
RESEARCH Open Access

News-vendor game-based resource
allocation scheme for next-generation
C-RAN systems
Sungwook Kim

Abstract

Recently, Cloud Radio Access Network (C-RAN) has been emerging as a cost-effective solution supporting huge
volumes of mobile traffic in the big data era. C-RAN provides infrastructure layer services to mobile users by
managing virtualized infrastructure resources. To exploit next-generation C-RAN operations, a main challenging
issue is how to properly control system resources. In this study, we propose a novel resource management scheme
for C-RAN systems. By employing the news-vendor game model, we investigate a resource allocation problem with
bargaining solutions. In dynamic C-RAN environments, our game-based resource management approach can
practically adapt current system conditions while maximizing the expected payoff. The main contribution of our
study lies in the fact that we shed a new light on adaptive resource allocation policies for virtualized cloud
environments. Simulation results demonstrate that our proposed scheme can obtain a considerably better system
performance than other existing schemes.

Keywords: News-vendor game, Dynamic resource allocation, Bargaining solutions, Cloud Radio Access Networks,
Quality of service, Virtualization

1 Introduction
Modern computation and communication systems oper-
ate in a new and dynamic world, characterized by con-
tinual changes in the environment and performance
requirements that must be satisfied. Dynamic system
changes occur without warning and in an unpredictable
manner, which are outside the control of traditional op-
eration approaches [1]. At the same time, popularity of
mobile devices and related applications in various fields
are increasing significantly in everyday life. Furthermore,
applications become more and more complex, quality of
service (QoS) sensitive and computation intensive to
perform on mobile system. Therefore, new solution con-
cepts need to be developed that manage the computa-
tion and communication systems in a dynamically
adaptive manner while continuously ensuring different
application services [1, 2].
Cloud Radio Access Network (C-RAN) is a new

system architecture for the future mobile network

infrastructure. It is a centralized, cloud computing-based
new radio access network to support future wireless
communication standards. C-RAN can be implemented
based on the concept of virtualization. Usually,
virtualization is an enabling technology that allows shar-
ing of the same physical machine by multiple end-user
applications with QoS guarantees. Therefore, it helps to
reduce costs while improving a higher utilization of the
physical resources [1, 3]. In the C-RAN system, base-
band processing unit of traditional physical machines
are pooled and moved into a centralized location.
Through virtualization, the computing resources in the
baseband unit pool can be dynamically shared among all
applications in the C-RAN system while allowing a sig-
nificant improvement in computing resource utilization
and power efficiency [4]
No one may deny the advantages of C-RAN services.

However, there are some problems that need to be ad-
dressed. Most of all, next-generation C-RAN systems
should take into account QoS guarantees while maxi-
mizing resource efficiency. However, because of the scar-
city of system resource, it is difficult to satisfy
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simultaneously these conflicting requirements. For this
reason, the most critical issue for the next-generation C-
RAN system is to develop effective resource allocation
algorithms [5]. But despite flexibility and great potential
applicability, resource allocation problem in C-RAN has
received scarce attention as of today.
To design a resource allocation algorithm in C-RAN

systems, it is necessary to study a strategic decision-
making process. Under widely dynamic C-RAN condi-
tions, system agents can be assumed as intelligent rational
decision-makers, and they select a best-response strategy
to maximize their expected utility with other agents. This
situation is well-suited for the game theory. Game theory
is a field of applied mathematics that provides an effective
tool to model interactions among independent decision-
makers. It can describe the reactions of one set of
decision-makers to another and analyze the situations in
terms of conflict and cooperation. Thus, game theory can
be a major paradigm for modeling resource allocation
problems that feature complex interactive relations [6].
News-vendor game [7, 8] is a mathematical game

model in operations management and applied econom-
ics used to determine optimal inventory levels. Typically,
it is characterized by fixed prices and uncertain demand
for a perishable product. Therefore, this model can rep-
resent a situation faced by a newspaper vendor who
must decide how many copies of the day’s paper to stock
in the face of uncertain demand and knowing that un-
sold copies will be worthless at the end of the day. The
original concept of news-vendor game appeared to date
from 1888 where F. Edgeworth used the central limit
theorem to determine the optimal cash reserves to sat-
isfy random withdrawals from depositors. The modern
formulation dates from the 1951 paper in Econometrica
by K. Arrow, T. Harris, and J. Marshak [9].
Motivated by the aforementioned discussion, we de-

