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Abstract
For x, y > 0 and k ∈ [0, 1], we prove that the elliptic Neuman mean Nk(x, y) is strictly
Schur quadratically concave on (0,∞)× (0,∞) if and only if k ∈ [

√
2/2, 1]. As an

application, the bounds for elliptic Neuman mean Nk(x, y) in terms of the quadratic
mean Q(x, y) =

√
(x2 + y2)/2 are presented.

MSC: 26B25; 26E60

Keywords: elliptic Neuman mean; Schur quadratically concave; quadratic mean

1 Introduction
Let (x, y) ∈ (,∞)× (,∞) and k ∈ [, ]. Then the elliptic Neuman mean Nk(x, y), see [],
is defined by

Nk(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
y–x

cn–(x/y,k) , x < y,
x, x = y,√

x–y

nc–(x/y,k) , y < x,

(.)

where cn–(x,k) =
∫ 
x

du√
(–u)(k′+ku)

and nc–(x,k) =
∫ x


du√
(u–)(k+k′u)

are the inverse

functions of Jacobian elliptic functions cn and nc, see [, ], respectively, and k′ =
√
 – k.

In particular, cn–(,k) = K(k) =
∫ π/


dt√
–k sin t

is the well-known complete elliptic inte-

gral of the first kind.
In [] Neuman proved that Nk(x, y) is symmetric and homogeneous on (,∞)× (,∞),

and strictly decreasing with respect to k ∈ [, ] for fixed (x, y) ∈ (,∞)× (,∞) with x �= y.
In this context let us note that if amean is homogeneous, then the order of its homogeneity
must be ; see [].
Let us recall the notion of Schur quadratic convexity (concavity) [–] for a real-valued

function on (,∞)× (,∞).
A real-valued function f : (,∞)× (,∞) → R is said to be strictly Schur quadratically

convex on (,∞) × (,∞) if f (x,x) < f (y, y) for each pair of -tuples (x,x), (y, y) ∈
(,∞) × (,∞) with max{x,x} <max{y, y} and x + x = y + y. f is said to be strictly
Schur quadratically concave if –f is strictly Schur quadratically convex.
Themain purpose of this paper is to present the range of k such that the elliptic Neuman

meanNk(x, y) is strictly Schur quadratically concave on (,∞)× (,∞). As an application,
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an inequality between the elliptic NeumanmeanNk(x, y) and the quadratic meanQ(x, y) =√
(x + y)/ is also given.

2 Two lemmas
In order to prove our main results we need two lemmas, which we present in this section.

Lemma . (See [, Corollary .], [, Corollary ], [, Corollary ]) Suppose that f :
(,∞) × (,∞) → (,∞) is a continuous symmetric function. If f is differentiable in
(,∞) × (,∞), then f is strictly Schur quadratically convex on (,∞) × (,∞) if and
only if

(x – y)
(
y
∂f (x, y)

∂x
– x

∂f (x, y)
∂y

)
>  (.)

for all x, y ∈ (,∞) with x �= y, and f is strictly Schur quadratically concave on (,∞) ×
(,∞) if and only if inequality (.) is reversed.

Lemma . Let t ∈ (, ), k ∈ [, ], and

fk(t) = cn–(t,k) –
( + t)

√
 – t

t
√
 – k + kt

. (.)

Then fk(t) <  for all t ∈ (, ) if and only if
√
/ ≤ k ≤ , and there exists λ = λ(k) ∈ (, )

such that fk(t) <  for t ∈ (,λ) and fk(t) >  for t ∈ (λ, ) if k ∈ [,
√
/).

