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Abstract

Based on the combination of time domain averaging and correlation, we propose an effective time domain averaging
and correlation-based spectrum sensing (TDA-C-SS) method used in very low signal-to-noise ratio (SNR)
environments. With the assumption that the received signals from the primary users are deterministic, the proposed
TDA-C-SS method processes the received samples by a time averaging operation to improve the SNR. Correlation
operation is then performed with a correlation matrix to determine the existence of the primary signal in the received
samples. The TDA-C-SS method does not need any prior information on the received samples and the associated
noise power to achieve improved sensing performance. Simulation results are presented to show the effectiveness of
the proposed TDA-C-SS method.
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1 Introduction
Cognitive radio (CR) networks allow unlicensed (or sec-
ondary) users to opportunistically exploit the underuti-
lized spectrum bandwidth of the licensed (or primary)
users. Spectrum sensing is a key operation performed by
the CR networks to determine the spectrum holes of the
spectrum allocated to a primary user. In the literature,
several kinds of typical spectrum sensing methods have
been reported, including energy detection methods [1,2],
matched filter detection methods [3,4], and cyclostation-
arity feature detection methods [5]. The energy detection
methods need the prior knowledge of noise power and
are vulnerable to the noise uncertainty. The matched fil-
ter detection methods need to know the waveform of the
primary user in advance. The methods of cyclostationar-
ity feature detection require the information on the cyclic
frequencies of the primary user. The prior knowledge
requirements of these methods often limit their realis-
tic applicability. To avoid these undesirable requirements,
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some new statistical covariance-based methods for spec-
trum sensing in additive i.i.d white noise environments
have been proposed [6-8]. These reported methods do
not need the prior information about the signal and the
noise power to achieve a sensing performance in a low
signal-to-noise ratio (SNR) environment of -22 dB. How-
ever, these methods assume that the primary user’s signal
is a stationary random process and that all the received
data samples contain the primary user’s signal if it exists.
In fact, most existing spectrum sensing methods require
the last assumption. In fact, it is very possible that only a
part of the received samples in practice contain the sig-
nal from the primary user or a part of or all the received
samples are from some signals that are not stationary. For
example, the initial transient signal, known as fingerprint
of a wireless device [6], from the primary user is not sta-
tionary. If such samples are used, the methods reported
in [7-9] will lose the supporting prerequisite and become
unusable. Even in the cases that these required assump-
tions are valid, it is difficult for the methods in [7-9] to
obtain the theoretical sensing performance in lower SNR
environments when the number of the received samples
available is limited.
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To overcome these problems and supportmore effective
sensing in low SNR environments, we propose an effec-
tive time domain averaging and correlation-based spec-
trum sensing (TDA-C-SS) method based on time domain
averaging and correlation for spectrum sensing in addi-
tive i.i.d white noise environments. Similar to the meth-
ods reported in [7-9], the proposed TDA-C-SS method
does not need any aforementioned prior information and
achieve desirable sensing performance in very low SNR
environments. The TDA-C-SS method assumes the sig-
nal from the primary user to be deterministic. By making
use of time domain averaging, the SNR of the received
samples is increased. Then, the task of spectrum sensing
is obtained by performing the correlation operation. Sim-
ulation results from various environments are presented
to show the effectiveness of the proposed TDA-C-SS
method.
The rest of this paper is organized as follows. Section 2

describes the system model and sampling operations to
obtain the input sample sequence. Section 3 gives the pro-
posed TDA-C-SS spectrum sensing method. Simulation
results and discussions are presented in Section 4. Finally,
conclusion is drawn in Section 5.

2 Systemmodel and sampling description
In a duration, [ t1, t2], of spectrum sensing, let z(t) be the
continuous-time signal received by the secondary user.
The process of the spectrum sensing is regarded as a two-
hypotheses-test problem at a time duration, [ t1, t2], i.e.,
H0: the primary signal is absent and H1: the primary
signal is present, described by

zc(t) =
{
wc(t) t ∈[ t1, t2] H0
sc(t) + wc(t) t ∈[ t1, t2] H1

(1)

where for t1 ≤ t3, t4 ≤ t2

sc(t) =
{
spri−c(t) t ∈[ t3, t4]
0 mul

and spri−c(t) is any received primary signal, and wc(t) is
the i.i.d white noise with a zero mean and a variance
represented by δ2.
Let us be interested in the frequency band with central

frequency f0 and a narrow bandwidth W. The signal zc(t)
defined in (1) is sampled at a frequency fs ≤ Lmul(f0 +
W/2), where, Lmul is a large constant, for example, Lmul =

