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Abstract

In this paper, a feature extraction method for robust speech recognition in noisy environments is proposed. The
proposed method is motivated by a biologically inspired auditory model which simulates the outer/middle ear
filtering by a low-pass filter and the spectral behaviour of the cochlea by the Gammachirp auditory filterbank (GcFB).
The speech recognition performance of our method is tested on speech signals corrupted by real-world noises.
The evaluation results show that the proposed method gives better recognition rates compared to the classic
techniques such as Perceptual Linear Prediction (PLP), Linear Predictive Coding (LPC), Linear Prediction Cepstral
coefficients (LPCC) and Mel Frequency Cepstral Coefficients (MFCC). The used recognition system is based on the
Hidden Markov Models with continuous Gaussian Mixture densities (HMM-GM).
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Introduction
The Automatic speech recognition (ASR) system is one
of the leading technologies acting on man–machine
communication in real-world applications (Furui 2010).
The ASR system is composed of two main modules. The
first one is the acoustic Front-end (or feature extractor).
This module generally uses the classical acoustic feature
extraction techniques such as Perceptual Linear Prediction
(PLP) (Hermansky 1990), Linear Prediction Coding (LPC)
(Atal and Hanauer 1971), Linear Prediction Cepstral Coef-
ficients (LPCC) (Atal 1974) and Mel Frequency Cepstral
Coefficients (MFCC) (Davis and Mermelstein 1980). The
second module is the classifier which is commonly based
on the Hidden Markov Models.
The early feature based techniques involve incorporation

of different psychoacoustic and neurophysical knowledge
obtained from the study of the human auditory system
which is capable of segmenting, localizing, and recognizing
speech signal in noisy conditions without a noticeable
degradation in performance of recognition (Rabiner and
Juang 1993).
Generally, the feature extraction techniques are based

on auditory filter modelling which uses a filterbank to
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simulate the cochlear filtering (Meddis et al. 2010). The
efficient modelling of this auditory filterbank will
improve the recognition performance and the features
robustness in noisy environments.
The gammatone filterbank has been employed as the

auditory filter modelling in various speech processing
systems such as the Computational Auditory Scene
Analysis system (Wang and Brown 2006).
Irino and Patterson have proposed an excellent candi-

date model for asymmetric, level-dependent cochlear filter
called the Gammachirp auditory filter consistent with
basic physiological data (Irino and Patterson 1997, 2006).
This filter represents an extension of the gammatone filter
characterized by an additional chirp parameter in order to
produce an asymmetric amplitude spectrum. It provides
an approximation of the auditory frequency response.
In this paper, we propose a biologically-inspired feature

extraction method for robust recognition of noisy speech
signals. The proposed method is based on the human
auditory system characteristics, and relies on both the
outer and middle ear filtering and the spectral behaviour
of the cochlea. The outer and middle ear filtering is mod-
elled by a second-order low-pass filter (Martens and Van
Immerseel 1990; Van Immerseel and Martens 1992). The
cochlear filter is modelled by a gammachirp auditory
filterbank consisting of 34 filters, where the centre
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frequencies are equally spaced on the ERB-rate scale from
50 Hz to 8 kHz.
The HTK 3.4.1 toolkit is exploited in the Model train-

ing and recognition of speech signals. It is based on
Gaussian Mixture density Hidden Markov models
(Young et al. 2009). In our work, the HMM is trained
for each word with five observation states and each state
emission density consists of the four Gaussian Mixture
densities.
The recognition performance of our feature extraction

method was evaluated on speech signals corrupted by
real-world noisy environments. The obtained results are
compared to those obtained using PLP, LPC, LPCC and
MFCC.
The paper is organized as follows: After introduction,

section 2 presents the speech recognition system based
on the hidden Markov models. It also introduces the
classic feature extraction techniques of speech signals. In
section 3, the proposed feature extraction method based
on an auditory filter model is detailed, while introducing
the auditory filter modelling. The experimental and
evaluation results of our method are discussed in the
section 4. Finally, conclusions are presented in the last
section.

