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Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent
relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results
figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as
spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution
of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China.
Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should
take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical
support for forestry production.

1. Introduction

The reform of collective forest rights is another major rev-
olution of the rural management system after land reform
in China [1, 2]. This reform has endowed farmers with
partial forestry rights, so that these farmers are able to use
their own forest resources and thereby gain revenue [3–5].
Thereby, in order to calculate the elasticity of labor, capital,
and land inputs during the forestry growth, this study used
a spatial econometric model to compute the contributions
of all elements. The production flexibility and efficiency of
capital are always a research hotspot [6–8]. Solow proposed
an economy growth accounting model and applied new
classical growth theory to economic accounting [9]. The
existing research mainly focused on the input-output elastic-
ity of agricultural production [10–12]. However, there is little
research about forestry, a special agriculture department,
and even the existing findings are controversial [13, 14].
The researchers argued the output elasticity coefficients from
the first, second, and third industries of forestry are 1.44,
0.72, and 0.89, respectively, during 1998–2005; 1.66, 0.88,
and 0.81, respectively, during 2006–2021; 1.82, 0.96, and 0.91,
respectively, during 2022–2030 [15]. These findings should

be further validated from new perspectives and with new
methods immediately.

This paper consists of four parts, the first part gives a
brief description of relative research, the second part specifies
the materials and methods used in this paper, the third part
gives out results and discussion, and the last part is the
conclusion part. Through this paper, we try to prove that
the forestry production in one province influences that in
another province.

2. Materials and Methods

2.1. Spatial Autocorrelation Test of Forestry Production. The
forestry production in China is found with severe spatial
differences and is largely correlated with the differences
and fluidity of regional forestry resource [16, 17]. Forestry
production is modestly different among regions, but there
may be spatial correlations among provinces [18–20]. In order
to figure out the correlations and heterogeneity of province-
level forestry production, we used global Moran’s index:
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where 𝑌
𝑖
and 𝑌

𝑗
describe the observations of forestry output

in regions 𝑖 and 𝑗, respectively, 𝑛 represents the number of
regions, 𝑌 is the average observation of forestry outputs, and
𝑊
𝑖𝑗
is the spatial weight.
Under the circumstance of zero correlation, Moran’I was

used to construct a standard normal index as follows:

𝑍 =
(𝐼 − 𝐸 (𝐼))

√Var (𝐼)
, (2)

where 𝐸(𝐼) and Var(𝐼) are decided by the spatial distribution
of data and the arrangement of spatial lag matrix. When
the 𝑍-value is significant and positive, there is positive
space correlation, indicating the presence of regional agglom-
eration among similar production regions. When the 𝑍-
value is significant but negative, there is negative significant
correlation, indicating the presence of regional dispersity
among similar production regions.When the𝑍-value is equal
to zero, there exists random spatial distribution.

The globalMoran’s index can partially represent the space
autocorrelation.However, owing to the repeated computation
or mutual cancellation during computations, we used a
local Moran’𝐼 index reflecting spatial autocorrelation, the
local spatial correlation index, and Moran scatter diagram
to further reveal whether or not there exists local spatial
agglomeration. Local Moran’s index is computed as follows:
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where 𝑊󸀠
𝑖𝑗
is the standardized space weight matrix (the sum

of each row is one).The expected value of local Moran’s index
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is as follows:
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When 𝐼
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there exists spatial agglomeration of similar forestry outputs
around region 𝑖 or local space positive correlation. When 𝐼

𝑖

is smaller than 𝐸
𝑖
(𝐼
𝑖
), there exists large differences among

similar forestry outputs around region 𝑖 or local space
negative correlation.

Moran scatter diagram shows the 2D scatter plot that
visualizes 𝑍 (a vector composed of the deviation between
the observed value and the mean) and 𝑊

𝑧
(space weighted

average, or space lag vector). The vector-form global Moran’I
index is computed as follows:
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space weight matrix, then 𝑆
0

= 𝑛; at this moment, the
global Moran’s index is the linear regression slope of 𝑊

𝑧

relative to 𝑍. The first and third quadrants on Moran’I
scatter plot represent the positive space correlations, while
the second and fourth quadrants indicate the negative space

correlations. Specifically, the first quadrant indicates the
regions with large observed values are surrounded by large-
value regions; the second quadrant indicates the regions with
small observed values are surrounded by large-value regions;
the third quadrant indicates the regions with small observed
values are surrounded by small-value regions; the fourth
quadrant indicates the regions with large observed values
are surrounded by small-value regions. The first and third
quadrants represent typical positive space correlations, while
the second and fourth quadrants indicate the local negative
space correlations.