Proof We distinguish for the proof two cases.
Case . k = . Then from (.) one has

f(t) = cn–(t, ) –
( + t)

√
 – t

t

= cosh–
(

t

)
–
( + t)

√
 – t

t

= log
(
 +

√
 – t

)
– log t –

( + t)
√
 – t

t
,

f
(
–

)
= , (.)

f ′(t) =
( – t)( – t)
t

√
 – t

>  (.)

for all t ∈ (, ). (Here and in the sequel, f (t–) and f (t+) denote, respectively, the left and
right limit of f at t.)
From (.) and (.) we clearly see that f(t) <  for all t ∈ (, ).
Case .  ≤ k < . Then (.) leads to

fk
(
+

)
= –∞, (.)

fk
(
–

)
= , (.)
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f ′
k (t) = –

√
( – t)( – k + kt)

–
–kt + (k – )t + ( – k)t + k – 

t
√
 – t( – k + kt)/

= –
–kt + (k – )t + ( – k)t + k – 

t
√
 – t( – k + kt)/

= –
√
 – t[kt + ( – k)t + k – ]

t( – k + kt)/
. (.)

Let

gk(t) = kt +
(
 – k

)
t + k – . (.)

Then simple computations lead to

gk() = k –  < , (.)

gk() = 
(√




– k
)(√




+ k
)
, (.)

g ′
k(t) = kt + 

(
 – k

)
t, (.)

g ′
k() = , (.)

g ′
k() = ( – k)( + k) > , (.)

g ′′
k (t) = kt + 

(
 – k

)
, (.)

g ′′
k () = 

(√



– k
)(√




+ k
)
, (.)

g ′′
k () = 

(
 + k

)
> . (.)

We distinguish for the proof three subcases.
Subcase .. k =

√
/. Then (.) leads to the conclusion that

f ′√
/(t) =

√

√
 – t( – t)

t( + t)/
>  (.)

for all t ∈ (, ).
Therefore, f√/(t) <  for all t ∈ (, ) follows from (.) and (.).
Subcase ..

√
/ < k < . Then (.) and (.) lead to

gk() < , (.)

g ′′
k () < . (.)

It follows from (.) that g ′′
k is strictly increasing on (, ), then (.) and (.) lead to

the conclusion that there exists λ ∈ (, ) such that g ′
k is strictly decreasing on (,λ] and

strictly increasing on [λ, ).
From (.) and (.) together with the piecewise monotonicity of g ′

k we clearly see that
there exists λ ∈ (λ, ) such that gk is strictly decreasing on (,λ] and strictly increasing
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on [λ, ). Then (.) and (.) lead to the conclusion that

gk(t) <  (.)

for all t ∈ (, ).
It follows from (.) and (.) together with (.) that fk is strictly increasing on (, ).

Therefore, fk(t) <  for all t ∈ (, ) follows easily from (.) and the monotonicity of fk .
Subcase ..  ≤ k <

√
/. Then from (.) and (.) we know that gk is strictly in-

creasing on (, ) and

gk() > . (.)

It follows from (.) and (.) together with the monotonicity of gk that there exists
μ ∈ (, ) such that gk(t) >  for t ∈ (,μ) and gk(t) <  for t ∈ (μ, ). Then (.) and
(.) lead to the conclusion that fk is strictly increasing on (,μ] and strictly decreasing on
[μ, ). Therefore, there exists λ = λ(k) ∈ (,μ) ⊂ (, ) such that fk(t) <  for t ∈ (,λ) and
fk(t) >  for t ∈ (λ, ) follows from (.) and (.) together with the piecewisemonotonicity
of fk . �

3 Main results
Theorem. The elliptic NeumanmeanNk(x, y) is strictly Schur quadratically concave on
(,∞)× (,∞) if and only if k ∈ [

√
/, ], and Nk(x, y) is not Schur quadratically convex

on (,∞)× (,∞) if k ∈ [,
√
/).

Proof SinceNk(x, y) is symmetric and homogeneous of degree , without loss of generality,
we assume that x < y. Let t = x/y ∈ (, ), then

Nk(x, y) = yNk(t, ),
∂t
∂y

= –
x
y
,

∂t
∂x

=

y
, (.)