The speech recognition system
The process of the Automatic Speech Recognition sys-
tem, as shown in Figure 1, can be divided into two main
modules: feature extraction and HMM based ASR
(Nadeu et al. 2001).

The HMM based ASR
In HMM based ASR, the sequence of observed acoustic
vectors (O = o1, o2, o3,…, ot,… oT, where ot is the acous-
tic vector observed at time t) associated to each word is
modelled as being generated by a Markov Model (Young
et al. 2009) as shown in Figure 2.
The HMM represents a finite state machine which

generates, at each state change, an acoustic vector ot ob-
served from the probability density bj(ot). The changes
of state occur at every time unit according to the state
transition probability from state i to state j is given by
aij. Figure 2 shows an example representing the observa-
tion sequence o1 to o5 for the state sequence S = 1, 2, 2,
3, 4, 4, 5, generated from a five state HMM with non-
emitting entry and exit states. The HMM supports con-
tinuous Gaussian Mixture density distributions.
 Feature
Extraction

Speech
Signal

Figure 1 Automatic speech recognition system.
In the Gaussian Mixture density HMM, the probability
distribution bj(ot) of being in state j at time t is given by
(Young et al. 2009)

bj otð Þ ¼
XKj

k¼1

cjkN ot ; μjk ; ϑjk
� �

ð1Þ

With Kj is the number of mixture components in state
j, cjk is the weight of the k’ th component and N(o; μ, ϑ) is
a multivariate Gaussian defined by (Young et al. 2009)

N o; μ; ϑð Þ ¼ 1

2πð Þn ϑj jð Þ12
e−

1
2 o−μð ÞTϑ−1 o−μð Þ ð2Þ

Where n is the dimensionality of o, ϑ is covariance
matrix and μ is mean vector.

Classical feature extraction techniques
The most common techniques of feature extraction for
speech recognition system employ the cepstral analysis
to extract the feature coefficients from acoustic signal
such as the MFCC and the LPCC. The MFCC technique
consists to calculate the feature vectors from the frequency
spectra at each frame of windowed speech. It is based on
the human ear scale known the Mel scale.
The MFCC coefficients are calculated by applying a co-

sine transform to the real logarithm of short-term energy
spectrum which has been expressed on a Mel-frequency
scale.
The Linear Predictive Cepstral Coefficients (LPCC) is

extracted from the speech signal by using the Linear
Predictive Coding (LPC).

LPCCi ¼ LPCi þ
Xi−1
k¼1

k−i
i
LPCCi−kLPCk

i ¼ 1; 2;…; 10

ð3Þ
The Linear Predictive Coding (LPC) is based on the mod-

elling of the vocal acoustic tract of human beings as a linear
all-pole (IIR) filter defined by the following system function.

H zð Þ ¼ G

1−
Xp

k¼1
akz

−k
ð4Þ

Where p, G and ak are respectively the number of
poles, the filter gain and the poles parameters which
are called Linear Prediction Coefficients. The linear
HMM-based
 ASR

Recognized
Speech Signal
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Figure 3 Block diagram of PLP technique (Hermansky 1990).

Figure 2 The Markov Model with 5 states simple model (Young et al. 2009).
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prediction coefficients are evaluated using the autocor-
relation method.
The Perceptual Linear Prediction (PLP) is based on

the human auditory system characteristics. It is similar
to that of LPC technique, except that the speech power
spectrum is transformed by a Bark-scale filter bank, an
equal-loudness pre-emphasis and an intensity-loudness
conversion to take into account the human auditory
system characteristics, before modelling by the autore-
gressive all-pole transfer function. The block diagram of
PLP technique, as shown in Figure 3 (Hermansky 1990;
Beigi 2011).

The proposed feature extraction based on an
auditory filter model
The proposed extraction method of speech feature for
ASR is based on an auditory filter model. This model
simulates the outer/middle ear filtering and the spectral
behaviour of the cochlea.

