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Abstract
By using an extension of Mawhin’s continuation theorem and some analysis methods,
the existence of a set with 2kT -periodic for a n-dimensional neutral Duffing
differential systems, (u(t) – Cu(t – τ ))′′ + β(t)x′(t) + g(u(t – γ (t))) = p(t), is studied. Some
new results on the existence of homoclinic solutions is obtained as a limit of a certain
subsequence of the above set. Meanwhile, C = [cij]n×n is a constant symmetrical
matrix and β(t) is allowed to change sign.

Keywords: homoclinic solution; continuation theorem; periodic solution

1 Introduction
The aimof this paper is to consider a kind of neutral Duffingdifferential systems as follows:

(
u(t) –Cu(t – τ )

)′′ + β(t)x′(t) + g
(
u
(
t – γ (t)

))
= p(t), (.)

where β ∈ C(R,R) with β(t + T) ≡ β(t), g ∈ C(Rn,Rn), p ∈ C(R,Rn), and γ (t) is a contin-
uous T-periodic function with γ (t) ≥ ; T >  and τ are given constants; C = [cij]n×n is a
constant symmetrical matrix and β(t) is allowed to change sign.
As is well known, a solution u(t) of Eq. (.) is called homoclinic (to O) if u(t) →  and

u′(t) →  as |t| → +∞. In addition, if u �= , then u is called a nontrivial homoclinic solu-
tion.
Under the condition of C =O, system (.) transforms into a classic second-order Duff-

ing equation

u′′(t) + β(t)x′(t) + g
(
t,u

(
t – γ (t)

))
= p(t), (.)

which has been studied by Li et al. [] and some new results on the existence and unique-
ness of periodic solutions for (.) are obtained. Very recently, by using Mawhin’s contin-
uation theorem, Du [] studied the following neutral differential equations:

(
u(t) –Cu(t – τ )

)′′ +
d
dt

∇F
(
u(t)

)
+∇G

(
u(t)

)
= e(t), (.)

where F ∈ C(Rn,R); G ∈ C(Rn,R); e ∈ C(R,Rn); C = diag(c, c, . . . , cn), ci (i = , , . . . ,n)
and τ are given constants, obtaining the existence of homoclinic solutions for (.).
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In this paper, like in the work of Rabinowitz in [], Izydorek and Janczewska in [] and
Tan and Xiao in [], the existence of a homoclinic solution for (.) is obtained as a limit
of a certain sequence of kT-periodic solutions for the following equation:

(
u(t) –Cu(t – τ )

)′′ + β(t)u′(t) + g
(
u
(
t – γ (t)

))
= pk(t), (.)

where k ∈N , pk : R→ Rn is a kT-periodic function such that

pk(t) =

{
p(t), t ∈ [–kT ,kT – ε),
p(kT – ε) + p(–kT)–p(kT–ε)

ε
(t – kT + ε), t ∈ [kT – ε,kT],

(.)

ε ∈ (,T) is a constant independent of k. However, the approaches to show u′(t) → 
as |t| → +∞ are different from the corresponding ones used in the past and the exis-
tence of kT-periodic solutions to Eq. (.) is obtained by using an extension of Mawhin’s
continuation theorem, which is quite different from the approach of [–]. Furthermore,
C = [cij]n×n is a constant symmetrical matrix and β(t) is allowed to change sign, different
from the corresponding ones of [].

2 Preliminary
Throughout this paper, 〈· , ·〉 : Rn × Rn → R denotes the standard inner product, and
| · | denotes the absolute value and the Euclidean norm on Rn. For each k ∈ N , let
CkT = {x|x ∈ C(R,Rn),x(t + kT) ≡ x(t)}, C

kT = {x|x ∈ C(R,Rn),x(t + kT) ≡ x(t)} and
|x| = maxt∈[,kT] |x(t)|. If the norms of CkT and C

kT are defined by ‖ · ‖CkT = | · | and
‖ · ‖C

kT
=max{|x|, |x′|}, respectively, then CkT and C

kT are all Banach spaces. Further-

more, for ϕ ∈ CkT , ‖ϕ‖r = (
∫ kT
–kT |ϕ(t)|r dt) r , r > .

