ≤  – λ–CM‖C‖‖LB‖,

we can get

ln CM‖L‖+CM‖L‖
λC‖L‖
‖A‖ 

α

< t < b. �

4 P-type ILC for some fractional system with random disturbance
In this section, we consider the following fractional equation: k = , , , , . . . ,

{
cDα

t xk(t) = Axk(t) + Buk(t) + ωk(t), t ∈ J = [, b],
yk(t) = Cxk(t) + νk(t),

()

where ωk(t), νk(t) are the random disturbance.
Firstly, we will make some assumptions to be satisfied on the data of our problem:
(H): ‖ωk‖λ ≤ ε, ‖νk‖λ ≤ ε for some positive constants ε, ε,
(H): ρ = ‖I + CSα,(A, t)LB‖ – λ–C‖C‖‖LB‖M > ,

ρ = ‖I – CSα,(A, t)LB‖ + λ–C‖C‖‖LB‖M.
For equation (), we choose the following open and closed-loop P-type ILC algorithm,
t ∈ [, b]:

uk+(t) = uk(t) + Lek(t) + Lek+(t), ()

where L, L are the parameters which will be determined, ek = yd(t) – yk(t), yd(t) are the
given functions.

Assume that the initial state of each iterative learning is (), where L, L are the pa-
rameters which will be determined. We have

xk+() = xk() + BLek(t) + BLek+(t). ()

Theorem . Assume that the hypotheses (H), (H) are satisfied, let yk(·) be the output
of equation (), if ε →  and ε → , ρ > ρ, the open and closed-loop P-type ILC ()
guarantees that limk→∞ ‖ek‖λ = , t ∈ J .
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Proof According to () and assumptions (H), (H), we know

xk+(t) = Sα,(A, t)xk+() +
∫ t


Sα,α(A, t – s)

(
Buk+(s) + ωk+(s)

)
ds

= Sα,(A, t)
(
xk() + BLek(t) + BLek+(t)

)

+
∫ t


Sα,α(A, t – s)B

(
uk(s) + Lek(s) + Lek+(s)

)
ds

+
∫ t


Sα,α(A, t – s)ωk+(s) ds

= xk(t) + Sα,(A, t)BLek(t) + Sα,(A, t)BLek+(t)

+
∫ t


Sα,α(A, t – s)BLek(s) ds +

∫ t


Sα,α(A, t – s)BLek+(s) ds

+
∫ t


Sα,α(A, t – s)ωk+(s) ds,

the (k + )th iterative error is

ek+(t) = yd(t) – Cxk+(t) – νk+(t)

= yd(t) – C
(

xk(t) + Sα,(A, t)BLek(t) + Sα,(A, t)BLek+(t)

+
∫ t


Sα,α(A, t – s)BLek(s) ds +

∫ t


Sα,α(A, t – s)BLek+(s) ds

+
∫ t


Sα,α(A, t – s)ωk+(s) ds

)

– νk+(t)

= ek(t) – C
(

Sα,(A, t)BLek(t) + Sα,(A, t)BLek+(t)

+
∫ t


Sα,α(A, t – s)BLek(s) ds +

∫ t


Sα,α(A, t – s)BLek+(s) ds

+
∫ t


Sα,α(A, t – s)ωk+(s) ds

)

– νk+(t)

=
(
I – CSα,(A, t)BL

)
ek(t) – CSα,(A, t)BLek+(t)

– C
∫ t


Sα,α(A, t – s)BLek(s) ds – C

∫ t


Sα,α(A, t – s)BLek+(s) ds

– C
∫ t


Sα,α(A, t – s)ωk+(s) ds – νk+(t). ()

Taking the norm of (), it is easy to obtain

∥
∥I + CSα,(A, t)LB

∥
∥
∥
∥ek+(t)

∥
∥

≤ ∥
∥I – CSα,(A, t)LB

∥
∥
∥
∥ek(t)

∥
∥ + ‖C‖

∫ t



∥
∥Ceα(s)

∥
∥‖LB‖∥∥ek(s)

∥
∥ds

+ ‖C‖
∫ t



∥
∥Ceα(s)

∥
∥‖LB‖∥∥ek+(s)

∥
∥ds + ‖C‖

∫ t



∥
∥Ceα(s)

∥
∥
∥
∥ωk+(s)

∥
∥ds

+
∥
∥νk+(t)

∥
∥, ()
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once more using the λ-norm, we have

∥
∥I + CSα,(A, t)LB

∥
∥‖ek+‖λ

≤ ∥
∥I – CSα,(A, t)LB

∥
∥‖ek‖λ + sup

t∈[,T]
e–λtC‖C‖‖BL‖

∫ t



∥
∥eα(s)

∥
∥eλs ds‖ek‖λ

+ sup
t∈[,T]

e–λtC‖C‖‖LB‖
∫ t



∥
∥eα(s)

∥
∥eλs ds‖ek+‖λ

+ sup
t∈[,T]

e–λtC‖C‖
∫ t



∥
∥eα(s)

∥
∥eλs ds‖ωk+‖λ + sup

t∈[,T]
e–λt∥∥νk+(t)

∥
∥,

invoking (H) and (H), if ε = λ–CεM‖C‖ + ε,

ρ‖ek+‖λ ≤ ρ‖ek‖λ + ε, ()

which implies that

‖ek‖λ ≤ ε

ρ – ρ
,

if ε →  and ε → , ε → , thus limk→∞ ‖ek‖λ = , t ∈ J , and this completes the proof.
�

From Theorem ., on the one hand, the random disturbance makes some impact on the
system (), ε →  and ε →  imply the impact is very small; on the other hand, ρ > ρ,
for this condition, we illustrate the following corollary.