sign a new game-theoretic resource allocation scheme
for C-RAN systems. The main goal of our proposed
scheme is to maximize resource efficiency while provid-
ing QoS guarantees. In dynamically changing C-RAN
environments, our game process is divided two stages;
the competitive stage and the bargaining stage. At the
competitive stage, system resource is allocated in a non-
cooperative game manner. Therefore, cloud server con-
trols dynamically the total service request by adjusting
the price. When the total service request is larger than
the system capacity with the maximum price, system re-
source cannot be distributed effectively in a non-
cooperative manner. To effectively handle this case, we
adopt a bargaining-based approach. At the bargaining
stage, we re-distribute the system resource on the basis
of combined bargaining solution.
According to our two-stage coordinative game para-

digm, we can find an effective solution that can retain

several desirable features for real-world C-RAN opera-
tions. In this study, the main novelty lies in the fact that
we develop a novel resource allocation scheme based on
the news-vendor game model, and a fair-efficient solu-
tion is obtained through the two-stage game paradigm,
which is implemented by employing a cooperative and
competitive decision process. To capture the feature of
C-RAN system dynamics, it is a hot research issue to de-
sign a new game paradigm. However, to the best of our
knowledge, relatively little research has been done on
this issue over the years.

1.1 Related work
The area of numerical methods or algorithms for effi-
cient C-RAN resource sharing problems has been exten-
sively studied and has received considerable attention in
recent years [1, 5, 10–14]. The Joint Cloud Computing
and Network (JCCN) scheme [10] was proposed to
jointly study dynamic clouds and wireless network oper-
ations so as to improve end-to-end performance in the
mobile cloud computing environment. This scheme con-
sidered not only the spectrum efficiency in wireless net-
works but also the pricing information in the cloud,
based on which power allocation and interference man-
agement in wireless networks were performed. The
JCCN scheme formulated the problems of cloud media
service price decision, resource allocation and the inter-
ference management in the mobile cloud computing en-
vironment as a three-level Stackelberg game [10].
Ali et al. developed the Cloud Resource Bartering

(CRB) model for sharing user’s computational resources
through a social network [12]. The CRB model allowed
users of online social network to share their cloud re-
sources without money changing hands. This scheme
linked a social network with the computational cloud to
create a social cloud so that users can share their part of
the cloud with their social community [12].
The Social Compute Cloud (SCC) scheme [13] was

developed for the social cloud interaction system.
This scheme has presented a social compute cloud
platform that enabled the sharing of infrastructure re-
sources between friends via digitally encoded social
relationships. To construct a social compute cloud,
the SCC scheme accessed users’ social networks,
allowed users to elicit sharing preferences, and uti-
lized matching algorithms to enable preference-based
socially aware resource allocation.
The Cloud Provider’s Resource Sharing (CPRS) scheme

[11] was developed to study the cooperative behavior of
multiple cloud providers. In the CPRS scheme, a hier-
archical cooperative game model was designed; it was
composed of two interrelated cooperative games to
analyze the decisions of cloud providers to support in-
ternal users and to offer service to public cloud users. In
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the lower level, the CPRS scheme implemented a sto-
chastic linear programming game model to study the
resource and revenue sharing for a given coalition of
cloud providers. In the upper level, the CPRS scheme
formulated the coalitional game for which the cloud
providers can form the groups of cooperation to
share resource and revenue. Finally, the analytical
model based on Markov chain was used to obtain
stable coalitional structure [11].
The Reputation-based Social Cloud (RSC) scheme [14]

added the concept of reputations as part of the utility.
This scheme described the architecture and interaction
between two rational parties in the social cloud, where
two parties received their opponent’s trust or reputation
from the social cloud. In the RSC scheme, the reputation
was affected by the interactions with other parties in the
social network. As mentioned above, numerous studies
have shown how social networks create social influences
on people’s choices across time and space.
The Joint Resource Allocation (JRA) scheme [15]

presented a resource allocation algorithm for device-
to-device communications underlaying uplink MIMO
cellular networks. The main aim of the JRA scheme
was to solve the sum-rate maximization problem.
Based on the non-cooperative resource allocation
game model, a distributed resource allocation method
was devised. It was proved that the algorithm con-
verged to the feasible pure strategy Nash equilibrium
under specific conditions. Furthermore, a sum-rate
reinforcement approach was also proposed to address
the case when the proposed distributed algorithm did
not converge [15].
The Discrete Power Control (DPC) scheme [16] inves-

