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This paper presents the analysis of the vibration time series of a gear system acquired by piezoelectric acceleration transducer
using the detrended fluctuation analysis (DFA). The experimental results show that gear vibration signals behave as double-scale
characteristics, which means that the signals exhibit the self-similarity characteristics in two different time scales. For further
understanding, the simulation analysis is performed to investigate the reasons for double-scale of gear’s fault vibration signal.
According to the analysis results, a DFA double logarithmic plot based feature vector combined with scale exponent and intercept
of the small time scale is utilized to achieve a better performance of fault identification. Furthermore, to detect the crossover
point of two time scales automatically, a new approach based on the Hough transform is proposed and validated by a group of
experimental tests.The results indicate that, comparing with the traditional DFA, the faulty gear conditions can be identified better
by analyzing the double-scale characteristics of DFA. In addition, the influence of trend order of DFA on recognition rate of fault
gears is discussed.

1. Introduction

Generally, the gear transmission systems are characterized
with periodic behaviors. However, the defects of gears,
bearings, or transmission shafts may cause the nonlinear
vibration. The gearbox vibration signals captured by the
sensors are complicated, nonlinear, and nonstationary [1, 2].
Many researchers verified that the vibration time series of
the gear transmission systems exhibit nonlinearity and self-
similarity [1, 3, 4]. Therefore, a lot of the nonlinear time
series analysis methods and several nonlinear characteristic
quantities such as fractal dimension [5], entropy [6], and
the Lyapunov exponent [7] have been employed to detect
the faults. Though these nonlinear based methods may be
suitable to analyze the nonlinear characteristics of vibration
signals, they are difficult to obtain the more accurate results
without considering the real scale related features of the
time series which are characterized with multiexponents or
nonlinear parameters.

In the recent years, the fractal or multifractal time series
have been observed in many fields, such as geophysics time
series, medical time series, and technical time series [8]. The
traditional approaches for the fractal analysis, such as Hurst’s
rescaled-range analysis (𝑅/𝑆) [9] and fluctuation analysis
(FA) [8], always assume the time series as the stationary
data without considering the possible fluctuation caused by
some reasons. The methods for the nonstationary time series
include the wavelet analysis, the discrete wavelet transform
(WT), and the detrended fluctuation analysis (DFA) [8]. The
DFAwhich was first introduced by Peng et al. in 1992 is a new
Hurst exponent calculationmethod [10] based on the random
walk theory. Basically, it represents a detrending version of
fluctuation analysis (FA), which is more reliable and suitable
for analyzing the nonstationary signal compared to the 𝑅/𝑆
or the FA analysis. This is because the DFA can remove
the external polynomial trends of the differential orders in
order to obtain the accurate intrinsic statistical characteristics
from the time series. One advantage of the DFA is that
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it can detect the long-range correlations embedded in the
seemingly nonstationary time series and also avoid the spu-
rious detection of the apparent long-range correlations which
are an artifact of nonstationarity. The DFA has been widely
applied to various fields, such as meteorology [11], materials
science [12], finance [13], biological signals [14], and hydro-
graph [15]. Several modified DFA methods have also been
proposed [8].

The DFA was also used in equipment fault diagnosis.
de Moura et al. [16] employed the DFA and the principal
component analysis (PCA) to the cluster analysis of gear
faults. Instead of using the long-range correlation or scale
exponents of time series, the idea of Moura’s method is to
use the fluctuation function as a mapping function from
data space to characteristic space. Afterwards, De Moura
et al. [17] used the DFA to analyze the bearing fault. Sridhar
et al. [18] combined the EEMD with DFA to denoise the
noise-corrupted signal. The DFA are used to determine the
noise components in IMFs. Through the DFA, the crossover
phenomenons are found in finance [19], meteorology [20],
medical science [21], and equipment fault diagnosis. Lin
and Chen [22] found the interesting crossover properties
in vibration signals captured from gearboxes and rolling
bearings.The scale exponents corresponding to different time
scales in double logarithm plots were used as the feature
parameters to describe the defective conditions of gears and
rolling bearing. Liu [2] claimed that the DFA curves of
bearing’s vibration signals can be quantified by two scale
exponents and the exponents in a small time scale can be
utilized to distinguish the faulty bearing conditions. The
author’s previous research also showed that the gear vibration
signals had crossover phenomenon.The scale exponents and
intercepts ofDFA curveswere used for gear fault classification
[23]. Jiang et al. [24] evaluated the optimal scaling intervals
with Quasi-Monte Carlo algorithm and the least square
support vector machine was used for multifault diagnosis of
gearbox. Hough [25] combined the least squaresmethodwith
sliding window to extract the scale exponent and the neural
network algorithm was used for classification of gear fault.