Define the linear operator

A : CT → CT , [Ax](t) = x(t) –Cx(t – τ ).

Lemma . [] Suppose that � is an open bounded set in X such that the following condi-
tions are satisfied:

[A] For each λ ∈ (, ), the equation

(
u(t) –Cu(t – τ )

)′′ + λβ(t)u′(t) + λg
(
u
(
t – γ (t)

))
= λpk(t)

has no solution on ∂�.
[A] The equation


(a) :=


kT

∫ kT

–kT

[
g(a) – pk(t)

]
dt = 

has no solution on ∂� ∩ Rn.
[A] The Brouwer degree

dB
{

,� ∩ Rn, 

} �= .

Equation (.) has a kT-periodic solution in �̄.

http://www.advancesindifferenceequations.com/content/2014/1/121
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Lemma . [] If set PT = {x|x ∈ C(R,R),x(t + T) ≡ x(t)} and A : PT → PT , [Ax](t) =
x(t) – cx(t), where c ∈ R is a constant with |c| �= , then operator A has continuous inverse
A–
 on PT , satisfying

[
A–
 f

]
(t) =

{∑
j≥ cjf (t – jτ ), |c| < ,∀f ∈ PT ,

–
∑

j≥ c–jf (t + jτ ), |c| > ,∀f ∈ PT .

Lemma . [] If u : R→ Rn is continuously differentiable on R, a > , μ > , and p >  are
constants, then for every t ∈ R, the following inequality holds:

∣∣u(t)∣∣ ≤ (a)–

μ

(∫ t+a

t–a

∣∣u(s)∣∣μ ds) 
μ

+ a(a)–

p

(∫ t+a

t–a

∣∣u′(s)
∣∣p ds) 

p
.

This lemma is a special case of Lemma . in [].

Lemma . [] Suppose that c, c, . . . , cn are eigenvalues of matrix C. If |ci| �=  (i =
, , . . . ,n), then A has a continuous bounded inverse with the following relationships:
() ‖A–f ‖ ≤ (

∑n
i=


|–|ci|| )‖f ‖, ∀f ∈ CT ,

()
∫ T
 |(A–f )(t)|p dt ≤ α

∫ T
 |f (t)|p dt, ∀f ∈ CT , p≥ , where

α =

⎧⎪⎪⎨
⎪⎪⎩
max( 

(–|ci|) ), p = ,

(
∑n

i=


(–|ci|) p
–p

)
–p
 , p ∈ [, ),

(
∑n

i=


–|ci|q )
p
q , p ∈ [, +∞),

q is a constant with 
p +


q = .

() (Ax)′ = Ax′, ∀x ∈ C
T .

Lemma . [] Let s ∈ C(R,R) with s(t + ω) ≡ s(t) and s(t) ∈ [,ω], ∀t ∈ R. Suppose p ∈
(, +∞), |s| =maxt∈[,ω] s(t) and u ∈ C(R,R) with u(t +ω) ≡ u(t). Then

∫ ω



∣∣u(t) – u
(
t – s(t)

)∣∣p dt ≤ |s|p
∫ ω



∣∣u′(t)
∣∣p dt.

Throughout this paper, we suppose in addition that cm = max{|ci|}, i = , , . . . ,n,
where c, c, . . . , cn are eigenvalues of matrix C with |ci| �=  and let β ′

L = min |β ′(t)|,
βM =max |β(t)|, ∀t ∈ [,T].
For convenience, we list the following assumptions which will be used to study the ex-

istence of homoclinic solutions to Eq. (.) in Section .

[H] There are constants L >  andm >  such that

∣∣g(x) – g(x)
∣∣ ≤ L|x – x|, for all x,x ∈ Rn,

and

〈
(E –C)x, g(x)

〉 ≤ –m|x|, for all x ∈ Rn,

http://www.advancesindifferenceequations.com/content/2014/1/121
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[H] p ∈ C(R,Rn) is a bounded function with p(t) �=O = (, , . . . , )� and

B :=
(∫

R

∣∣p(t)∣∣ dt) 

+ sup

t∈R

∣∣p(t)∣∣ < +∞.