tigated the joint relay selection and discrete power con-
trol problem for cognitive relay networks. The problem
was formulated as a non-cooperative potential game
which possessed at least one pure strategy Nash equilib-
rium. Under some mild conditions, a centralized algo-
rithm and a decentralized learning algorithm had been
proposed to obtain a locally optimal solution. The DPC
scheme can guarantee the feasibility of a pure strategy
Nash equilibrium without advance knowledge of infeas-
ible strategy profiles [16].
The Hierarchical Cloud Resource Management (HCRM)

scheme in [1] was proposed to devise resource allocation
policies for virtualized cloud environments that must satisfy
performance and availability guarantees. In particular, the
HCRM scheme managed the transactional service applica-
tions of its customers to satisfy response time and availabil-
ity guarantees while minimizing energy costs in very large
cloud service centers. Based on a hierarchical framework,
this scheme can provide availability guarantees for the run-
ning applications. Finally, the effectiveness of the HCRM
scheme was assessed by considering realistic workloads [1].

The Multi-dimensional Dynamic Resource Manage-
ment (MDRM) scheme in [5] was a model for mobile
application profiles, wireless interfaces, and cloud re-
sources. Based on the dynamic constraint programming
method, the MDRM scheme took network parameters,
mobile devices, and application constraints as input to
optimally select the network resources and application
QoS profiles. Under different environmental variables,
this scheme could be dynamically adaptive to environ-
mental parameter variation. At the end, numerical re-
sults showed that the MDRM scheme saved the mobile
battery life and guaranteed both QoS and cost simultan-
eously. All the earlier work has attracted a lot of atten-
tion and introduced unique challenges. In this study, we
compared the performance of the proposed scheme with
that of the HCRM scheme [1] and the MDRM scheme
[5] to confirm the superiority of our approach.
The remainder of this paper is organized as follows: In

Section 2, we formulate the system model and describe
concretely our resource allocation algorithm. In Sec-
tion 3, the simulation scenario is presented, where the
traffic model is described and a numerical result analysis
is presented. The paper concludes with a discussion of
the results in Section 4.

2 Proposed C-RAN resource allocation algorithm
In this section, the proposed resource allocation scheme
is explained in detail. Based on the news-vendor game
model, our proposed scheme can provide a globally de-
sirable system performance while ensuring the efficiency
of C-RAN resource.

2.1 News-vendor game models at the competitive stage
C-RAN has come to the key architecture concept for fu-
ture 5G networks and beyond. In C-RAN systems, vir-
tualized baseband units pool (VBP) arbitrates multiple
cloud providers (CPs) and collects available resources.
To ensure the optimal usage of cloud resource, the VBP
adaptively distributes this resource to multiple base sta-
tions (BSs). In wireless networks, each BS covers a small
area and communicates with the mobile users (MUs)
through wireless links. Therefore, BSs must provide the
managed connectivity and offer flexibility in real-time
demands. To improve C-RAN system efficiency, CPs
offer their available resources to BSs through the VBP,
and BSs provide services to MUs based on their obtained
resources. Without loss of generality, the VBP can be as-
sumed as a resource broker between BSs and CPs for
cloud services [17].
In this section, we introduce our news-vendor

game model (G ) for C-RAN systems. G is a tuple
(V, ℕ, (Si)i ∈ ℕ, (Ui)i ∈ N,T) at each time period t of
gameplay.
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� V is the total amount of available cloud resource in
the VBP.

� ℕ is the finite set of players ℕ = {b0, b1,…, bn} where
b0 is the VBP and bi,1 ≤ i ≤ n represents the ith BS.

� Si is the set of strategies with the player i. If the
player i is the VBP, i.e., i = 0, a strategy set can be
defined as resource prices. If the player i is a BS, i.e.,
1 ≤ i ≤ n, the strategy set is defined as the amount of
requested resource.

� The Ui is the payoff received by the player i.
Traditionally, the payoff is determined as the
obtained outcome minus the cost to obtain that
outcome. For simplicity, the outcome is represented
in a general form of log function.

� The T is a time period. The G is repeated t∈ T < ∞
time periods with competitive and cooperative
manner.

To understand the behavior of self-regarding system
agents, game models have some attractive features. As a
kind of game model, news-vendor game was initially de-
veloped for the classical, single-period newsboy problem
[18]. In this study, the traditional news-vendor game is
extended as a two-stage repeated game. Initially, the
VBP dynamically adjusts the price of resource unit, and
BSs request cloud resources to maximize their payoffs.
In this stage, resource allocation procedure is formulated
as a non-cooperative game model. If service requests
from BSs are more than the capacity of the VBP, the
cloud resource is re-distributed adaptively according to
our combined bargaining solution. In this stage, resource
allocation procedure is formulated as a bargaining game
approach. By a sophisticated combination of these two
different game approaches, we attempt to approximate a
well-balanced system performance among conflicting
requirements.
At the competitive stage, the strategy set for the VBP

(S0), i.e., available price levels for a resource unit, is as-
sumed as below.