Auditory filter modelling
The auditory filter modelling represents the mathematical
model which tends to simulate the basic perceptual and psy-
chophysical aspects of the human auditory characteristics
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Figure 4 The top panel represents the 25 ms waveform segment of t
illustrates the simulation of BMM for the waveform segment.
(Lyon et al. 2010). This model consists of the simulation
of the outer/middle ear filtering by second-order low-pass
filter and the cochlea spectral behaviour by the gamma-
chirp auditory filterbank.
The objective of outer/middle ear filtering is to increase

the pressure of sound waves. This filtering is done by
applying a low-pass filter that represents the sound trans-
mission of outer/middle ear (Van Immerseel and Martens
1992). It is modelled by means of the transfer function
given in Equation 5, transformed by means of a bilinear
transformation and selecting a resonance frequency
(fr = 2π/ω0) equal to 4 kHz (Martens and Van Immerseel
1990; Van Immerseel and Martens 1992).

H sð Þ ¼ ω2
0

s2 þ 0:33ω0sþ ω2
0

ð5Þ

The gammachirp auditory filterbank simulates the signal
processing in the cochlea, in particular it allows to obtain
a good approximation of the basilar membrane frequency
selectivity of the cochlear filter (Irino and Patterson
1997, 2006; Patterson et al. 2003). The Gammachirp
filter represents an extension of the gammatone filter
with the frequency modulation factor known as the
15 20 25
me [ms]

he word “Water” (sampling frequency =16 kHz). The bottom panel
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chirp rate. Its analytic complex form is defined as (Irino
and Patterson 1997).

gc tð Þ ¼ atn−1e−2πbERB f 0ð Þtej2πf 0tþjc ln tð Þþjφ ð6Þ

Where time t > 0, a, f0, φ and c are the amplitude, the
asymptotic frequency, the initial phase and the chirp rate
respectively. b and n are the two parameters which
define the gamma distribution envelope. “ln” denotes the
natural logarithm.
The ERB(f0) is the equivalent rectangular bandwidth

(ERB) of the Gammachirp auditory filters centered
around f0 (Irino and Patterson 2006). The value of ERB
is expressed by the following equation (Glasberg and
Moore 1990; Moore 2012; Wang and Brown 2006).

ERB fð Þ ¼ 24:7þ 0:108f ð7Þ

The ERB-rate scale represents an approximately loga-
rithmic function which relates the frequency value to the
ERBs number, ERBrate(f ), and can be expressed by
(Glasberg and Moore 1990; Moore 2012; Wang and
Brown 2006).
Gammachirp

FilterBank
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of power

Spectrum

Hamming

window

| DFT |2{

Figure 5 Block diagram of the proposed Perceptual linear predictive
ERBrate fð Þ ¼ 21:4 log10
4:37f
1000

þ 1

� �
ð8Þ

The Gammachirp Fourier spectrum is given by (Irino
and Patterson 2006; Unokia et al. 2006).

Gc fð Þj j ¼ a Γ nþ jcð Þj jecθ
2πð Þn bERB f 0ð Þð Þ2 þ f −f 0ð Þ2� �n

2
ð9Þ

Where θ ¼ arctg f −f 0
bERB f 0ð Þ

� �
and Γ(n + jc) is the complex

gamma distribution.
The basilar membrane motion produced by a 34-

channel Gammachirp auditory filterbank in response to
a speech waveform segment is presented in Figure 4
(Bleeck et al. 2004). The waveform is the 25 ms of the
word “Water” which is extracted from TIMIT database
(Garofolo et al. 1990). The centre frequencies of the
Gammachirp filters are equally spaced between 50 Hz
and 8 kHz on the ERB-rate scale. Each individual line
shows the output of one channel in the used auditory
filterbank. The surface defined by the lines represents
the simulation of basilar membrane motion (BMM). As
illustrated in Figure 4, the concentrations of activity in
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auditory Gammachirp (PLPaGc) method.
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Figure 6 The temporal representations and the spectrograms of the used noises.