Remark . [] From (.), we see that |pk(t)| ≤ supt∈R |p(t)|. So if assumption [H] holds,
for each k ∈N, (

∫ kT
–kT |pk(t)| dt)  < B.

3 Main results
In order to investigate the existence of kT-periodic solutions to system (.), we need to
study some properties of all possible kT-periodic solutions to the following system:

(
x(t) –Cx(t – τ )

)′′ + λβ(t)x′(t) + λg
(
x
(
t – γ (t)

))
= λpk(t), λ ∈ (, ]. (.)

For each k ∈ N, let  ⊂ C
kT represent the set of all the kT-periodic solutions to sys-

tem (.).

Theorem . Suppose assumptions [H]-[H] hold, β ′
L > –m, and

α[c


mL(|γ | + |τ |) + L|γ | + c



mβM]

( β
′
L +m)

< ,

then for each k ∈N, if u ∈ , then there are positive constants A, A, ρ, and ρ which are
independent of k and λ, such that

‖u‖ ≤ A,
∥∥u′∥∥

 ≤ A, |u| ≤ ρ,
∣∣u′∣∣

 ≤ ρ.

Proof For each k ∈N, if u ∈ , then umust satisfy

(
u(t) –Cu(t – τ )

)′′ + λβ(t)u′(t) + λg
(
u
(
t – γ (t)

))
= λpk(t), λ ∈ (, ]. (.)

Multiplying both sides of Eq. (.) by [Au](t) and integrating on the interval [–kT ,kT], we
have

–
∥∥Au′∥∥

 + λ

∫ kT

–kT

〈
[Au](t),β(t)u′(t)

〉
dt + λ

∫ kT

–kT

〈
[Au](t), g

(
u
(
t – γ (t)

))〉
dt

= λ

∫ kT

–kT

〈
[Au](t),pk(t)

〉
dt. (.)

Clearly,
∫ kT
–kT 〈u(t),β(t)u′(t)〉dt = – 


∫ kT
–kT β ′(t)u(t)dt, then we have

λ

∫ kT

–kT

〈
[Au](t),pk(t)

〉
dt

= –
∥∥Au′∥∥

 – λ



∫ kT

–kT
β ′(t)u(t)dt + λ

∫ kT

–kT

〈
Cu′(t – τ ),β(t)u′(t)

〉
dt

+ λ

∫ kT

–kT

〈
u(t), g

(
u
(
t – γ (t)

))
– g

(
u(t)

)〉
dt + λ

∫ kT

–kT

〈
u(t), g

(
u(t)

)〉
dt

http://www.advancesindifferenceequations.com/content/2014/1/121
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– λ

∫ kT

–kT

〈
Cu(t – τ ), g

(
u
(
t – γ (t)

))
– g

(
u(t – τ )

)〉
dt

– λ

∫ kT

–kT

〈
Cu(t – τ ), g

(
u(t – τ )

)〉
dt (.)

and from (.) and [H] that

∥∥Au′∥∥
 + λ

(


β ′
L +m

)
‖u‖

≤ λ

∫ kT

–kT

∣∣〈Cu(t – τ ),β(t)u′(t)
〉∣∣dt

+ λ

∫ kT

–kT

∣∣〈u(t), g(u(
t – γ (t)

))
– g

(
u(t)

)〉∣∣dt
+ λ

∫ kT

–kT

∣∣〈Cu(t – τ ), g
(
u
(
t – γ (t)

))
– g

(
u(t – τ )

)〉∣∣dt
+ λ

∫ kT

–kT

∣∣〈Au(t),pk(t)〉∣∣dt. (.)

By using [H] and Lemma ., we get

∫ kT

–kT

∣∣〈u(t), g(u(
t – γ (t)

))
– g

(
u(t)

)〉∣∣dt
≤

(∫ kT

–kT

∣∣u(t)∣∣ dt) 

(∫ kT

–kT

∣∣g(u(
t – γ (t)

))
– g

(
u(t)

)∣∣ dt) 


≤ L|γ |‖u‖
∥∥u′∥∥

. (.)