100. The choice of such values of fs and Lmul is for the pur-
pose of time domain averaging in our proposed method,
which is to be described in Section 3. The two hypotheses
in (1) are then expressed as

z(n) =
{
w(n) n = [1, . . . ,N0] H0
s(n) + w(n) n = [1, . . . ,N0] H1

(2)

where, z(n) = zc(n/fs), s(n) = sc(n/fs) and w(n) =
wc(n/fs).
It is worth noting that if f0 + W/2 is very high, it is

difficult to implement the sampling process because the
available high speed samplers can support up to several
tens of GHz [10-12]. Therefore, we should suitably select
the value of f0 + W/2 to allow an appropriate large value
of Lmul possible. It is also possible to use down conver-
sion process [12] to generate the received samples when
the value of f0 + W/2 is very high.

3 The proposed spectrum sensing method
The proposedTDA-C-SSmethod treats the samples of the
primary users to be deterministic. It firstly averages the
received data samples in the time domain to increase SNR
(or reduce the noise) then obtains the spectrum sensing
by means of correlation operations.

3.1 Sample time domain averaging
Time domain averaging is an effective method to decrease
noise power for periodic signal detection [13] (and
therein [13]). For the obtained data sample sequence
z(n), n ∈[ 1,N0] , the time average operation is defined by

e(n) =
∑M

j=−M z(n · Lmul + j)
2M + 1

n = 1, . . . ,N (3)

whereM is a small positive integer, for example, M=5, and
N =[N0/Lmul].
If the samples from the primary users are treated as

deterministic ones, fs is Lmul times of f0 + W/2 and M is
small, it means that

s(n · Lmul) ≈
∑M

j=−M s(n · Lmul + j)
2M + 1

, n = 1, . . . ,N .

with the assumption that wc(t) is i.i.d white noise, we
easily obtain the following from (2):

e(n) =
⎧⎨
⎩

∑M
j=−M w(n·Lmul+j)

2M+1 = ω(n) H0∑M
j=−M s(n·Lmul+j)

2M+1 +
∑M

j=−M w(n·Lmul+j)
2M+1 ≈ s(n · Lmul) + ω(n) H1

(4)
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where ω(n) can be considered as the samples of the i.i.d
white noiseωc(t)with a zeromean and a variance of δ2

2M+1 .

Let us define SNR = 10lg
∑N

n=1 s2(n·Lmul)
N ·Var[noise] , where Var[.]

denotes the variance of a random variable. It can be eas-
ily proved that the SNR of the sequence produced by the
time averaging process is increased by 10lg(2M+ 1) dB. If
M = 5, for example, the SNR of the time averaged output
is increased by about 10 dB. This gain in SNR is very valu-
able for effective spectrum sensing in the environment of
strong noise.

3.2 Correlation operation and sensing decision
Similar to the method in [7], let us perform the correla-
tion operation on the input samples and make a decision
on the signal presence of the primary user based on a con-
structed correlation matrix. Being different from that in
[7], however, the correlation used here is to be discussed
from the view point of deterministic signal samples.
Let us consider the correlation defined by re(i) = 1

N∑N
n=1 e(n)e(n − i). Then, underH0, we have

re(i) = 1
N

N∑
n=1

ω(n)ω(n − i) (5)

UnderH1, we have

re(i) ≈ 1
N

∑N

n=1
[ s(nLmul) + ω(n)] [ s((n − i)Lmul)

+ ω(n − i)]

= 1
N

∑N

n=1
s(nLmul)s((n − i)Lmul)

+ 1
N

∑N

n=1
s(nLmul)ω(n − i)

+ 1
N

∑N

n=1
s((n − i)Lmul)ω(n)

+ 1
N

∑N

n=1
ω(n)ω(n − i)

(6)
It is noted that the samples from the i.i.d white noise,
ωc(t) , which has a zero mean and a variance of δ2

2M+1 ,
the product of s(nLmul)ω(n − i) are the samples from
mutually independent random variables with a zero mean
and a variance of s2(nLmul)δ

2

2M+1 . Therefore, based on the
central limit theorem, it is concluded that the term
1
N

∑N
n=1 s(nLmul)ω(n − i) in (6) can be treated as a

sample sequence of a Gaussian random variable g ∼
N(0, δ2

(2M+1)N2
∑N

n=1 s2(nLmul)) when N → ∞. Because
lim
n→∞ Prob|g − 0| < ε = 1 for an arbitrary positive ε, we

have 1
N

∑N
n=1 s(nLmul)ω(n − i) → 0 when N → ∞ .