S0 ¼ pt j pt∈ pmin; p max½ �f g ð1Þ
where pt is the price at time t. The pmin, p max are the
pre-defined minimum and maximum price levels, re-
spectively. From the viewpoint of VBP, the pmax is good
to maximize its profit. From the viewpoint of BSs, pmin

is good to maximize their payoff. The actual price at
time t (pt) is dynamically decided according to the
current system conditions. In our model, the pt is deter-
mined as the weighted sum of pmin and p max.

pt ¼ ω� pmax þ 1−ωð Þ � p min ð2Þ
where ω is a weighted factor for the both prices.
Under diverse system environments, the value of ω

should be modified dynamically. In the proposed
scheme, Rubinstein-Stahl model is adopted to adjust
the ω value. Rubinstein-Stahl model was proposed as
a solution to the problem when two players were ne-
gotiating the division of the benefit [19]. Therefore,
players negotiated with each other by proposing offers
alternately. After several rounds of offer and count-
offers, players finally come to an agreement. In
Rubinstein-Stahl model, there exists a unique solution
for this negotiation process [19]. We assume that the
Rubinstein-Stahl model’s equilibrium point is obtained
through negotiation between the VBP stance and BSs’
stance.
In our Rubinstein-Stahl model, the VBP is as-

sumed as a supplier, and all BSs are assumed as a
single customer. Two players, i.e., supplier and cus-
tomer, have their own bargaining power (δ). The
division proportion of the benefits can be obtained
according to the negotiation power, which can be
computed at each player individually. A more ne-
gotiation power player benefits more from the ne-
gotiation process. Players negotiate with each other
by proposing offers alternately. After several rounds
of negotiation, they finally reach an agreement as
following [20, 21].

x�s ; x
�
c

� � ¼
1−δc

1−δs � δc
;
δc � 1−δsð Þ
1−δs � δc

� �
if supplier offers first

δs � 1−δcð Þ
1−δs � δc

;
1−δs

1−δs � δc

� �
if customer offers first

8>><
>>:

ð3Þ

s:t:; x�s ; x
�
c

� �
∈R2 : x�s þ x�c

¼ 1; x�s≥0; x
�
c≥0 and 0≤δs; δc≤1

where x�s and x�c are final dividends for supplier and
customer, respectively. δs and δc be the supplier and
consumer patience factor. Lower δ (or higher δ) value
means lower patience (or more patience). In the
Rubinstein-Stahl negotiation model, the patience fac-
tor strongly affects the negotiation process; the more
patience has, the more payoff attains. From a
common-sense standpoint, consumers should know
the current price as early as possible for the effective
service continuity. Under this situation, they lack pa-
tience in bargaining. For this reason, we represent the
consumer’s patience as a monotonous time-decreasing
function. According to the inverse effect of reciprocal
relationship, the supplier’s patience is defined vice
versa. Therefore, the consumer’s patience ( δtc ) and
supplier’s patience ( δts ) at tth round of negotiation
process are defined as follows [19, 22].
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δtc ¼ 1−
eξ

t
−e−ξ

t

eξ
t þ e−ξ

t

 !
and δts

¼ eξ
t
−e−ξ

t

eξ
t þ e−ξ

t

 !
ð4Þ

s:t:;
dδtc
dt

< 0;
dδts
dt

> 0; δ0c ; δ
∞
s ¼ 1 and δ∞c ; δ

0
s

¼ 0

where ξt is the patience coefficient at tth round. For the
ideal C-RAN system management, we dynamically adjust
the ξt value. When the requested service increases (or
decreases), the price (p) should increase (or decrease) to
maximize the resource efficiency. To implement this
mechanism, the value of ξt is defined as the ratio of the
current cloud workload to the total system capacity.

ξt ¼ 1−
TQ−CQ

TQ

� �
; s:t:; 0 < ξt < 1 ð5Þ

where TQ and CQ are the total cloud capacity and the
current cloud workload, respectively. If the gap between
TQ and CQ is larger, the ξt decreases using (5) and δc (or
δs) increases (or decreases), simultaneously. Therefore,
according to the ξt value, the values of δc and δs are ad-
justed adaptively. On the basis of obtained δc and δs
values, we can get the weighted factor (ω). In a realistic
negotiation scenario, a supplier offers the price first.
Therefore, the values of ω and (1-ω) are obtained ac-
cording to (3).