Corollary . Suppose that all conditions are the same as Theorem ., limk→∞ ‖ek(t)‖λ =
, then t satisfies

ln |CM
λC

|
‖A‖ 

α

< t <
ln | –λ–C‖C‖‖LB‖M

‖C‖‖LB‖ |
‖A‖ 

α

.

Proof According to (H), ‖I + CSα,(A, t)LB‖ – λ–C‖C‖‖LB‖M > , then

t <
ln | –λ–C‖C‖‖LB‖M

‖C‖‖LB‖ |
‖A‖ 

α

.

From Theorem ., we know that ε →  and ε → , and the condition is

ρ

ρ
=

‖I – CSα,(A, t)LB‖ + λ–C‖C‖‖LB‖M
‖I + CSα,(A, t)LB‖ – λ–C‖C‖‖LB‖M

< ,

which yields
ln | CM

λC
|

‖A‖ 
α

< t. At last, we obtain the estimate

ln |CM
λC

|
‖A‖ 

α

< t <
ln | –λ–C‖C‖‖LB‖M

‖C‖‖LB‖ |
‖A‖ 

α

. �
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5 Simulations
In this section, we will give two simulation examples to demonstrate the validity of the
algorithms.

5.1 P-type ILC with initial state error
⎧
⎪⎨

⎪⎩

cD.
t xk(t) = xk(t) + .uk(t), t ∈ J = [, .],

x() = .,
yk(t) = xk(t),

()

with the iterative learning control and initial state error

{
uk+(t) = uk(t) + .ek(t) + .ek+(t),
xk+() = xk() + .ek(t).

()

We set the initial control u(·) = , yd(t) = t( – t), t ∈ (, .), and set α = ., A = ,
B = ., C = ., λ = , L = L = ., and C = , C = , λ – ‖A‖ 

α =  > , M ≈  > ,
 – λ–CM‖C‖‖LB‖ ≈ . > , ‖I–CSα,(A,t)BL‖+λ–CM‖C‖‖LB‖

–λ–CM‖C‖‖LB‖ ≈ .
. < , all conditions of

Theorem . are satisfied.
The simulation result can be seen from Figure  and Figure , for the open and closed-

loop P-type ILC system (), with the increase of the number of iterations, it can track the
desired trajectory gradually by using the algorithm. We do not use the single iteration rate
to get the result, because in the late of the iteration, the output of the system may jump
around the desired trajectory, so we adopt a correction method, that is, when e(k) > ,
u(k) = u(k) – . × e(k) or e(k) < , u(k) = u(k) + . × e(k), k is the number of iteration,
the result approaches the desired trajectory stably and quickly, from Figure , the tracking
error tends to zero at the th iteration, so the iterative learning control is feasible and the
efficiency is high.

Figure 1 ∗∗∗ denotes the desired trajectory, — denotes the output of the system.
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Figure 2 Number of iterations and tracking error.

5.2 P-type ILC with random disturbance
Consider the following P-type ILC system:

⎧
⎪⎨

⎪⎩

cD.
t xk(t) = xk(t) + .uk(t) + –t, t ∈ J = [, .],

x() = .,
yk(t) = .xk(t) + –t,

()

with the iterative learning control and initial state error

{
uk+(t) = uk(t) + ek(t) + .ek+(t),
xk+() = xk() + .ek(t) + .ek+(t).

()

We set the initial control u(·) = , yd(t) = t – t, t ∈ (, .), and set α = ., A = ,
B = ., C = , λ = , L = , L = ., and C = , C = , ρ ≈ ., ρ ≈ ., ε = – →
, ε = – → , all conditions of Theorem . are satisfied. We also use a correction
method, that is, when e(k) > , u(k) = u(k) – m × e(k) or e(k) < , u(k) = u(k) + m × e(k),
k is the number of iterations, m is the parameter, we set m = ., ., , and the out-
put of the system is shown in Figure , Figure , Figure . The symbol ∗∗∗ denotes the
desired trajectory, — denotes the output of the system, the tracking error is shown in
Figure , Figure , Figure , which imply the number of iteration and the tracking er-
ror.

From Figures - and Table , we find the tracking error tends to zero within  iter-
ations, so the output of the system can track the desired trajectory almost perfectly. By
comparing three cases, when m = , the iteration number is only , and the tracking er-
ror is ., thus the tracking performance is best and improved over the iteration do-
main.
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Figure 3 ∗∗∗ denotes the desired trajectory, — denotes the output of the system.

Figure 4 ∗∗∗ denotes the desired trajectory, — denotes the output of the system.
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Figure 5 ∗∗∗ denotes the desired trajectory, — denotes the output of the system.

Figure 6 Number of iterations and tracking error.
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Figure 7 Number of iterations and tracking error.

Figure 8 Number of iterations and tracking error.

Table 1 The iteration number and the tracking error and the running time table

m The number of iterations The tracking error Run time (second)

0.5 7 0.002 58.207
0.7 5 0.0013 50.123
1 2 0.0001 24.844
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