Similarly, we also conclude that the term 1
N

∑N
n=1 s((n −

i)Lmul)ω(n) → 0 in (6) when N → ∞. In addition,
according to statistics theory, it is also noted that when
N → ∞, (5) or the last term in (6) satisfies

1
N

N∑
n=1

ω(n)ω(n − i) = E[ωc(t)ωc(t − i)]=
{

δ2

2M+1 i = 0
0 i �= 0

where E[·] is the expectation operation. Finally, the first
term in (6), i.e. 1

N
∑N

n=1 s(nLmul)s((n − i)Lmul), i =
1, 2, 3, . . . are usually not identically zero when s(n) is a
deterministic sample sequence.
Let us construct an L×L correlation matrix in the same

form as that in [6], i.e.,

Re =

⎛
⎜⎜⎜⎝

re(0) re(1) · · · re(L − 1)
re(1) re(0) · · · re(L − 2)
...

... · · · ...
re(L − 1) re(L − 2) · · · re(0)

⎞
⎟⎟⎟⎠ (7)

Note that we have tested Pd versus L by experiments,
and the experiment results show that when L ≥ 10, Pd
is not affected greatly by L, as a result, we choose the
integer L = 10 for the purpose of lower computation
complexity. Based on the previous analysis of re(i) values,
apparently, the sensing test statistics and decision poli-
cies of the computer-assisted videodensitometry (CAV)
method and the GCBA method in [7] are still applicable
for our method. For the sake of simplicity, here, we use the
test statistics and decision policy of the CAV method in
[7], i.e., the test statistics is defined by [7]

T =
∑L

n=1
∑L

m=1 |rnm|∑L
m=1 |rmm| (8)

where rnm is the element located in the nth row and mth
column of the matrix Re. With a positive threshold value
λ, the sensing decision for the primary signal is made by

T > λ Present
T ≤ λ Absent

3.3 The TDA-C-SS Method
Based on the discussion above, we propose the an
improved spectrum sensing method as follows.

Step 1: sample the received signal at frequency fs to
obtain the discrete samples z(n), n = 1, 2, . . . ,N0.
Step 2: for a given value of M, calculate
e(n), n = 1, 2, . . . ,N by (3).
Step 3: for a given value of L, calculate
re(i), i = 0, 1, . . . , L − 1, and construct the matrix Re
in (7).
Step 4: calculate T in (8), and properly choose the
value of λ for the sensing decision.

Similar to the approach reported in [7,9], let us use the
computer simulation approach based on the given prob-
ability of false alarm, Pf , to choose the threshold λ. That
is, first, a Pf value is given and white noise is generated as
the input, and then with a number of simulation results
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of T in (8), the threshold value, λ, is selected to meet the
requirement of Pf .

3.4 Performance analysis of the proposed TDA-C-SS
From the description above, it is seen that the proposed
TDA-C-SS method does not need any prior information
about the waveform and the cyclic frequencies of the
primary user’s signal and the noise power, which is sim-
ilar to those methods in [7-9]. In contrast, our proposed
method is also valid when only part of the received sample
sequence contain the primary user’s signal, which is the
main different from those in [7-9] that assume that the pri-
mary user’s signal is a stationary random process and that
all the received samples must contain the primary user’s
signal. Therefore, the proposed method is more general
and flexible.
By the averaging operation in the time domain, the

proposed TDA-C-SS method is able to achieve an SNR
improvement by 10lg(2M + 1) dB compared with the
CAV method in [7] for the same values of N and L.
Therefore, the proposed one is expected to improve the
sensing performance substantially particularly in low SNR
environments.

4 Simulations
In this section, simulation results are reported for the fol-
lowing three signal settings in the AWGN environments
to verify the effectiveness of the proposed method.

Case I: the signal from the primary user is stationary.
During spectrum sensing, all the received samples
contain the signal of the primary user.
Case II: the signal from the primary user is stationary.
During spectrum sensing, only a part of the received
samples contain the signal of the primary user.
Case III: the signal from the primary user is not
stationary.