However, the detail reasons for multiscales of fault
vibration signals were not discussed in abovementioned
description. Furthermore, as far as the authors know, the
influence of detrend order of DFA on fault recognition
was not discussed in previous literatures, and only limited
methods for evaluating the crossover points of DFA were
developed. In addition, the scale exponents of different time
scale intervals were used as the characteristic parameter
in previous researches. However, the intercept of double
logarithmic plot of the DFA was not utilized. Acutally, the
intercept that is used in our research involves a lot of
information of vibration signal.

In this paper, the detrended fluctuation analysis (DFA)
is employed to analyze the gear vibration signals. According
to the double logarithmic plot of the DFA, it is verified that
the gear vibration signals exhibit self-similarity in two ranges
of time scales. The reason for the double-scale characteristic
is discussed through the simulation analysis. Furthermore,
the scale exponents and intercepts corresponding to different
scale intervals are extracted as the feature vectors to describe

the fault condition of gears. It is found that more pieces of
information about the gear faults are involved in the small
time scale interval. In order to detect the crossover point of
two time scales and extract the parameters (scale exponents
and intercepts) automatically, a new approach based on
the Hough transform is proposed. The experiments were
performed with the proposed parameters to classify the gear
faults. Combining the Gaussian mixture model (GMM) and
Bayesian maximum likelihood classifiers, the classification of
gear vibration signals achieved successfully.

The remainder of the paper is organized as follows.
Sections 2 and 3 overview the detrended fluctuation analysis
(DFA) and the Hough transform (HT). By applying several
gear fault simulated signals, the analysis and discussion about
the DFA are presented in Section 4. In Section 5, a self-
adaptive feature extraction and classification method for the
vibration signals based on DFA and HT is introduced and
verified by the experiments. Finally, Section 6 contains the
conclusions.

2. Detrended Fluctuation Analysis

Considering 𝑥(𝑡) 𝑡 = 1, 2, 3, . . . , 𝑁 is a time series of length
𝑁.

Step 1. Map 𝑥(𝑡) to time series 𝑦(𝑚) by integration:

𝑦 (𝑚) =

𝑚

∑

𝑡=1

[𝑥 (𝑡) − 𝑥] 𝑚 = 1, 2, 3, . . . , 𝑁, (1)

where 𝑥 is the mean of the time series 𝑥(𝑡):

𝑥 =
1

𝑁

𝑁

∑

𝑡=1

𝑥 (𝑡) . (2)

Step 2. Divide 𝑦(𝑚) into 𝑁
𝑠
= int[𝑁/𝑠] which are sub-time

series with equal length 𝑠. The length 𝑁 of a time series is
usually not a multiple of the length 𝑠, and redundant data of
the time series𝑦(𝑚)may be left. Although the redundant data
can be deleted in the following analysis, we suggest repeating
the same process from the opposite end of the same time
series. For each sub-time series, compute the corresponding
least squares 𝑝 order fits:

𝑦
𝑘
(𝑚) =

𝑝

∑

𝑗=0

𝛽
𝑗
𝑡
𝑗

(𝑘 = 1, 2, 3, . . . , 2𝑁
𝑠
) , (3)

where 𝑦
𝑘
(𝑚) is the trend of the 𝑘th sub-time series. It is the

fitting polynomial in this sub-time series. Linear, quadratic,
cubic, or higher-order polynomials can be used in the fitting
procedure (usually called DFA1, DFA2, DFA3, etc.). 𝛽

𝑗
is the

coefficient of 𝑗th order.