ω ¼ 1−δc
1−δs � δc

and 1−ωð Þ

¼ δc � 1−δsð Þ
1−δs � δc

ð6Þ

Finally, the price (p) in the competitive game stage is
obtained based on Eq. (2). When the p is high, cloud ser-
vice requests are reduced with unsatisfactory payoffs,
and vice versa. Therefore, at the competitive stage, the
VBP can control dynamically the total service request by
adjusting the price according to (2), (3), (4), (5), and (6).

2.2 News-vendor game models at the cooperative stage
When the current cloud workload is controllable
through the proposed price strategy, our news-vendor
game can be operated only in the competitive game
stage. However, in an overloaded situation, i.e., the cloud
resource is not sufficient to support all service requests,
our cooperative game stage is started. In recent years,
cooperative approaches derived from game theory have
been widely used for efficient resource allocation prob-
lems. The most popular approaches are the Nash bar-
gaining solution (NBS) and the Kalai-Smorodinsky
bargaining solution (KSBS) [6, 23]. Because of their

appealing properties, the basic concept of NBS and
KSBS has become an interesting research topic in eco-
nomics, political science, sociology, psychology, biology,
and so on [6].
Based on the traditional game theory, the Nash bar-

gaining solution can be formulated as follows [6].

Y
i

u�i −di
� � ¼ max

ui∈S

Y
i

ui−dið Þ; where u�i ∈S and di∈ d

ð7Þ
where S ¼ u1;…unð Þf g⊂ℝn is a jointly feasible utility so-
lution set, and a disagreement point (d) is an action vec-
tor d¼ d1; :: dnð Þ∈ S that is expected to be the result if
players cannot reach an agreement; it represents payoffs
when the cooperative game fails and the resource alloca-
tion cannot be made (i.e., zero in the system). Therefore,
the NBS is obtained by maximizing the product of the
utilities (u). In this study, ui is defined as the throughput
of ith BS. In the game theory terminology, an outcome
vector < u�1; u

�
2 ; ; ; u�n > is a unique and fair-efficient

solution, called the NBS that fulfills the Nash axioms [6].

(1)Individual rationality: NBS should be better off than
the disagreement point. Therefore, no player is
worse off than if the agreement fails. Formally, u�i ≥di

for all player i.
(2)Feasibility: NBS is reasonable under the

circumstances. That is, U�∈ S.
(3)Pareto optimality: NBS gives the maximum payoff to

the players. Therefore, if there exists a solution U�

¼ u�1 ::u
�
i ::u

�
n

� �
, it shall be Pareto optimal.

(4)Invariance with respect to utility transformations: A
utility function specifies a player’s preferences.
Therefore, different utility functions can be used to
model the same preferences. However, the final
outcome should not depend on which of these
equivalent utility representations is used. In other
words, for any linear scale transformation of the
function ψ, ψ F S; dð Þð Þ ¼ F ψ Sð Þ;ψ dð Þð Þ: This axiom
is also called independence of linear transformations
or scale covariance.

(5)Independence of irrelevant alternatives: The
solution should be independent of irrelevant
alternatives. In other words, a reasonable outcome
will be feasible after some payoff sets have been
removed. If U* is a bargaining solution for a
bargaining set S then for any subset S0

of S
containing U*, U* continues to be a bargaining
solution. Formally, if U�∈S0

⊂S and U� ¼ F S; dð Þ,
then U� ¼ F S0

; d
� �

.
(6)Symmetry: Symmetry means that if the players’

utilities are exactly the same, they should get
symmetric payoffs, i.e., equal payoffs. Therefore,
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payoff should not discriminate between the identities
of the players but only depend on utility functions.
For example, if S is invariant under all exchanges of
users, Fi S; dð Þ ¼ Fj S; dð Þ for all possible players i
and j.