In a similar way as in the proof of (.), we have

∫ kT

–kT

∣∣〈Cu(t – τ ), g
(
u
(
t – γ (t)

))
– g

(
u(t – τ )

)〉∣∣dt ≤ c


mL

(|γ | + |τ |)‖u‖
∥∥u′∥∥

. (.)

By using [H], we get

∫ kT

–kT

∣∣〈[Au](t),pk(t)〉∣∣dt ≤ ‖ek‖‖u‖ + c


m‖pk‖‖u‖

≤ B
(
 + c



m
)‖u‖ (.)

and

∫ kT

–kT

∣∣〈Cu(t – τ ),β(t)u′(t)
〉∣∣dt ≤ c



mβM‖u‖

∥∥u′∥∥
. (.)

By applying (.)-(.), we see that

∥∥Au′∥∥
 + λ

(


β ′
L +m

)
‖u‖ ≤ λ

[
c


mL

(|γ | + |τ |) + L|γ | + c


mβM

]‖u‖
∥∥u′∥∥



+ λB
(
 + c



m
)‖u‖. (.)

http://www.advancesindifferenceequations.com/content/2014/1/121


Chen Advances in Difference Equations 2014, 2014:121 Page 6 of 13
http://www.advancesindifferenceequations.com/content/2014/1/121

Thus, from (.)
(


β ′
L +m

)
‖u‖ ≤ [

c


mL

(|γ | + |τ |) + L|γ | + c


mβM

]‖u‖
∥∥u′∥∥



+ B
(
 + c



m
)‖u‖. (.)

By using Lemma ., we have ‖u′‖ = ‖A–Au′‖ ≤ α

 ‖Au′‖, and from (.)-(.)

∥∥Au′∥∥
 ≤ α[c



mL(|γ | + |τ |) + L|γ | + c



mβM]

( β
′
L +m)

∥∥Au′∥∥


+
α/B( + c



m[c



mL(|γ | + |τ |) + L|γ | + c



mβM]

( β
′
L +m)

∥∥Au′∥∥


+
B( + c



m)

( β
′
L +m)

. (.)

Since

α[c


mL(|γ | + |τ |) + L|γ | + c



mβM]

( β
′
L +m)

< ,

there is a constantM >  such that

∥∥Au′∥∥
 ≤M, (.)∥∥u′∥∥

 ≤ α


∥∥Au′∥∥

 ≤ α

M := A, (.)

and by (.)

‖u‖ ≤ [c


mL(|γ | + |τ |) + L|γ | + c



mβM]A + B( + c



m)

( β
′
L +m)

:= A. (.)

Obviously, A and A are constants independent of k and λ. Thus by using Lemma ., for
all t ∈ [–kT ,kT], we get

∣∣u(t)∣∣ ≤ (T)–



(∫ t+T

t–T

∣∣u(s)∣∣ ds) 

+ T(T)–




(∫ t+T

t–T

∣∣u′(s)
∣∣ ds) 



≤ (T)–



(∫ t+kT

t–kT

∣∣u(s)∣∣ ds) 

+ T(T)–




(∫ t+kT

t–kT

∣∣u′(s)
∣∣ ds) 



= (T)–



(∫ kT

–kT

∣∣u(s)∣∣ ds) 

+ T(T)–




(∫ kT

–kT

∣∣u′(s)
∣∣ ds) 


.