Step 3. For each sub-time series, compute the fluctuation
function:

𝐹 (𝑠) = (
1

2𝑁
𝑠

2𝑁
𝑠

∑

𝑘=1

[𝐹
2

(𝑠, 𝑘)])

1/2

, (4)



Shock and Vibration 3

where

𝐹
2

(𝑠, 𝑘) =
1

𝑠

𝑠

∑

𝑖=1

{𝑦 [(𝑘 − 1) 𝑠 + 1] − 𝑦
𝑘
(𝑚)}
2

if 𝑘 = 1, 2, . . . , 𝑁
𝑠

𝐹
2

(𝑠, 𝑘) =
1

𝑠

𝑠

∑

𝑖=1

{𝑦 [𝑁 − (𝑘 − 𝑁
𝑠
) 𝑠 + 𝑖] − 𝑦

𝑘
(𝑚)}
2

if 𝑘 = 𝑁
𝑠
+ 1, . . . , 2𝑁

𝑠
.

(5)

Step 4. Repeat Steps 1 through 3 for a broad range of sub-time
series (i.e., box) with length 𝑠. If the time series are long-range
power-law correlated, the relationship between𝐹(𝑠) and 𝑠 can
be described as follows:

𝐹 (𝑠) ∼ 𝑠
𝛼

󳨐⇒

𝐹 (𝑠) = 𝐴𝑠
𝛼

,

(6)

where 𝛼 is the scale exponent. It can be calculated by taking
the logarithm of both sides of (6),

log (𝐹 (𝑠)) = log𝐴 + 𝛼 log 𝑠, (7)

and subsequently plotting log (𝐹(𝑠)) versus log 𝑠 to obtain
scale exponent 𝛼 and intercept log𝐴 by linear regression.

The scale exponent 𝛼 characterizes the long-range power-
law correlation properties of the time series. It has a close
relationship with the self-correlation function. If 𝛼 = 0.5, 1,
and 1.5, the characteristics of the time series correspond to
the independent random process (white noise), 1/𝑓 process,
and Brownian motion, respectively. If 0 < 𝛼 < 0.5,
the correlations in the signal are antipersistent (negative
correlations). If 0.5 < 𝛼 ≤ 1, correlations in the signal are
persistent (positive correlations).

3. Hough Transform

The Hough transform [25] is an automatic image analysis
technique which can be used to detect regular curves such
as straight lines, circles, and ellipses within an image. The
plotting of log(𝐹(𝑠)) versus log 𝑠 of DFA can be seen as an
image. The linear relationship between log(𝐹(𝑠)) and log 𝑠
means a series of straight lines in the plotting. The Hough
transform for detecting straight lines is introduced as follows.

Generally, in a Cartesian coordinate plane (𝑋, 𝑌), a
straight line can be described as 𝑦 = 𝑎𝑥+𝑏, where parameters
𝑎 and 𝑏 are the slope and intercept, respectively. Only when
the values of 𝑎 and 𝑏 are known, can we describe this line
accurately. The point (𝑥

0
, 𝑦
0
) on this line can be written as

𝑦
0
= 𝑎𝑥

0
+ 𝑏 and it can be changed as 𝑏 = −𝑥

0
𝑎 + 𝑦

0
,

which indicate a straight line in the coordinate plane (𝐴, 𝐵).
That means a point in plane (𝑋, 𝑌) corresponds to a line in
plane (𝐴, 𝐵) and vice versa. If every point on a line 𝑦 =

𝑎𝑥 + 𝑏 in plane (𝑋, 𝑌) is mapped to plane (𝐴, 𝐵), the lines
will cross at one point (𝑎, 𝑏) and the line in plane (𝑋, 𝑌)
will be identified. If there are several crossed points in plane

X

Y

r

𝜃

O

Figure 1: The pair of parameters (𝑟, 𝜃) used in polar coordinates
was used to replace the pair of parameters (𝑎, 𝑏) used in Cartesian
coordinates as the Hough parameter space.

