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The generalized minimum spanning tree problem consists of finding a minimum cost spanning tree in an undirected graph for
which the vertices are divided into clusters. Such spanning tree includes only one vertex from each cluster. Despite the diverse
practical applications for this problem, the NP-hardness continues to be a computational challenge. Good quality solutions for
some instances of the problem have been found by combining specific heuristics or by including them within a metaheuristic.
However studied combinations correspond to a subset of all possible combinations. In this study a technique based on a genotype-
phenotype genetic algorithm to automatically construct new algorithms for the problem, which contain combinations of heuristics,
is presented. The produced algorithms are competitive in terms of the quality of the solution obtained. This emerges from the
comparison of the performance with problem-specific heuristics and with metaheuristic approaches.

1. Introduction

Determining the minimum cost spanning tree in a graph is a
problem with various applications in the world of operations
planning and management. It is known as the minimum
spanning tree problem (MSTP) and consists of finding a
tree of minimum cost that spans all vertices of a graph,
the resolution of which can be obtained in polynomial time
[1, 2]. However, there are several extensions of the MSTP
that are generally NP-hard and for which it is not possible
to obtain a solution in polynomial time [3]. A generalized
version of the MSTP is the generalized minimum spanning
tree problem (GMSTP), which still represents an enormous
challenge because it belongs to the NP-hard class [4]. It
has recently received much attention not only because of its
difficulty but also because of its diverse applications. Dror
et al. [5] study the design of a minimum-length irrigation
network in agricultural irrigation in desert environments,
while Myung et al. [4] consider supporting the decision
making on the location of public facilities, commercial offices,
and distribution centers connected by links such as roads

or telecommunications. In the same field, Golden et al. [6]
designed backbones in communication networks.

TheGMSTP consists in finding aminimumcost spanning
tree in an undirected graph, the vertices of which are divided
into clusters such that the spanning tree includes only one
vertex from each cluster. Let 𝐺 = (𝑉, 𝐸) be an undirected
graph with 𝑛 nodes, and let 𝑉

1
, . . . , 𝑉

𝑚
be a division of 𝑉 into

𝑚 subsets called clusters; that is, 𝑉 = 𝑉
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and

𝑉
𝑙
∩ 𝑉
𝑘
= ⌀, ∀𝑙, 𝑘 ∈ 𝐼 = {1, . . . , 𝑚}, 𝑙 ̸= 𝑘. The cost of an

edge 𝑒 = (𝑢, V) ∈ 𝐸 is denoted by 𝑐
𝑢V ∈ R and the cost

of a tree is obtained by adding the individual costs of the
edges that compose it. Thus, the GMSTP consists of finding a
tree of minimal cost that spans exactly one vertex 𝑢

𝑘
∈ 𝑉
𝑘
,

𝑘 ∈ 𝐼. Different formulations using integer programming
have been proposed in the literature [7, 8]. Particularly, a
compact formulation in terms of the number of variables and
constraints was proposed by Pop [9, 10] by considering four
types of binary variables.

Because of its computational complexity, the GMSTP has
been addressed using a variety of approaches. The different
mathematical formulations proposed have been unable to
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solve large problems because long computational time or
large memory resources are required [11]. Other approaches
to solving the GMSTP are constructive and improvement
heuristics. The former provide the solution by adding edges
step by step until a generalized minimum spanning tree
is constructed, for which adaptations of the well-known
polynomial algorithms for the MSTP are used [5, 12].

In search of new solutions for the most challenging
GMSTP instances some metaheuristics have been imple-
mented. GRASP, tabu search, and genetic algorithms show
good performance with larger instances; however, none of
them determines the optimal solution for all larger sizes
known instances. Such instances with 229 to 783 nodes were
proposed to test the performance of a model based on tabu
search [13] in which a current solution is represented by an
array of size equal to the number of clusters and the neighbor
solutions are randomly generated. When comparing the tabu
search model with two versions of genetic algorithms [6] the
result obtained by Öncan et al. [13] achieved better or equal
solutions. In addition, an adaptive version of GRASP that
uses path-relinking and iterated local search improved some
of the solution values, through other subsets. However, the
best known value was not achieved by this approach [11].
Recently, Contreras-Bolton et al. [14] proposed an approach
based on a multioperator genetic algorithm by considering
two crossover and five mutation operators, three of which
are local searches. That allowed MGA to be competitive with
respect to the best algorithms present in the literature, in
terms of both quality of the solution and computing time.