For comparison, we also present the simulation results
of the CAV method [6] applicable for case I. For all the
simulations, the values of threshold λ are chosen by the
computer simulation approach described previously, and
1,000 Monte Carlo runs are carried out to estimate the
value of λ.

4.1 Simulation for case I
We use a wireless microphone signal generated by the
method in [14] with the following parameters: central fre-
quency f0 = 100 MHz, bandwidthW = 36.8 KHz. Based
on the discussion in Section 2, the sampling frequencies
used for the proposed TDA-C-SS method and the CAV
method are fs = 10.3 GHz ≥ Lmul(f0 + W/2), where,
Lmul = 100, and fs = 103 MHz ≥ f0 + W/2, respectively.
Figure 1 illustrates the detection probability Pd versus

SNRs with Pf = 0.1, L = 10,N = 50, 000. Figure 2
presents the detection probability Pd versus the false

Figure 1 Pd curves versus SNR for case I.

alarm probability, Pf , with SNR = −30 dB, L = 10,N =
50, 000, for the proposed TDA-C-SS method, with dif-
ferent values of M, and the CAV method. From Figures
1 and 2, it is seen that under the same conditions, the
detection performance of the proposed method is better
than that of the CAV and can be improved further with
increase ofM. In addition, Figure 1 shows that, compared
with the CAV method, the TDA-C-SS method achieves
the improvement on the sensing performance by about
10lg(2M+1)dB in SNR. To achieve Pd = 0.985, the values
of the SNR needed by the CAV method and the TDA-C-
SS withM = 2, 5, and 10 are −18.5,−26,−29.3, and 32.2
dB, respectively.

4.2 Simulation for case II and case III
In case II, the received sample sequence is 45, 000
zero-valued signal samples followed by 5,000 wireless
microphone signal samples that are generated in case I.

Figure 2 Pd curves versus Pf for case I.
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The segment of zero-valued signal samples is included
for the frequently observed situation in which the pri-
mary user begins to occupy its channel after the secondary
user has monitored the channel for certain period of time.
The sampling frequency for the TDA-C-SS method is
fs = 10.3 GHz. For case III, we use a fingerprint sig-
nal, which is generated by using the unit-step response
of a second-order RLC parallel circuit described by a
differential equation:

d2il(t)
dt2

+ 2σ
dil(t)
dt

+ w2
0il(t) = 1

Lf Cf
is(t)

with Lf = 10−8,Cf = 10−10,R = 0.08, σ = R/2Lf =
4, 000, 000,w0 = √

1/Lf Cf = 109. The fingerprint sig-
nal has the central frequency f0 = 160 MHz and the
bandwidth W = 8 MHz. The sampling frequency for the
TDA-C-SS method is fs = 16.4 GHz ≥ Lmul(f0 + W/2),
where, Lmul = 100.
It is not reasonable to use the CAV method because

the signals used in case II and case III are not stationary.
Therefore, we only verify the effectiveness of the proposed
TDA-C-SS method. Figures 3 and 4 give, respectively,
detection probability versus SNRs for the two cases with
Pf = 0.1, L = 10,N = 50, 000, and the detection
probability Pd versus the false alarm probability Pf with
SNR = −30 dB, L = 10,N = 50, 000. From these figures,
it is seen that the TDA-C-SS method is still effective
because this method does not consider the properties of
the received signal. Similarly, the detection performance
can be improved further with the increased value ofM.

5 Conclusion
In this paper, an improved spectrum sensing method,
TDA-C-SS, based on time domain averaging and correlation

Figure 3 Pd versus SNR obtained by the TDA-C-SSmethod for
case II and case III.

Figure 4 Pd curves versus Pf of the TDA-C-SS for case II and case
III.

has been proposed. The time domain averaging process
has been typically used to decrease the noise effects, and
correlation matrix has been constructed to decide the
existence of the primary user’s signal. In comparing with
other reported method, such as CAV method, the pro-
posed one can sense a primary user’s signal in the white
noise environment in very low SNR environments with-
out requiring any prior knowledge about the signal and
noise power. In particular, the proposedmethod is flexible
to effectively sense the signals that are not stationary. Our
simulation results have shown the desirable advantages of
the proposed methods.
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