From (.) and (.), we obtain

|u| ≤ (T)–

 ‖u‖ + T(T)–



∥∥u′∥∥

 ≤ (T)–

A + T(T)–


A := ρ, (.)

where ρ is a constant independent of k and λ.

http://www.advancesindifferenceequations.com/content/2014/1/121
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For i = –k, –k + , . . . ,k – , from the continuity of [Au′](t), one can find that there is a
ti ∈ [iT , (i + )T] such that

∣∣[Au′](ti)∣∣ =
∣∣∣∣ T

∫ (i+)T

iT

[
Au′](s)ds∣∣∣∣ =

∣∣∣∣ [Au]((i + )T) – [Au](iT)
T

∣∣∣∣ ≤ 
T

(
 + c



m
)
ρ,

and it follows from (.) that for t ∈ [iT , (i + )T], i = –k, –k + , . . . ,k – ,

∣∣[Au′](t)∣∣ = ∣∣∣∣
∫ t

ti
[Au]′′(s)ds +

[
Au′](ti)

∣∣∣∣
≤

∫ t

ti

∣∣[Au]′′(s)∣∣ds + 
T

(
 + c



m
)
ρ

≤
∫ (i+)T

iT

∣∣[Au]′′(s)∣∣ds + 
T

(
 + c



m
)
ρ

≤
∫ (i+)T

iT

∣∣β(s)u′(s)
∣∣ds + ∫ (i+)T

iT

∣∣g(u(
s – γ (s)

))∣∣ds
+

∫ (i+)T

iT

∣∣pk(s)∣∣ds + 
T

(
 + c



m
)
ρ

≤ βMT



(∫ kT

–kT

∣∣u′(s)
∣∣ ds) 


+ TgM + TB +


T

(
 + c



m
)
ρ

≤ βMT

A + TgM + TB +


T

(
 + c



m
)
ρ := ρ,

i.e.,
∣∣Au′∣∣

 ≤ ρ, (.)

where gM =max|u|≤ρ |g(u(t – τ (t)))|.
By Lemma . and (.), we get

∣∣u′∣∣
 =

∣∣A–Au′∣∣
 ≤

( n∑
i=


| – |ci||

)∣∣Au′∣∣
 ≤

( n∑
i=


| – |ci||

)
ρ := ρ.

Clearly, ρ is a constant independent of k and λ. Hence the conclusion of Theorem .
holds. �

Theorem. Assume that the conditions of Theorem . are satisfied.Then for each k ∈N ,
Eq. (.) has at least one kT-periodic solution uk(t) such that

‖uk‖ ≤ A,
∥∥u′

k
∥∥
 ≤ A, |uk| ≤ ρ,

∣∣u′
k
∣∣
 ≤ ρ,

where A, A, ρ, and ρ are constants defined by Theorem ..

Proof In order to use Lemma ., for each k ∈N , we consider the following equation:
(
u(t) –Cu(t – τ )

)′′ + λβ(t)u′(t) + λg
(
u
(
t – γ (t)

))
= λpk(t), λ ∈ (, ). (.)

Let � ⊂ C
kT represent the set of all the kT-periodic of system (.), since (, ) ⊂

(, ], then � ⊂ , where  is defined by Theorem .. If u ∈ �, by using Theorem .,

http://www.advancesindifferenceequations.com/content/2014/1/121
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we have

|u| ≤ ρ,
∣∣u′∣∣

 ≤ ρ.

Let � = {x : x ∈KerL,QNx = }, where
L :D(L)⊂ CkT → CkT , Lu = (Au)′′,
N : CkT → C

kT , Nu = –β(t)u′(t) – g(u(t – γ (t))) + pk(t),
Q : CkT → CkT / ImL, Qy = 

kT
∫ kT
–kT y(s)ds.

If x ∈ �, then x = a ∈ Rn (constant vector) and by [H], we see that

kTm|a| ≤
∫ kT

–kT

∣∣〈(E –C)a,pk(t)
〉∣∣dt ≤ B|a|( + cm)(kT)


 ,

i.e.,

|a| ≤m–BT
–
 ( + cm) := B.

Now, if we set � = {x : x ∈ C
kT , |x| < ρ + B, |x′| < ρ + }, then � ⊃ � ∪ �. So condi-

tion [A] and condition [A] of Lemma . are satisfied. What remains is verifying condi-
tion [A] of Lemma .. In order to do this, let

H(x,μ) :
(
� ∩ Rn) × [, ]−→ Rn :H(x,μ) = –μx + ( –μ)
(x),

where
(x) = 
kT

∫ kT
–kT [g(x)–pk(t)]dt is determined by Lemma .. From assumption [H],

we have

H(x,μ) �= , ∀(x,μ) ∈ [
∂
(
� ∩ Rn)] × [, ].