LISA (Local Indictors of Spatial Association) analysis is
used to figure out the spatial differences in production.When
LISA passes the significance test, there is local positive spatial
autocorrelation, or this region is surrounded by regions with
similar performance, called spatial agglomeration.When this
region and its nearby regions are all foundwith large observed
data, it is called a high-high region, and otherwise, it is called
a low-low region.

2.2. Selection of Weights for Forestry Space Autocorrelations.
The selection of spatial weight 𝑊 is associated with the
results of spatial autocorrelation and spatial regression. 𝑊

𝑖𝑗

is defined as the contiguity or distance of any element
from other elements. Currently, there are many types of
weight matrices, including contiguity, 𝐾-nearest neighbors,
and distance threshold. Specifically, contiguity matrices are
divided into Rook (contiguity estimated from four directions
of east, south, north, and west) and Queen (besides these
four directions, it also involves other corners). As for 𝐾-
nearest neighbors, several points closest to a test point are
called its neighbors and each is assigned a weight 1, and other
points are given a weight 0. Many researches figured out that
differentmatrixmay lead to different results, including spatial
coefficient and the signs of the coefficient [21].

2.3. Space Econometric Model in Forestry Economy Growth.
According to traditional economics, the economic growth
mainly depends on two endogenous factors: labor and capital,
but it is affected by technological progress, an exogenous
factor. In this model, the land element is considered as an
internal factor of economic growth. In other words, the
output level 𝑌 from each forestry region is decided by the
labor input 𝐿, land input 𝐷, and capital input 𝐾. Then, this
model is expressed as
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where𝑌
𝑖
is the forestry economic development level in region

𝑖; 𝐴
𝑖
is the technical level, 𝐿

𝑖
is the labor input into forestry;

𝐷
𝑖
is the land area; 𝐾

𝑖
is the capital input; 𝛼, 𝛽, and 𝛾 are the

corresponding output elasticity, respectively. If 𝛼 + 𝛽 + 𝛾 = 1,
𝛼 + 𝛽 + 𝛾 > 1, and 𝛼 + 𝛽 + 𝛾 < 1, then the return to scale
is unchanged, increases, and gradually drops, respectively.
Logarithm of both sides of (6) yields
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2.4. Space Lag Model (SLM) for Forestry Production Function.
Thebasicmodel of forestry production does not involve space
correlations. Taking spatial effects into account means the
regional forestry production is affected not only by the local
investment level, but also by the spillover effect from other
nearby forestry regions. In this way, SLM is determined:
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where 𝑊 is the space weight matrix and 𝑊 ln𝑌 is the
weighted variable from a nearby forestry region. This model
reflects the effects of regional forestry production from the
input-output levels in nearby regions through the space effect.

2.5. Space Error Model (SEM) for Forestry Production. SEM
takes into account the variables that may be ignored in the
decision model, such as human capital, research level, and
climate change.The space error model is used to measure the
roles that may be played by the spatially interacting errors.
SEM is expressed as
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where 𝑊 is the space weight matrix, and 𝜆 measures the
space error effect on regional forestry production due to
observational errors.

2.6. Space Units and Data Sources. This study was targeted
at 31 provinces or autonomous regions or municipality cities
of Mainland China in 2013. The data were cited from China
Forestry Statistical Yearbook 2013. The output variable was
the total regional forestry production value. Regarding the
release time of forestry statistical yearbooks, we used the
forest areas in the statistics as the forestry area input. The
number of labor forces by the end of 2013 was used as the
regional labor force input. The fixed assets investment was
used as capital input.

3. Results and Discussion

3.1. Global Moran’s Index for Space Correlation of Forestry
Production. To study the interferences of weight indices
on the space effect, we used three space weight matrices,
and through stepwise distance increment, we tested the
attenuation effect of distance (Table 1). Clearly, globalMoran’I
index gradually decreases and shows the attenuation effect
of distance. Moreover, Moran’s index estimated from Queen1
weight matrix is 0.3685, indicating the most significant
space autocorrelation (𝑝 < 0.003) and the strong spatial
dependence and evident space effect of forestry production.

3.2. Local Moran’s Index and LISA Analysis for Space Cor-
relation of Forestry Production. Table 1 uncovers the overall
space autocorrelation in forestry production of each studied
region, but local Moran’s I cannot be identified by the global

Table 1: Global Moran’s index for space autocorrelation for forestry
productions in different regions.

Moran’s 𝐼 Mean SD 𝑝

𝑊ROOK1 0.3685 −0.0249 0.1112 0.0040
𝑊ROOK2 0.0880 −0.0247 0.0780 0.0700
𝑊ROOK3 −0.0309 −0.0318 0.0696 0.4660
𝑊Queen1 0.3685 −0.0297 0.1041 0.0030
𝑊Queen2 0.0880 −0.0324 0.0791 0.0780
𝑊Queen3 −0.0309 −0.0288 0.0712 0.4930
𝑊
𝐾1

0.1031 −0.0233 0.1989 0.2410
𝑊
𝐾2

0.0950 −0.0266 0.1454 0.1880
𝑊
𝐾3

0.2133 −0.0284 0.1166 0.0290

Moran’s I: 0.392937
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Figure 1: Local Moran’s index based on𝑊Queen1.