Initialize accumulator𝐻(𝑟, 𝜃) to all zeros;
For each point (𝑥

𝑖
, 𝑦
𝑖
) in the (𝑋, 𝑌) plane,

For 𝜃 = 0 to 180
𝑟 = 𝑥
𝑖
cos 𝜃 + 𝑦

𝑖
sin 𝜃

𝐻(𝑟, 𝜃) = 𝐻(𝑟, 𝜃) + 1

End
End

Algorithm 1

(𝐴, 𝐵), several straight lines will be identified in plane (𝑋, 𝑌).
However, vertical lines in the (𝑋, 𝑌) plane described as 𝑥 = 𝑎
will give rise to unbounded values of the slope parameter 𝑎.
Thus, Duda and Hart proposed the use of a different pair
of parameters (𝑟, 𝜃) used in polar coordinates, which are
referred to as the Hough parameter space, to replace the pair
of parameters (𝑎, 𝑏) used in Cartesian coordinates (Figure 1).
Consider

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃. (8)

The outline of the Hough transform consists of the
steps shown in Algorithm 1.

Find the values of (𝑟
𝑖
, 𝜃
𝑖
), where 𝐻(𝑟, 𝜃) is a local maxi-

mum.
The detected lines in the (𝑥, 𝑦) plane will be 𝑟

𝑖
= 𝑥 cos 𝜃

𝑖
+

𝑦 sin 𝜃
𝑖
.

4. Detrended Fluctuation Analysis of
Simulated Signals and Discussion

Different vibration condition signals of gears contain differ-
ent frequency components and amplitudes. The main fre-
quencies that should be paid more attention include rotation
frequency, meshing frequencies, their harmonic frequencies,
and sidebands. Usually, the gear’s vibration signal can be
regarded as a combination of a series of sinusoid signals with
different frequencies and random noise.
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Figure 2: log𝐹(𝑠) versus log 𝑠 of 𝑦(𝑡), 𝑥(𝑡), 𝑛(𝑡), and𝑚(𝑡).

Consider the composite signal 𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡) and
𝑚(𝑡) = 2𝑥(𝑡), where 𝑛(𝑡) is a Gaussian distributed random
signal and 𝑥(𝑡) = 0.8 sin(10𝜋𝑡)+0.1 sin(20𝜋𝑡)+0.1 sin(40𝜋𝑡).

The signal-noise-ratio (SNR) of 𝑦(𝑡) is equal to 2.84. The
definition of SNR is as follows:

SNR = 10 lg ‖𝑥‖
‖𝑒‖

, (9)

where ‖𝑥‖ and ‖𝑒‖ are the root-mean-squares of 𝑥(𝑡) and 𝑛(𝑡),
respectively.

The logarithm scale fluctuation function maps of 𝑦(𝑡),
𝑥(𝑡),𝑚(𝑡), and 𝑛(𝑡) are shown in Figure 2.

Figure 2 shows that the correlations of simulated data
𝑦(𝑡) do not follow the same scaling law in all time scales.
Obviously, there are two linear intervals and a transitional
interval in a double logarithmic plot of the DFA for mixtured
signal 𝑦(𝑡). Comparing 𝑦(𝑡) with 𝑛(𝑡) and 𝑥(𝑡), in a small
time scale interval, 𝑦(𝑡) shows similar linear features with
random signal 𝑛(𝑡), which corresponds to local fluctuation
and high frequency components. In a large time scale
interval, it shows similar features with periodic signal 𝑥(𝑡)
which corresponds to the large fluctuation and low frequency
periodic components. Since the gear’s vibration signal can be
regarded as a combination of a series of periodic signals with
different frequencies and random noise, the gear’s vibration
will present double-scale characteristic too.

Moreover, comparing the double logarithmic plot of 𝑥(𝑡)
and 𝑚(𝑡), the scale exponents are the same. However, the
intercept of 𝑚(𝑡) is larger than the intercept of 𝑥(𝑡) because
the amplitude of𝑚(𝑡) is larger than that of 𝑥(𝑡).Therefore, the
intercept is a useful parameter which characterizes the signal
intensity.

For the gear vibration signal, its characteristics analyzed
by DFA are correlated with the fault conditions. Different
fault patterns will cause different scale exponents. Moreover,
a more severe defect will cause a larger vibration intensity,
which will cause a larger intercept of double logarithmic plot.

Magnetic
powder brake

AccelerometerGear box Gear box

Figure 3: The experimental setup of the gearbox fault detection.

In our research, the scale exponent 𝛼 and intercept 𝑏 of differ-
ent time scale are utilized as the characteristic parameters to
describe the gear vibration conditions. The aforementioned
Hough transform is used to locate the position of crossover
point and distinguish linear relation of small and large time
scales and to get correct scale exponent and intercept.