Hence

deg{JQN ,� ∩KerL, } = deg
{
H(x, ),� ∩KerL, 

}
= deg

{
H(x, ),� ∩KerL, 

}
�= .

So condition [A] of Lemma . is satisfied. Therefore, by using Lemma ., we see that
Eq. (.) has a kT-periodic solution uk ∈ �̄. Evidently, uk(t) is a kT-periodic solution to
Eq. (.) for the case of λ = , so uk ∈ . Thus, by using Theorem ., we get

‖uk‖ ≤ A,
∥∥u′

k
∥∥
 ≤ A, |uk| ≤ ρ,

∣∣u′
k
∣∣
 ≤ ρ. (.)

�

Theorem . Suppose that the conditions in Theorem . hold, then Eq. (.) has a non-
trivial homoclinic solution.

Proof From Theorem ., we see that for each k ∈N , there exists a kT-periodic solution
uk(t) to Eq. (.). So for every k ∈N , uk(t) satisfies

(
uk(t) –Cuk(t – τ )

)′′ + β(t)u′
k(t) + g

(
uk

(
t – γ (t)

))
= pk(t). (.)

http://www.advancesindifferenceequations.com/content/2014/1/121
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Let yk = (Au′
k) for k > k. By (.),

|yk| ≤ ρ

and, by (.),

∣∣y′
k
∣∣
 ≤ βM

∣∣u′
k
∣∣
 + gM + sup

t∈R

∣∣p(t)∣∣ := ρ.

Obviously, ρ is a constant independent of k. Similar to the proof of Lemma . in [],
we see that there exists a u ∈ C(R,Rn) such that for each interval [c,d] ⊂ R, there is a
subsequence {ukj} of {uk} with R, ukj (t)→ u(t) and u′

kj (t) → u′
(t) uniformly on [c,d].

For all a,b ∈ R with a < b, there must be a positive integer j such that for j > j,
[–kjT ,kjT – ε]⊃ [a– |γ |,b+ |γ |]. So for t ∈ [a– |γ |,b+ |γ |], from (.) and (.) we
see that

(
ukj (t) –Cukj (t – τ )

)′′ = –β(t)u′
kj (t) – g

(
ukj

(
t – γ (t)

))
+ p(t). (.)

By (.),

y′
k =

(
Au′

kj

)′

= –β(t)u′
kj (t) – g

(
ukj

(
t – γ (t)

))
+ p(t)

→ –β(t)u′
(t) – g

(
u

(
t – γ (t)

))
+ p(t)

:= χ (t),

uniformly on [a,b].
By the fact that y′

kj (t) is a continuous differential on (a,b), for j > j, y′
kj (t) → χ (t) uni-

formly [a,b]. We have χ (t) = (u(t) –Cu(t – τ ))′′, t ∈ R, in view of a,b ∈ R being arbitrary,
that is, u(t) is a solution to system (.).
Now, we will prove u(t) →  and u′

(t) →  for |t| → +∞. We have

∫ +∞

–∞

(∣∣u(t)∣∣ + ∣∣u′
(t)

∣∣)dt = lim
i→+∞

∫ iT

–iT

(∣∣u(t)∣∣ + ∣∣u′
(t)

∣∣)dt
= lim

i→+∞ lim
j→+∞

∫ iT

–iT

(∣∣ukj (t)∣∣ + ∣∣u′
kj (t)

∣∣)dt.
Clearly, for every i ∈N if kj > i, by (.) and (.), we get

∫ iT

–iT

(∣∣ukj (t)∣∣ + ∣∣u′
kj (t)

∣∣)dt ≤
∫ kjT

–kjT

(∣∣ukj (t)∣∣ + ∣∣u′
kj (t)

∣∣)dt ≤ A
 +A

 .