Moran’I index. To further portray the space correlation of
forestry production, we used Moran scatter plot and LISA
analysis to explore the local space characteristics of province-
level forestry outputs (Figure 1).

The first quadrant involves Shandong, Anhui, Hubei,
Zhejiang, Jiangxi, Hunan, Fujian, Guangxi, and Guangdong,
which are all high-output provinces surrounded by high-
output provinces. The second quadrant involves Shanghai,
Guizhou, Henan, Yunnan, and Chongqing, which are all
low-output provinces surrounded by high-output provinces.
The third quadrant involves Chongqing, Hebei, Jilin, Hei-
longjiang, Xinjiang, Shaanxi, Shanxi, Inner Mongolia, and
Tibet, which are all low-output provinces surrounded by low-
output provinces.The fourth quadrant involves Liaoning and
Sichuan, which are both high-output provinces surrounded
by low-output provinces. Clearly, the spatial differences of
forestry outputs are very significant among all provinces
in China, and the typical characteristics of positive local
correlations and accumulation are very significant.
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Table 2: Local Moran’s index based on space weight matrix𝑊Queen1
as well as test results.

Province 𝐼 𝑌 𝑝 𝑦

Beijing 0.3633 0.27
Tianjing 0.3745 0.23
Hebei 0.0130 0.48
Shanxi 0.2943 0.29
Neimenggu 0.3060 0.14
Liaoning −0.0611 0.39
Jilin 0.0189 0.31
Heilongjiang 0.0534 0.41
Shanghai −0.0002 0.03
Jiangsu −0.0382 0.04
Zhejiang 0.0251 0.06
Anhui 1.2997 0.01
Fujian −0.1454 0.01
Jiangxi 0.7301 0.02
Shandong 0.6203 0.11
Henan 0.3067 0.24
Hubei −0.2512 0.49
Hunan 0.3949 0.1
Guangdong 2.3471 0.04
Guangxi 0.6460 0.07
Hainan 0.0000 0.01
Chongqing −0.9785 0.46
Sichuan 0.3683 0.01
Guizhou 0.0096 0.31
Yunnan 0.2826 0.45
Xizang 1.0362 0.22
Shaanxi 0.4459 0.15
Gansu 0.4282 0.09
Qinghai 0.1428 0.04
Ningxia 0.2303 0.09
Xinjiang 0.4537 0.01
Note: 𝐼 𝑌 is local Moran’s index; 𝑝 𝑌 is the adjoint probability of 𝐼 𝑌.

The distribution of space autocorrelation patterns among
the 31 provinces is as follows (Table 2): the significant high-
high regions include Shandong, Anhui, Jiangxi, Fujian, and
Guangdong; the significant low-low regions are Shaanxi,
Gansu, and Xinjiang. All other provinces are high-low areas
or low-high areas or insignificant areas. It is indicated that
the spatial distribution of forestry production in China is
featured by a very evident center-peripherymode and by very
significant local spatial agglomeration and space correlations.

3.3. Space Econometric Analysis of Forestry Production Elas-
ticity. Then, a space econometric model was used to estimate
the elasticity coefficients of labor, land, and capital inputs
to province-level forestry production (Table 3). The residual
errors of ordinary least squares (OLS) contain significant
space correlations (𝑝 < 0.001). Then, to find out whether
the residual errors originated from the internal SLM or SEM,
we further validated the models. Results show SLM is very
significant, but it is not significant versus SEM. Thus, SEM is
more significant.

To identify the effects and contributions of different input
elements to forestry production, we built an SEM using

Table 3: Space correlation OLS test based on space weight matrix
𝑊Queen1.

Test Trivariate function Bivariate function
Index 𝑝 Index 𝑝

Moran’𝐼 (error) 4.8671 0.0000 4.7938 0
Lagrange
multiplier (lag) 0.335 0.5628 0.4905 0.4837

Robust LM (lag) 0.2234 0.6365 0.1971 0.6571
Lagrange
multiplier
(error)

14.9747 0.0001 16.3942 0

Robust LM
(error) 14.8631 0.0001 16.1007 0

Lagrange
multiplier
(SARMA)

15.1981 0.0005 16.5912 0.0002

three elements that decide agricultural production (Table 4),
estimating the elasticity coefficients of labor force, land,
and capital to the forestry output of each province. First,
the forestry production involving the three elements was
analyzed via OLS. Results show the fitting degree of SEM
is 0.9215, with smallest Akaike information criterion (AIC,
93.93) and Schwarz criterion (SC, 99.79), indicating SEM is
most suitable.