5. Application of DFA to Gearbox
Fault Diagnostics

In this section, the signals corresponding to four gear fault
conditions obtained from gearbox experimental facility are
analyzed by the DFA. The scale exponent and intercept are
extracted as characteristic parameters to describe the gear
conditions. Combining Gaussian mixture model (GMM)
with Bayesian maximum likelihood classifier, these signals
are classified.

5.1. Experimental Setup. The experiment setup is shown in
Figure 3 and its schematic diagram is shown in Figure 4. The
experimental facility consists of an electric machine, a single
stage gearbox with a pair of spur gears, a magnetic powder
brake with necessary load, and an I/O Tech Wave Book/516E
16-bit 1MHz data acquisition system with Ethernet interface.
A 0.55 kW DC motor rotates the pinion which has 20 teeth
and the mating gear which has 37 teeth is loaded by a
magnetic powder brake. The vibration generated by the
gearbox was picked up by a PCB piezoelectric vibration
accelerometer. The accelerometer is mounted on vertical
direction of the bearing block at input end. For each kind of
gear failures, including “Normal,” “Toothless,” “Scratched,”
and “Circular pitch error”, 150 groups of vibration signals are
acquired. The motor’s rotational speed and transferred load
were random values which lie in the ranges of 300 r/min–
1217 r/min and 0N⋅m–20N⋅m, respectively. The sampling
frequency is 10 kHz.
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Figure 4: The schematic diagram of the experimental setup.

5.2. Signals and Discussion. The representative vibration sig-
nal and log(𝐹(𝑠)) versus log 𝑠 map of “Normal” and “Tooth-
less” gear conditions are shown in Figure 5. The detrend
order is one and the minimum and maximum window
sizes are 8 and 512 sample points, respectively. For captured
vibration signals, Figures 5(c) and 5(d) show that there are
two different scaling intervals in the double logarithmic plot
of DFA fluctuation function. As we discussed in Section 4,
the gear vibration signals can be seen as the combination
of random noise and a series of period signals which have
different amplitudes and frequencies. The interval of small
time scales corresponds to a random signal which includes
local fluctuation and high frequency components, and the
large one corresponds to the periodic components in the
signal which are well correlated.

Consider the double logarithmic plot as a binary image
on which the values of pixels at a given coordinate,
(log(𝑠), log[𝐹(𝑠)]), are one and the values of the rest of the
pixels are equal to zero. With Hough transform, the strange
line corresponding to two ranges will be detected. Accord-
ingly, the corner point, the scale exponent𝛼, and the intercept
𝑏 in different time scale will be extracted automatically.
A proposed feature vector mapping of vibration signals is
shown in Figure 6.

As Figure 6(a) shows, the characteristic parameter maps
of four kinds of gear faults overlap weakly in the small time
scale.

Except for the “Circular pitch error”, there is a small
overlap between the “Normal,” “Scratched,” and “Toothless”
gears. In the large time scale, the maps of “Scratched” and
“Toothless” gears are overlapped completely, which indicates
that the clustered results are better in the small time scale
than those in large time scale. In theory, even if the gear
has a tiny defect or the gear fault condition changes slightly,
the vibration condition caused by the reduction of meshing
stiffness will change. However, these changesmay be so subtle

that only local fluctuation in signals is affected. The local
fluctuation of signals corresponds to signals’ morphological
characters in small time scales interval or high frequency
components rather than the large time scales interval or low
frequency components. Only when the severity of defects
reaches a lever or the fault conditions change a lot will the
variation of large fluctuation in vibration signals and the
difference in large time scale intervals be observed.Therefore,
comparing to large time scales, there are more useful pieces
of diagnostic information in small scales. As a contrast, the
characteristic parameter maps of four kinds of gear faults by
traditional DFA without considering linear relationship in
different time range are shown in Figure 6(c). Obviously, the
maps of Scratched and Toothless gears are overlappedmostly.
That means that the difference between “Scratched” and
“Toothless” conditions signals that cannot be distinguished
in traditional DFA can be identified by small time scale
parameters in double-scale logarithmic plot. There is more
useful diagnostic information in small scales. In the following
section, the feature vector consisting of scale exponent 𝛼 and
intercept 𝑏 in small time scale is used to characterize the
gear fault vibration signal. The Gaussian mixture model and
maximum Bayes classification will be employed to identify
the gear faults.