Table 1 Used Gammachirp parameters

Parameter Value

n 4

a 1

b 1.019

c 2

φ 0
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channels above 191 Hz correspond to the resonance
frequencies in the human vocal tract (Bleeck et al. 2004).

The proposed feature extraction method
Our feature extraction method for speech recognition of
noisy speech signal is based on auditory filter modelling.
The proposed method, as illustrated by a block diagram
in Figure 5, consists of seven steps. In the first step, the
power spectrum is calculated by performing the square
of Discrete Fourier Transform to the windowed segment
of speech signal. The second step is the Outer and middle
ear filtering, which is performed by a second order low-
pass filter with a resonance frequency equal to 4 kHz
(Martens and Van Immerseel 1990; Van Immerseel and
Martens 1992). In the third step, the result is processed by
applying the gammachirp auditory filterbank composed of
34 Gammachirp filters (Zouhir and Ouni 2013), where the
centre frequencies of the filter are equally spaced in ERB-
rate scale between 50 Hz and 8000 Hz (Glasberg and
Moore 1990; Moore 2012). The output is pre-emphasized,
in the fourth step, by the simulated equal loudness curve.
The latter allows obtaining the non-equal sensitivity
approximation of human auditory system at different
frequencies (Hermansky 1990). The fifth step is the In-
tensity loudness Conversion step. The aim of this step
consists in simulating the nonlinear relationship between
the intensity of speech signal and perceived loudness by
performing a cubic-root amplitude compression. In the
sixth step, the autoregressive all-pole model is calculated
using inverse DFT and the Levinson-Durbin recursion
(Hermansky 1990). The last step of our method consists
in applying a cepstral transformation to obtain the pro-
posed Perceptual Linear Predictive Auditory Gammachirp
coefficients (PLPaGc).

Experimental results
This section evaluates the robustness of the proposed
feature extraction method under various types of noisy
environments.

Databases and experimental setup
The TIMIT database (Garofolo et al. 1990) is used for all
simulated speech recognition experiments. The used
database is composed of speech signals sampled at
16 kHz of 630 speakers (female and male speakers) from
8 major dialect regions of the United States; each of
them saying 10 sentences. We used isolated words
extracted from this database. A total of 9702 isolated
words were used in the training phase of the experi-
ments and 3525 isolated words were used for the test
phase. In order to evaluate the performance of our



Table 2 Recognition rate (%) obtained by proposed and
standard methods with suburban train noise

Recognition rate with HMM-4-GM

SNR level PLPaGc PLP LPCC LPC MFCC

0 dB 38.55 27.77 21.79 11.86 26.95

5 dB 65.59 50.16 40.48 13.62 49.42

Suburban train noise 10 dB 84.71 72.74 60.96 18.47 71.66

15 dB 92.74 85.82 77.90 28.96 86.30

20 dB 95.77 91.72 87.06 41.96 92.60

Average 75.47 65.64 57.64 22.97 65.39

Table 4 Recognition rate (%) obtained by proposed and
standard methods with street noise

Recognition rate with HMM-4-GM

SNR level PLPaGc PLP LPCC LPC MFCC

0 dB 39.86 32.03 25.13 10.52 30.64

5 dB 65.90 51.60 41.73 12.65 50.52

Street noise 10 dB 84.26 72.99 60.51 16.88 73.13

15 dB 92.84 85.93 76.79 26.35 86.33

20 dB 96.00 91.63 87.09 38.04 92.31

Average 75.70 66.84 58.25 20.89 66.59
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method on isolated words in the presence of various
types of background noise, noisy corrupted tests sets
were obtained by combining clean speech signals with
suburban train, exhibition hall, street and car noises.
These real-world noises were taken from AURORA
database (Hirsch and Pearce 2000). Five noise levels,
corresponding to 0 dB, 5 dB, 10 dB, 15 dB and 20 dB
SNR values, where applied to each tests set. The tem-
poral representations and the spectrograms of all used
noises are shown in Figure 6.
The used speech recognition system is based on Hidden