∂Nk(x, y)
∂y

=Nk(t, ) – t
dNk(t, )

dt
,

∂Nk(x, y)
∂x

=
dNk(t, )

dt
. (.)

Note that

dNk(t, )
dt

= –
t√

 – tcn–(t,k)
+


(cn–(t,k))

√
 – k + kt

. (.)

It follows from (.) and (.) together with (.) that

(y – x)
(
x
∂Nk(x, y)

∂y
– y

∂Nk(x, y)
∂x

)

= x(y – x)
[
Nk(t, ) –

(
t +


t

)
dNk(t, )

dt

]

=
x(y – x)√

 – t(cn–(t,k))

(
cn–(t,k) –

( + t)
√
 – t

t
√
 – k + kt

)

=
x(y – x)√

 – t(cn–(t,k))
fk(t), (.)

where fk(t) is defined as in Lemma ..
Therefore, Theorem . follows easily from Lemmas . and . together with (.). �
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Theorem . The elliptic Neuman mean Nk(x, y) is strictly Schur quadratically concave
(or convex, respectively) on (,∞) × (,∞) if and only if the function Nk(t, )/Q(t, ) is
strictly increasing (or decreasing, respectively) in (, ), where Q(x, y) =

√
(x + y)/ is the

quadratic mean of x and y.

Proof Without loss of generality, we assume that x < y. Let t = x/y ∈ (, ), then from (.)
and (.) together with (.) we get

d(Nk(t, )/Q(t, ))
dt

= –
√
t

(t + )/

(
Nk(t, ) –

(
t +


t

)
dNk(t, )

dt

)

= –
√


y(y – x)(t + )/
(y – x)

(
x
∂Nk(x, y)

∂y
– y

∂Nk(x, y)
∂x

)
. (.)

Therefore, Theorem . follows easily from Lemma . and (.). �

Theorem . The inequalities

Q(x, y) >N√
/(x, y) (.)

and

Q(x, y) <
√
K(k)


Nk(x, y) (.)

hold for all x, y > with x �= y, and k ∈ [, ], and N√
/(x, y) is the best possible lower elliptic

Neuman mean bound for the quadratic mean Q(x, y).

Proof Without loss of generality, we assume that y > x > . Let t = x/y ∈ (, ) and Lk(t) =
Nk(t, )/Q(t, ). Then

Lk(t) =
Nk(x, y)
Q(x, y)

, (.)

Lk() =
√


K(k)
, (.)

Lk() = . (.)

We distinguish for the proof two cases.
Case . k ∈ [

√
/, ]. Then from Theorems . and . we clearly see that Lk is strictly

increasing on (, ). Then (.)-(.) lead to the conclusion that

√


K(k)
<
Nk(x, y)
Q(x, y)

< . (.)

In particular, for k =
√
/ we have

N√
/(x, y)

Q(x, y)
< . (.)

Therefore, inequalities (.) and (.) follow from (.) and (.).
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Case . k ∈ [,
√
/). Then (.) and (.) together with the Subcase . in Lemma .

lead to the conclusion that there exists λ = λ(k) ∈ (, ) such that L′
k(t) >  for t ∈ (,λ)

and L′
k(t) <  for t ∈ (λ, ), hence Lk is strictly increasing on (,λ] and strictly decreasing

on [λ, ). Therefore, Nk(x, y) >Q(x, y) for all x, y >  with x/y ∈ (λ, ) follows from (.) and
(.) together with the monotonicity of Lk on [λ, ), and the optimality of inequality (.)
follows.
Note that

Lk() =
√


K(k)
<

√


K()
=

√


π
= . · · · < . (.)

From (.), (.), (.), and the piecewise monotonicity of Lk we clearly see that

Nk(x, y)
Q(x, y)

= Lk(t) > Lk() =
√


K(k)
. (.)

Therefore, inequality (.) follows from (.). �
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