Even though the NBS can provide a unique and fair
Pareto optimal solution, Nash axioms do not always
characterize the situations we encounter in reality. In
particular, the independence of irrelevant alternatives has
been the source of considerable contention. When a
feasible solution set is modified, NBS is unconcerned
about a relative fairness. Therefore, the dilemma is an
insensitivity to utility translations. In some cases, the
outcome of the bargaining process may be the result of
reciprocal equality. Therefore, during the 1950–1980s,
extensive research had been done to replace the axiom,
independence of irrelevant alternatives [24].
KSBS is an alternative approach to the bargaining

problem proposed by Kalai and Smorodinsky [6, 23].
While Nash’s solution requires the solution to be inde-
pendent when irrelevant alternatives are modified, the
KSBS relaxed this condition. Therefore, Kalai and Smor-
odinsky replaced the axiom of independence of irrelevant
alternatives by individual monotonicity. Under individ-
ual monotonicity condition, if the feasible set is changed
in favor of one of the players, this player should not end
up losing because of this change [24]. More formally, in-
dividual monotonicity axiom is defined as [6, 25].

(7)Individual monotonicity: A bargaining situation
W; dð Þ is better than S; dð Þ if and only if sup
ui : u1; ; ; unð Þf g∈Wf g ≥ sup ui : u1; ; ; unð Þf g∈Sf g

where 1≤ i ≤ n. A solution function F is individually
monotonic for a player if whenever W; dð Þ is better
than S; dð Þ, then F W; dð Þ > F S; dð Þ. F is
individually monotonic if the same property holds
for all players.

KSBS is a unique solution satisfying the axioms (1),
(2), (3), (4), (6), and (7). Mathematically, it is defined as
[6, 24, 25].

sup u1f g−d1

I�1−d1
¼ … ¼ sup uif g−di

I�i −di
¼ …

¼ sup unf g−dn

I�n−dn
ð8Þ

s:t:; sup uif g ¼ sup ui : u1; ; ; unð Þf g∈Wf g; I�i
¼ max ui : ui∈Sf gand 1≤i≤n

where I�i is the ideal point of player i. Therefore, players
choose the best outcome subject to the condition that
their proportional part of the excess over the

disagreement is relative to the proportion of the excess
of their ideal gains [6, 24, 25]. Simply, we can think that
the KSBS is the intersection point between the Pareto
boundary and the line connecting the disagreement to
the ideal gains. To help understand the full concept of
NBS and KSBS, simple examples of two-player case are
graphically depicted in Fig. 1.
In this study, we develop a new bargaining solution by

combining the axioms of independence of irrelevant al-
ternatives and individual monotonicity. To implement
our solution, the main issues are how to trade-off be-
tween different principles, which can be tackled by co-
operative games with transferable utility. The combined
bargaining solution (uα) of the NBS and KSBS is ob-
tained as a weighted average:

uαi ¼ α� uNBS
i þ 1−αð Þ � uKSBSi ð9Þ

s:t:; uαi ∈ uα1 ::u
α
i :: u

α
n

� 	
and 1≤i≤n

where α is a control parameter to relatively emphasize
the principle of Independence of irrelevant alternatives
or Individual monotonicity. The major feature of indi-
vidual monotonicity is that increasing the bargaining set
size in a direction favorable to a specific player always
benefits that player. Therefore, when the bargaining set
size of each player is huge different, this feature can keep
the relative fairness among players.
In this study, we adaptively adjust the α value in an

online decision manner. In dynamic C-RAN environ-
ments, a fixed value of α cannot effectively adapt to the
changing conditions. When the normalized difference of
the bargaining set size is high, we should strongly de-
pend on the axiom of individual monotonicity. In this
case, a lower value of α is more suitable. When the nor-
malized difference of the bargaining set size is nearly the
same, we can put more emphasis on the axiom of inde-
pendence of irrelevant alternatives. In this case, a higher
value of α is more desirable. Based on this consideration,
the value of α is dynamically adjusted according to the
current ratio of bargaining set difference.

¼
mini;j ∈ ℕ I�i −I

�
j




 


� �
maxi;j ∈ ℕ I�i −I

�
j




 


� � ; s:t:; 1≤i; j≤n

ð10Þ

With the dynamic adaptation of α value, the proposed
scheme can be more responsive to current C-RAN con-
ditions. Finally, the set of resource allocation for BSs at
time t, denoted by ℝ, is calculated as
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ℝ ¼ ℛij ℛ1 ::ℛi :: ℛnf gh i def
‐‐ ℛi ¼ uαiXn

i¼1
uαi

 !
�ℜt

ð11Þ

where ℜt is the available cloud resource at time t. The
solution set ℝ is a possible outcome of our combined
bargaining process; ℝ is adaptively obtained in the co-
operative trade-off area.