5.3. Fault RecognitionAlgorithmsCombinedGaussianMixture
Model with DFA. Considering we have a training dataset and
a testing dataset which consist of a series of gearbox vibration
signals, the main steps of the proposed algorithm for gear
fault classification are described as follows.

Step 1. For a kind of fault condition, employ DFA to plot the
double logarithm graphs of all training signals and extract the
feature vector (𝛼

1
, 𝑏
1
) of small time scale as training space

by Hough transform, where 𝛼
1
is scale exponents and 𝑏

1
is

intercept of double logarithm graphs.

Step 2. Build theGaussianmixturemodel (GMM) of training
space corresponding to this kind of fault by expectationmax-
imum algorithm. The GMM is defined by

𝑝 (𝑥) =

𝑀

∑

𝑘=1

𝑤
𝑘
𝑝
𝑘
(𝑥) =

𝑀

∑

𝑘=1

𝑤
𝑘
𝑁(𝑥; 𝜇

𝑘
, Σ
𝑘
) , (10)

where𝑀 is the number of mixtures,𝑤
𝑘
is the mixture weight

with the constraint that ∑𝑤
𝑘

= 1, and 𝑥 = (𝛼
1
, 𝑏
1
).

𝑁(𝑥; 𝜇
𝑘
, Σ
𝑘
) = (1/(2𝜋)

1/2

|Σ
𝑘
|
1/2

)𝑒
−(1/2)(𝑥−𝜇

𝑘
)
𝑇

Σ
𝑘

−1

(𝑥−𝜇
𝑘
) is

Gaussian probability function which describes the 𝑘th nor-
mal distribution, such as center, width, and direction [26],
with mean 𝜇

𝑘
and covariance matrix Σ

𝑘
.

Step 3. Repeat Steps 1 and 2 to build GMMs for all kinds of
gear fault condition signals.

Step 4. Before a testing signal is classified, the feature vector
(𝛼
2
, 𝑏
2
) should be extracted as mentioned in Step 1. Then,

the signal is classified using a Bayesian maximum likelihood
classifier. This is accomplished by computing the conditional
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Figure 5:The representative vibration signal, power spectrum, and the DFA curves obtained from the two types of gears with a rotation speed
of 985 rpm: (a) Signal from a “Normal” gear. (b) DFA from a “Normal” gear. (c) Signal from a “Toothless” gear. (d) DFA from a “Toothless”
gear.

likelihoods of the signal under each learned GMM and by
selecting the model with the highest likelihood:

�̂� = argmax𝑝 (𝑌 | 𝑐
𝑖
) , (11)

where 𝑌 is the feature vector (𝛼, 𝑏) of the testing signal and
𝑝(𝑌 | 𝑐

𝑖
) is the probability of 𝑌 with known 𝑖th gear fault

condition described by 𝑖th GMM.

In our classification experiment, for each gear condition,
100 signals were selected to constitute training dataset and 50
signals were selected to constitute testing dataset to verify the
proposed approach. The minimum and maximum window
sizes are 8 and 512 sampling points, respectively, and the
mixture number of GMM is four. In order to evaluate the
influence of the trend order of DFA which may change the
position of crossover point, the classification experiments,
when detrend order of DFA ranges from one to six, are con-
ducted and the classification results are listed in Tables 1–6.
The plotting of recognition rate versus trend order of DFA is
shown in Figure 7.

Tables 1–6 show that, for the “Normal,” “Scratched,”
and “Circular pitch error” signals, the recognition rates are

Table 1: Classification results with proposed method (DFA1).

Gear fault Diagnosis results Recognition rate
NOR SCR TL CPE

NOR 49 0 1 0 98%
SCR 0 46 4 0 92%
TL 5 3 42 0 84%
CPE 0 0 0 50 100%
NOR: “Normal”; SCR: “Scratched”; TL: “Toothless”; CPE: “Circular pitch
error.”

Table 2: Classification results with proposed method (DFA2).