Let i → +∞ and j → +∞; we have

∫ +∞

–∞

(∣∣u(t)∣∣ + ∣∣u′
(t)

∣∣)dt ≤ A
 +A

 , (.)

http://www.advancesindifferenceequations.com/content/2014/1/121


Chen Advances in Difference Equations 2014, 2014:121 Page 10 of 13
http://www.advancesindifferenceequations.com/content/2014/1/121

and then∫
|t|≥r

(∣∣u(t)∣∣ + ∣∣u′
(t)

∣∣)dt → , (.)

as r → +∞.
From (.), in a similar way we get

∫ +∞

–∞

∣∣u′
(t) –Cu′

(t – τ )
∣∣ dt ≤M. (.)

So, by using Lemma .,

∣∣u(t)∣∣ ≤ (T)–



(∫ t+T

t–T

∣∣u(s)∣∣ ds
) 


+ T(T)–




(∫ t+T

t–T

∣∣u′
(s)

∣∣ ds) 


≤max
{
(T)–


 ,T(T)–



}∫ t+T

t–T

(∣∣u(t)∣∣ + ∣∣u′
(t)

∣∣)dt → , |t| → +∞.

Finally, in order to obtain

∣∣u′
(t)

∣∣ → , |t| → +∞,

we show that

∣∣[Ãu′]
(t)

∣∣ := ∣∣u′
(t) –Cu′

(t – τ )
∣∣ → , |t| → +∞. (.)

From (.), we have |u| ≤ ρ and by (.), we get

∣∣([Ãu′

]
(t)

)′∣∣ ≤ ∣∣β(t)u(t)∣∣ + ∣∣g(u(t – γ (t)
))∣∣ + sup

t∈R

∣∣p(t)∣∣
≤ βMρ + sup

|u|≤ρ

∣∣g(u)∣∣ + sup
t∈R

∣∣p(t)∣∣ := M̃, for t ∈ R.

If (.) does not hold, then there exist ε ∈ (,  ) and a sequence {tk} such that

|t| < |t| < |t| < · · · < |tk| +  < |tk+|, k = , , . . . ,

and

∣∣[Ãu′

]
(tk)

∣∣ ≥ ε, k = , , . . . .

From this, we have, for t ∈ [tk , tk + ε/( + M̃)],

∣∣[Ãu′

]
(t)

∣∣ = ∣∣∣∣[Ãu′

]
(tk) +

∫ t

tk

([
Ãu′


]
(s)

)′ ds
∣∣∣∣ ≥ ∣∣[Ãu′


]
(tk)

∣∣ – ∫ t

tk

∣∣([Ãu′

]
(s)

)′∣∣ds≥ ε.

It follows that

∫ +∞

–∞

∣∣[Ãu′

]
(tk)

∣∣ dt ≥
∞∑
k=

∫ tk+ε/(+M̃)

tk

∣∣[Ãu′

]
(tk)

∣∣ dt =∞,

which contradicts (.), so (.) holds.

http://www.advancesindifferenceequations.com/content/2014/1/121
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Since C is symmetrical, it is easy to see that there is an orthogonal matrix T such that
TCT� = Ec = diag(c, c, . . . , cn).
Let y′

kj (t) = Tu′
kj (t) = (y′()

kj (t), y
′()
kj (t), . . . , y′(n)

kj (t)) = T(u′()
kj (t),u

′()
kj (t), . . . ,u′(n)

kj (t))�, then we

get y′
(t) = (y′()

 (t), y′()
 (t), . . . , y′(n)

 (t)) = Tu′
(t) = T(u′()

 (t),u′()
 (t), . . . ,u′(n)

 (t))� as j → ∞. By
(.), we have

∣∣y′
(t) – Ecy′

(t – τ )
∣∣ → , |t| → +∞. (.)

By using (.), we see that |Au′
k| < ( + c



m)ρ := B̃, which implies

∣∣TAu′
k
∣∣ = ∣∣〈TAu′

k ,TAu
′
k
〉∣∣ 

 < B̃,

i.e.,

∣∣y′
k(t) – Ecy′

k(t – τ )
∣∣ < B̃, ∀t ∈ R. (.)