2.3 The main steps of proposed resource allocation
algorithm
Presently, C-RAN draws significant attention in the in-
formation technology community as it provides ubiqui-
tous on-demand access to a shared pool of configurable
computing resources with minimum management effort.
For effective C-RAN operations, the cloud resource
must be distributed dynamically for BSs. However, it is
questionable whether existing resource allocation solu-
tions are adequate in dynamically changing C-RAN envi-
ronments. In this study, we have investigated the
benefits and challenges of resource allocation algorithm
in C-RAN architecture. The major objective of this study
is to design a novel for C-RAN resource allocation
scheme based on the news-vendor game. In the pro-
posed scheme, both non-cooperative and cooperative
game models have been applied to the cloud resource al-
location process. Our two-stage game approach is an ef-
fective way to control the C-RAN cloud resource. At the
competitive stage, the resource is allocated dynamically
in a non-cooperative game manner. Through the control
of the resource price, the VBP and BSs attempt to
maximize their payoffs. At the bargaining stage, the
cloud resource is distributed to BSs according to our
combined bargaining solution. The proposed two-stage
approach suggests that a judicious mixture of collabor-
ation and competition is advantageous in dynamic C-
RAN environments. The main steps of the proposed re-
source allocation algorithm are given next.

Step 1: At the initial time, the price (p) is set to the
initial value and BSs request their cloud service to
maximize their payoffs in a non-cooperative game
approach.

Step 2: At each game period, the p is decided
according to the Rubinstein-Stahl model. In the basis
of (2), (3), (4), (5), and (6), the p is dynamically
adjusted by taking into account the current cloud
workload (ξ).

Step 3: After the p decision, δ, ω, and ξ values are
modified periodically using (4),(5), and (6).

Step 4: When the cloud services are congested at the
competitive stage, it is impossible to control the
resource allocation through price control strategy.
At this time, the bargaining stage is started.

Step 5: At each game period, NBS and KSBS are
obtained using (7) and (8). At the same time, the
control parameter α is adjusted dynamically using (10).

Step 6: The combined bargaining solution uαi;1≤i≤n

� �
of

the NBS and KSBS are obtained based on (9), and
the set of resource allocation for BSs (ℝ) is finally
calculated according to (11).

Step 7: Under widely diverse C-RAN environments,
the VBP and BSs are self-monitoring constantly for
the next news-vendor game process; proceed to
Step 2.

3 Performance evaluation
In this section, the effectiveness of the proposed scheme
is validated through simulation. Using a simulation
model, the performance of the proposed scheme is com-
pared with two existing schemes: the HCRM scheme [1]
and the MDRM scheme [5]. The assumptions imple-
mented in simulation model are as follows.

� The simulated model is assumed as a C-RAN system
with one VBP and five SBSs.

� The process for new application service requests in
each BS is Poisson with rate σ (applications/s), and
the range of offered load was varied from 0 to 3.0.

Fig. 1 Simple examples of NBS (a) and KSBS (b) for the two-player case
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� The total cloud resource (V) is CPU computation
capacity, and its capacity is 5 GHz.

� System performance measures obtained on the basis
of 50 simulation runs are plotted as a function of
the offered application service load.

� Each application service has its own application type
and requires different resources requirements. They
are generated with equal probability.

� The durations of services are exponentially
distributed.

� The C-RAN system performance is estimated in
terms of the normalized payoff, C-RAN resource ef-
ficiency, system fairness, and QoS satisfaction
probability.

In order to emulate a real C-RAN system environment
and for a fair comparison, application types, characteris-
tics and system parameters are carefully selected for a
realistic simulation scenario. Table 1 shows the applica-
tion types and system parameters used in our
simulation.
As mentioned earlier, the HCRM scheme [1] and the

MDRM scheme [5] have been recently published and in-
troduced unique challenges to efficiently solve the re-
source allocation problem in C-RAN systems. However,
they are successful only in certain circumstances.
Compared to these schemes, we can confirm the su-
periority of our proposed two-stage game approach.
Through Figs. 2, 3, 4, and 5, the x-axis (a horizontal
line) marks the service load intensities, which is var-
ied from 0 to 3.0. Based on each rate of offered ser-
vice load, performance criteria are evaluated as a
normalized value; y-axis (a vertical line) represents
the normalized value for each performance criteria.
Figure 2 shows the performance comparison in terms

of the normalized payoff of each scheme. It is measured
as a normalized utility sum of all BSs. To maximize the
C-RAN system performance, it is an important