Results show neither the estimations nor the significance
levels of output elasticity are always the same for any of the
three elements, in bothOLS and space economicmodels.The
output elasticity of forestry labor from the bivariate SEM is
0.6492 (𝑝 = 0.0058), while the output elasticity from forestry
capital is 0.6603 (𝑝 = 0.003).

As shown in Table 4, the output elasticity estimated from
OLS is the highest fromcapital (0.8412), indicating a tendency
to overestimation.The output elasticity from capital is 0.3968,
with a tendency to underestimation. Thus, the elasticities
from capital and labor outputs make the SEMmore suitable.

The trivariate model also involves the land input, but the
forestry production measured from this variable is not very
significant (𝑝 > 0.1); thus, it plays a negative role.

It should be noted that the model used here is based
on space economic theory. This method indicates that the
space effect should not be ignored. However, the estimation
results only reveal the state-level standard but do not take into
account the regional differences. In the future, more accurate
and precise economic models are needed. Another thing that
may be a limit for this paper is that, as to limitation of the data
and observations, the result may vary according to different
situations, which needs future study.

4. Conclusions

Here we used the sectional data of province-level forestry
input-output in 2013 in China. Then, the Moran’I with
space autocorrelation and the local Moran’I index with space
correlation were used to portray a forestry production spatial
distribution mode involving 31 provinces in China. Then,
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Table 4: Different regression models based on space weight matrix𝑊Queen1.

Trivariate function Bivariate function
OLS SLM SEM OLS SLM SEM

Constant 0.3768 0.3559 0.4777 0.5702 0.5369 0.6657
(0.7390) (0.7328) (0.5558) (0.6242) (0.6219) (0.4199)

ln 𝐿 0.8443∗∗ 0.8350∗∗ 0.9091∗∗∗ 0.3968 0.4006 0.6492∗∗∗

(0.0297) (0.0151) (0.0016) (0.1531) (0.1174) (0.0058)

ln𝐷 −0.4543∗ −0.4418∗ −0.3293
(0.0955) (0.0718) (0.1372)

ln𝐾 0.7377∗∗∗ 0.6947∗∗∗ 0.6332∗∗∗ 0.8412∗∗∗ 0.7830∗∗∗ 0.6603∗∗∗

(0.0025) (0.0014) (0.0004) (0.0007) (0.0004) (0.0003)

𝜆, 𝜌 0.0395 0.6540∗∗∗ 0.0503 0.6672∗∗∗

(0.5711) (0.0000) (0.4881) 0.0000
log 𝐿 −49.1486 −48.9847 −42.96 −50.7651 −50.5221 −44.0254
𝑅
2 0.8701 0.8714 0.9215 0.8562 0.8585 0.9167

AIC 106.30 107.97 93.93 107.53 109.04 94.0509
SC 112.16 115.30 99.79 111.93 114.91 98.4481
Note: ∗(𝑝 < 0.1), ∗∗(𝑝 < 0.05), and ∗∗∗(𝑝 < 0.01).

SLM and SEMwere used to estimate the elasticity coefficients
of province-level forestry input-output. We find the forestry
outputs from the 31 provinces are significantly autocorre-
lated both globally and locally, and the province-level space
correlations and heterogeneity are all very significant. The
labor force and capital are the detrimental factors on the
regional forestry production, but the contributions from
lands are not very obvious. The spillover effect of spatial
errors plays a significant role in the forestry production of
adjacent provinces. In other words, the forestry production
of a province, through the spillover of error items, influences
the growth of forestry output in nearby provinces. Similarly,
it is indicated that SEM is a very suitable space econometric
model.

The global and local Moran’I space autocorrelation tests
and space econometric estimations all indicate that the spatial
effect cannot be ignored in the study on province-level
forestry production. With the input-output model, we find
the test results of SEM in the provincial production function
are all better than OLS, and the precision of regression
coefficients is higher. Thus, space autocorrelation method is
an efficient method for analysis of forestry production. The
space econometric model is more objective in exploration of
influence factors.

From the perspective of policy implications, due to the
existence of space error spillover effect in forest products
and the remaining forestry output, the forestry production
behaviors in nearby provinces will affect the agricultural pro-
duction behaviors of the tested province.The time “incentive”
effect in decision-making for regional agricultural produc-
tion will influence the production game competition among
nearby provinces and finally impact the input scales and
allocation efficiency of province-level forestry production
elements. Thus, the formulation of relevant forestry policies
should not ignore the transverse cross-effect among provin-
cial forestry production, and should take into account the
interactions of forestry production among nearby provinces.

A regional coordination mechanism should be established to
coordinate the rational flow of forestry production elements,
to improve the space complementarity and space allocation
efficiency of elements, and to promote the regional forestry
production ability.
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