Different approaches known for GMSTP include various
combinations of search heuristics.There are different ways to
generate a neighbor solution: local search algorithms, differ-
ent operators, or efficient well-known algorithms that solve
only a subproblem.When properly combined these heuristics
give rise to novel and effective problem-solving techniques.
Indeed, the genetic algorithm presented by Golden et al.
[6] uses a local search method as a mutation operator
and a particular designed crossover. In addition, Haouari
and Chaouachi [15] presented a random greedy algorithm
that includes different search techniques. On the other
hand, Ferreira et al. [11] presented five different heuristics
that when combined with path-relinking give rise to six
different versions of GRASP [16]. Such approach suggests
that to obtain good results for GMSTP a proper selection
and combination of heuristics is necessary. However, the
combinations explored so far seem to be an only subset of
the many possibilities that can be examined; thus by studying
the unexplored combinations new algorithms for theGMSTP
may be generated.

The task of automatically selecting and combining simple
heuristics to generate a generic heuristic to solve any instance
of a given optimization problem is known as a hyperheuristic
[17, 18]. A hyperheuristic performs a search in the heuristic
space rather than searching in the problem’s solution space.
Some of the most widely used approaches to generating
hyperheuristics are genetic programming [19, 20], genetic
algorithms [21], and learning systems [22]. The hyperheuris-
tic approach has been used to approach various optimization
problems, such as packing [23], timetabling [24], scheduling

[25], MAX-SAT [26], vertex coloring problems [27], and
binary knapsack problem [28, 29].

In this paper, an automated technique is presented that
explores new heuristic combinations for the GMSTP. The
algorithms are constructed from elementary heuristic com-
ponents obtained from the methods described in the current
literature and from a set of control structures typically used
in any algorithm. The constructive process is carried out
with a genetic algorithm in which a binary string represents
the interactions between the elementary heuristics and the
control structures [30–33].

In the following section, the procedures for generating
the algorithms are described.The computational results of the
generated algorithms are presented and discussed in the third
section.The conclusions of the study are presented in the last
section.

2. Procedure for Generating Algorithms

The procedure for generating the algorithms takes into
account a genotype-phenotype genetic algorithm (GPGA)
[34], a set of structures that composes the algorithms, and
a fitness procedure to evaluate the performance. The GPGA
considers two search spaces; the first search space corre-
sponds to the genotype and is composed of strings which
represent characteristics of the algorithms, and the second is
the phenotype, composed of trees that assemble instructions
that when executed find a solution to the GMSTP (Figure 1).
Thus, from a population containing a fixed number of strings,
a new population is generated by applying the selection,
crossover, and mutation operators. In order to evaluate
the performance of each string, the corresponding tree is
constructed and evaluated. The process is repeated a number
of times. The final algorithms are produced after two stages:
First the algorithms are evolved by a number of generations
until a convergence of the GPGA is detected and in a second
stage, the best algorithms from the first stage are selected and
evaluated with a different set of problem instances.

2.1. The Genotype for the GPGA. The genotype considered
for the GPGA is a binary string encoding a combination of
identifiers for both the heuristics and the control instructions.
Each integer number represented in the binary string is
coded by 5 bits thus representing 32 different components.
Consequently, a binary string denotes the order in which
the components are selected to construct the corresponding
algorithm. In addition, a tree is constructed from the string
using the preorder search [35]. Figure 1 describes a binary tree
with 12 nodes constructed from a string of 60 bits.

2.2. The Phenotype for the GPGA. The phenotype is com-
posed of trees that represent potential algorithms for the
GMSTP. Such algorithms require a data structure definition
and sets of functions and terminals to be considered in the
algorithms as internal and leaf nodes, respectively.

2.2.1. Data Structure. The data structure organizes informa-
tion to save both the graph and the results of the algorithms
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Figure 1: Decoding of a binary string.

produced. The Boost Graph Library [36] was used for the
implementation of the graphs with two adjacent lists, one
to save the problem instance and the other to contain the
solution of the spanning tree. The STL library [37] was used
to save the number of clusters and their associated vertices
using maps and vectors.

2.2.2. Definition of Functions and Terminals. As elementary
components of the algorithms to be produced, a set of
functions and a set of terminals are defined. The former
typically comprise any algorithm as the control structure. We
used the following functions:

(i) 𝐸𝑞𝑢𝑎𝑙(𝑃1, 𝑃2): P1 and P2 are executed. The function
returns true if both arguments return the same
Boolean value; otherwise, it returns false.

(ii) 𝐴𝑛𝑑(𝑃1, 𝑃2): P1 is executed; if it returns true, then P2
is executed. If P2 returns true, the function returns
true. In any other case, the function returns false.

(iii) 𝑂𝑟(𝑃1, 𝑃2): P1 is executed; if it returns true, the
function returns true; otherwise, P2 is executed. If P2
returns true, the function returns true; otherwise, the
function returns false.

(iv) 𝑁𝑜𝑡(𝑃1): argument P1 is executed. The function
returns the logical negation of the result of the
argument.

(v) 𝐼𝑓(𝑃1, 𝑃2): argument P1 is executed; if it returns true,
argument P2 is executed, and the function returns
true. Otherwise, P2 is not executed and the function
returns false.

To prevent the formation of greedy algorithmic struc-
tures and also to achieve greater diversity in the produced
algorithms, five control structures of the “while” type are
proposed.