performance metric. Under various application service
requests, our two-stage game-based approach effectively
controls resources. From the simulation results, the
main observation is that our proposed scheme can ef-
fectively allocate cloud resource and lead to a higher
payoff than other existing methods. When designing an
effective resource allocation algorithm for C-RAN sys-
tem, it is a highly desirable property.
Figure 3 presents the performance comparison in

terms of the resource efficiency in the C-RAN system. In
general, resource efficiency is the ratio of actively used
resource amount over the total resource amount. A key
observation from the results shown in Fig. 3 is that all
the schemes have similar trends. This trend implies that
under higher service requests, a better resource effi-
ciency is obtained. This is intuitively correct. The
simulation results show that the proposed scheme
achieves a higher resource efficiency than other exist-
ing schemes in [1, 5].
The curves in Fig. 4 show the performance analysis in

terms of the system fairness. In this study, system fair-
ness is estimated how to distribute the resource fairly
among BSs. To characterize this fairness notion, we fol-
low the Jain’s fairness index (Findex) [25], which has been
frequently used to measure the fairness of network re-
source allocations.

F index ¼
Xn

i¼1
ℛi

� �2,
n�
Xn

i¼1
ℛið Þ2

� � ð12Þ

The range of Findex is varied from 0 to 1. On the basis
of NBS and KSBS bargaining solutions, the proposed
scheme re-distributes fairly the resource to BSs. There-
fore, the proposed scheme can maintain an excellent
system fairness than other existing schemes.
Figure 5 presents the performance comparison in

terms of the QoS satisfaction probability. In this study,

Table 1 Application and system parameters used in the simulation experiment

Application type Applications Cloud resource type Minimum resource requirement Maximum resource requirement

I Voice telephony CPU 30 MHz 60 MHz

II Video-phone CPU 60 MHz 120 MHz

III Remote-login CPU 15 MHz 40 MHz

IV Tele-conference CPU 60 MHz 150 MHz

Parameter Value Description

n 5 the number of BSs

TQ 5 GHz Total cloud capacity (CPU computation capacity)

pmin, p max 0.1, 1 The pre-defined minimum and maximum price boundaries

di,1≤ i ≤ n 0 A payoff at the time of disagreement

Parameter Initial Description Values

p 0.5 The unit price for cloud resource Dynamically adjustable
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QoS satisfaction probability is estimated as the rate of
the successfully completed service applications. As the
application requests increase, the average amount of
available resource decreases. Thus, application services
are likely to be closed incompletely; QoS satisfaction
probability decreases. To improve the QoS satisfaction
probability, our game-based approach iteratively adjusts
the allocated resource in a step-by-step manner. The
simulation results show that the proposed scheme

achieves a higher QoS satisfaction probability than other
existing schemes.
From the simulation results in Figs. 2, 3, 4, and 5, it

can be seen that the performance trends of all the
schemes are very similar. This is because the main de-
sign goals of all the schemes are the same. However, by
employing two-stage news-vendor game approach, our
proposed scheme adaptively responds to the current C-
RAN system conditions and efficiently solves the
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Fig. 2 Higher normalized payoff compared to the HCRM and MDRM schemes
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Fig. 3 Higher resource efficiency compared to the HCRM and MDRM schemes
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resource allocation problems. Therefore, we can say that
our proposed scheme is flexible, adaptable, and able to
sense the dynamic changing C-RAN network environ-
ment; it is essential in order to be close to the optimized
system performance while ensuring a better resource ef-
ficiency and QoS provisioning.

4 Conclusions
As a new model of distributed computing, all kinds of
distributed resources are virtualized to establish a shared

resource pool through C-RAN systems. C-RAN solution
enables dynamic on-demand response, combining col-
laborative radio and real-time cloud infrastructure while
providing convenient and configurable resources. There-
fore, dynamic and efficient mechanism for rapidly scal-
ing cloud resources is becoming a hot spot in research
areas. In this study, we propose a novel resource alloca-
tion scheme based on the news-vendor game model.
The main goal of our proposed scheme is to maximize
system performance while ensuring service QoS. To
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Fig. 4 Higher system fairness compared to the HCRM and MDRM schemes
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satisfy this goal, we develop a two-stage game mechan-
ism. The important feature of our proposed scheme is
its adaptability, flexibility, and responsiveness to current
C-RAN conditions. The simulation results show that the
proposed scheme can maintain an excellent C-RAN sys-
tem performance as compared with the other existing
schemes. For future research, we wish to extend the con-
cept presented here in combination with security issues.
Our game-based approach can be generalized to model
various defense mechanisms and can be extended to ad-
dress different security provisioning problems in dy-
namic C-RAN environments.
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