For all ε > , there exists N = [log
ε(–|ci|)

B̃
|ci| ] >  such that

∑∞
h=N+ |ci|h < ε

B̃ (|ci| < ), for t >N .
Similarly, by (.), we see that there is a constant G >  such that |y′

i (t) – ciy′
i (t – τ )| <

ε
(N+) , for t >G.
Then, by using Lemma . and (.), when |ci| < , we get

∣∣y′(i)
 (t)

∣∣ = lim
j→+∞

∣∣[A–
 Ay′(i)

kj

]
(t)

∣∣
≤

∣∣∣∣∣ limj→∞

N∑
h≥

chi
[
Ay′(i)

kj

]
(t – hτ ) +

∞∑
h=N+

chi
[
Ay′(i)

kj

]
(t – hτ )

∣∣∣∣∣
≤

∣∣∣∣∣ limj→∞

N∑
h≥

chi
[
Ay′(i)

kj

]
(t – hτ )

∣∣∣∣∣ +
∣∣∣∣∣ limj→∞

∞∑
h=N+

chi
[
Ay′(i)

kj

]
(t – hτ )

∣∣∣∣∣
≤ lim

j→∞

N∑
h≥

|ci|h
∣∣[Ay′(i)

kj

]
(t – hτ )

∣∣ + B̃
∞∑

h=N+

|ci|h

=
N∑

h≥

|ci|h
∣∣(y′(i)

 (t – hτ ) – ciy′(i)


(
t – (h + )τ

))∣∣ + B̃
∞∑

h=N+

|ci|h. (.)

Now, by (.) and (.), we conclude that ∀ε > , there exists N̄ = G + N such that for
t > N̄ ,

∣∣y′
i (t)

∣∣ ≤
N∑

h≥

|ci|h
∣∣(y′(i)

 (t – hτ ) – ciy′(i)


(
t – (h + )τ

))∣∣ +
∣∣∣∣∣B̃

∞∑
h=N+

chi

∣∣∣∣∣
< (N + )

ε

(N + )
+ B̃

ε

B̃

= ε.

Thus, we get |y′(i)
 (t)| → , as |t| → +∞.

http://www.advancesindifferenceequations.com/content/2014/1/121
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In the similar way, when |ci| > , we can proof |y′(i)
 (t)| → , as |t| → +∞.

Therefore, |y′
(t)| → , as |t| → +∞; i.e.,

T
(

lim|t|→+∞u′()
 (t), lim|t|→+∞u′()

 (t), . . . , lim|t|→+∞u′(n)
 (t)

)�
=O,

we know T is an orthogonal matrix, then u′(i)
 (t) →  as |t| → +∞.

Thus, we have

∣∣u′
(t)

∣∣ → , |t| → +∞.

Clearly, u(t) �= ; otherwise, p(t) = , which contradicts the assumption [H].
As an application, we consider the following equation:

(
u(t) –Cu(t – .)

)′′ + sin(t)x′(t) + g
(
u
(
t – cos t

))
= p(t), (.)

where C =
(  

 

)
, u(t) = (u(t),u(t))�, g(x) = x = (x,x)� and p(t) = (p(t),p(t))� =

( √
+t

, √
+t

)�. Clearly, λ, = ±√


 �=±. Also, 〈(E –C)x, g(x)〉 = –x – xx – x <
–(x + x) and g(x) = x, which implies that assumption [H] is satisfied with L = ,
m = . p(t) = ( √

+t
, √

+t
)� is a bounded function and (

∫
R |p(t)| dt)  + supt∈R |p(t)| =√

( +
√

 π ), which implies that assumption [H] holds. Furthermore, we can choose

α = 
(
√
–) , cm = +

√


 , |γ | = , βM =  and β ′
L > –, then


(
√
–) [(

+
√


 )  ( + .) +  + (+
√


 )  ]

– 
 + 

< .

By applying Theorem ., we see that Eq. (.) has a nontrivial homoclinic solution. �
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