Gear fault Diagnosis results Recognition rate
NOR SCR TL CPE

NOR 50 0 0 0 100%
SCR 0 45 5 0 90%
TL 6 2 42 0 84%
CPE 0 0 0 50 100%

over 90 percent; even the detrend order of DFA is changed.
The recognition rate of “Toothless” signal is less than 90
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Figure 6: (𝛼, 𝑏)map of different ranges of scales: (a) 𝛼
1
and 𝑏
1
in the first range of scales; (b) 𝛼

2
and 𝑏
2
in the second range of scales; (c) 𝛼 and

𝑏 extracted by traditional DFA.

Table 3: Classification results with proposed method (DFA3).

Gear fault Diagnosis results Recognition rate
NOR SCR TL CPE

NOR 49 0 0 1 98%
SCR 0 48 2 0 96%
TL 7 1 42 0 84%
CPE 0 0 0 50 100%

percent in all the classification experiments. Few of samples
of “Scratched” and “Toothless” signals are misclassified as
the “Normal.” Theoretically, if we study the signals from the
frequency domain, the differences between “Normal” gears,
“Scratched” gears, and “Toothless” gears are the vibration
amplitudes on some special frequencies, such as rotation
frequency, meshing frequency, and their frequency multipli-
cation.With the severity of gear fault increasing, the vibration

Table 4: Classification results with proposed method (DFA4).

Gear fault Diagnosis results Recognition rate
NOR SCR TL CPE

NOR 46 0 3 0 92%
SCR 0 49 1 0 98%
TL 10 1 39 0 78%
CPE 0 0 0 50 100%

amplitude will increase slowly and the noise will eventually
cause the fault characteristic overlap of three kinds of gears’
vibration signals. That causes the identification of these three
kinds of fault conditions difficult in our experiments. Figure 7
shows that when detrend order of DFA changes from one
to six, the recognition rate of “Normal,” “Scratched,” and
“Circular pitch error” signals keeps the range from 90 precent
to 100 precent; however, the global trend of recognition



8 Shock and Vibration

Table 5: Classification results with proposed method (DFA5).

Gear fault Diagnosis results Recognition rate
NOR SCR TL CPE

NOR 45 1 3 1 90%
SCR 0 47 3 0 94%
TL 10 1 39 0 78%
CPE 0 0 0 50 100%

Table 6: Classification results with proposed method (DFA6).

Gear fault Diagnosis results Recognition rate
NOR SCR TL CPE

NOR 46 0 4 0 92%
SCR 1 46 3 0 92%
TL 14 4 32 0 64%
CPE 1 0 0 49 98%

rate is decreasing with the increasing of detrend order of
DFA.The recognition rate of “Toothless” signals will decrease
monotonically with the detrend order of DFA increase.
That means that the detrend order of DFA influences the
classification results. Higher detrend order of DFAmay cause
less recognition rate. As a suggestion, the detrend order of
DFA should be low in order to get better classification result.

6. Conclusion

In this study, the detrended fluctuation analysis (DFA) which
can deal with nonstationary signals was employed to analyze
the gear vibration signals acquired by piezoelectric acceler-
ation transducer and the experimental results showed that
the characteristics of all the gear condition signals turned out
to be double-scale. To further understand the phenomenon
of the double-scale, the experimental signals were analyzed
by simulation. The simulation results show that the double-
scales correspond to high and low frequency components
of signal, respectively, and the intercepts are determined
by signal intensity. A feature vector which employed an
exponent 𝛼 and an intercept 𝑏 in small time scale was
proposed to describe slight defect of gear. Since the vibration
pattern caused by the reduction of meshing stiffness changes
local fluctuation of vibration signal subtly due to a slight
defect, it is more suitable to use double-scale parameters for
gear conditions classification instead of the traditional DFA.
In addition, the Hough transform was used to estimate the
position of crossover point and extract the scale exponent and
intercept of the small time scale from the double logarithmic
plot of DFA automatically. Moreover, the Gaussian mixture
model (GMM) and Bayesian maximum likelihood (BML)
classifier were employed to describe the distribution of the
feature vector and identify the patterns of test data, respec-
tively. The classification experiments with different detrend
order of DFA were conducted. The experimental results
demonstrate that the proposed approach is the effectiveness
and the detrend order ofDFA sholud be low formore accurate
classification results.
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Figure 7:The plotting of recognition rate versus trend order ofDFA.
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