Markov Models. Our system employs the HTK 3.4.1
(Young et al. 2009) in the recognition task. The HTK 3.4.1
is a portable toolkit which allows the construction and
manipulation of HMM-GM.
The HMM topology used in our experiments is a five

states left-to-right model with a four Gaussian Mixture
observation probability density distribution characterized
by a diagonal covariance matrix.
The Table 1 represents the parameters of the Gamma-

chirp function used in Gammachirp Auditory Filter.
Results and discussion
For the baseline experiments, 12 coefficients of each
technique were calculated from speech signal using
Hamming analysis window with length equal to 25 ms
and shifted with 10 ms steps.
Table 3 Recognition rate (%) obtained by proposed and
standard methods with exhibition hall noise

Recognition rate with HMM-4-GM

SNR level PLPaGc PLP LPCC LPC MFCC

0 dB 37.53 26.67 18.33 8.31 26.04

5 dB 61.36 48.31 39.06 14.67 47.18

Exhibition hall noise 10 dB 81.73 69.30 60.54 20.65 68.74

15 dB 90.58 84.17 77.99 29.87 84.09

20 dB 95.74 91.40 86.92 40.00 92.14

Average 73.39 63.97 56.57 22.70 63.64
The recognition performance of our feature extraction
method has been compared to that of the classic tech-
niques such as PLP, LPCC, LPC, and MFCC. The feature
coefficients of each technique are combined with energy
(E), differential coefficients first (Δ) and second order
(A) (12 coefficients +E + Δ + A).
The experimental results obtained using the proposed

PLPaGc feature and PLP, LPCC, LPC and MFCC feature
in the noisy environments are summarized in the
Tables 2, 3, 4 and 5. Four different noise types noise
(suburban train, exhibition hall, street and car noises)
with five noise levels (SNR) are considered.
As illustrated in the tables, the PLPaGc feature outper-

forms the four classic features in all noise conditions.
For example, in the case of suburban train noise, the
average of all noise levels of recognition rates achieved
using PLPaGc feature is 75.47, while PLP, LPCC, LPC
and MFCC feature provides respectively 65.64, 57.64,
22.97 and 65.39. It can be also observed that the recog-
nition rates increase in all features when the noise level
is decreased with respect to the signal level (i.e., SNR
increases from 0 dB to 20 dB).

Conclusion
A new auditory filter modelling-based feature extraction
method for noisy speech recognition was presented in
this paper. The proposed method was motivated by the re-
search studies of the human peripheral auditory modelling.
Table 5 Recognition rate (%) obtained by proposed and
standard methods with car noise

Recognition rate with HMM-4-GM

SNR level PLPaGc PLP LPCC LPC MFCC

0 dB 45.96 28.51 23.15 10.13 29.19

5 dB 70.81 56.37 46.55 13.50 56.14

Car noise 10 dB 88.94 80.57 70.87 20.65 81.08

15 dB 94.84 91.55 86.07 31.74 92.23

20 dB 96.74 94.89 91.60 43.21 95.63

Average 79.46 70.38 63.65 23.85 70.85



Zouhir and Ouni SpringerPlus 2014, 3:651 Page 8 of 8
http://www.springerplus.com/content/3/1/651
The used auditory model consists of simulating the outer/
middle ear filtering by a second order low-pass filter and
the cochlea spectral behaviour by the gammachirp auditory
filterbank, where the values of those centre frequencies are
chosen according to the ERB rate scale. The robustness of
the proposed PLPaGc feature was evaluated on speech
recognition rate in real-world noisy environments. The
experimental results show that the PLPaGc feature gives
better recognition rates compared to four classical PLP,
LPCC, LPC and MFCC feature.
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