𝑊ℎ𝑖𝑙𝑒(𝑃1, 𝑃2) is described as follows: argument P2 is
executed if argument P1 returns true. The first argument
has an extra stop condition. Then, five varieties of while are
modeled, as explained below:

(i) While1: if at most one-quarter of the clusters belong
to the spanning tree, argument P2 is executed.

(ii) While2: if at most one-half of the clusters belong to
the spanning tree, argument P2 is executed.

(iii) While3: if atmost three-quarters of the clusters belong
to the spanning tree, argument P2 is executed.

(iv) While4: if there is at least one cluster that does not
belong to the spanning tree, argument P2 is executed.

(v) While5: it describes functions similar to the for
instruction because argument P2 is executed as many
times as clusters exist in the problem.

Additionally, two extra stopping conditions are imple-
mented. One initiates if more than 10 iterations occur that
do not produce changes in the data structure. The other
stop condition occurs if the number of iterations exceeds the
number of vertices in the problem.

Each terminal is designed to return true if it executes
the task for which the terminal is designed; otherwise, it
returns false. Terminals can be grouped into three types:
initial connection, construction, and improvement. The ini-
tial connection terminals are designed to operate only once,
and their objective is to include the first vertex or edge into
the solution. The initial connection terminals are described
below:

(i) prim-initial-connection: the vertex with the largest
number of edges obtained by applying Prim’s elemen-
tal algorithm to the MSTP is added to the solution.

(ii) least-vertex-initial-connection: the vertex with the
least average cost of its edges is added to the solution.



4 Scientific Programming

(iii) least-cluster-initial-connection: the vertex connected
to the lowest cost edge from the cluster that contains
the smallest number of vertices is added.

(iv) least-edge-initial-connection: the two initial vertices
that are part of the lowest cost edge are added.

The construction terminals add a vertex to the partial
solution in each step:

(i) connect-smallest-edge-with-the-tree: the vertex with
the smallest connection edge is added to the partial
solution.

(ii) connect-cluster-with-more-vertices: the vertex that has
the lowest cost edge of the cluster that contains the
largest number of vertices is added to the partial
solution.

(iii) connect-cluster-with-fewer-vertices: the vertex that has
the lowest cost edge of the cluster that contains the
smallest number of vertices is added to the partial
solution.

The improvement terminals operate on the current solu-
tion:

(i) subtree-k-cluster-connection-improvement: this im-
provement is based on the heuristic of [38]. It
improves the current partial solution by searching for
k clusters that form a subtree of the partial solution.
This subtree is composed of a leaf cluster of degree
1, a root cluster that can have a degree equal to or
greater than 2, and other clusters with a degree of 2.
All possible combinations of the 𝑘 − 1 clusters are
formed, and the remaining cluster (tree root) remains
fixed at its position and vertex. For this terminal,
𝑘 = {2, 3, 4} is used. Furthermore, all clusters of the
partial solution are exposed to this terminal so the
improvement action can be applied as many times as
possible.

(ii) connection-cluster-improvement: the current partial
solution is improved by switching the current vertex
of a cluster with another, producing a lower total cost.
This procedure is applied to each cluster of the current
solution.

(iii) tree-leaf-connection-improvement: the current partial
solution is improved by connecting one leaf vertex to
a different vertex of the tree, provided that the cost
of the reconnected solution has a lower cost than the
current cost. This procedure is followed for all edges
of all leaf clusters.

(iv) internal-edge-connection-improvement: the current
partial solution is improved by reconnecting two
subgraphs generated by removing an internal edge
of the current tree. The edge joining two subgraphs
at minimum cost is chosen for the process. This
procedure is repeated at all internal edges.

If the terminals succeed in decreasing the cost of the
partial solution, it returns true; otherwise, it returns false.

Table 1: Number of instances by clustering type.

Group Type of clustering Total
Center 𝜇 = 3 𝜇 = 5 𝜇 = 7 𝜇 = 10

1 37 28 28 28 29 150
2 21 20 20 20 20 101
Total 58 48 48 48 49 251

2.3. The Fitness Procedure. The performance of an algorithm
is evaluated by running it with a set of GMSTP instances.
For this purpose a fitness function is defined and a set of
test instances are selected, a portion of which are used in
the first stage and the remainder is considered for evaluation
of the selected algorithms. A fitness function 𝑓 with two
components is considered: the relative error and the relative
deviation of the number of spanning tree edges. The relative
error is measured with respect to the best solution known for
each problem instance. Because the algorithms may generate
solutions with fewer edges than the required number, the
second component considers the relative difference with
respect to 𝑚 − 1. Let 𝐼 = {1, 2, . . . , 𝜑} be a set of instances
of the GMSTP and let 𝐺∗

𝑖
be the optimum cost associated

with instance 𝑖. In addition, 𝑦
𝑖
is the number of edges and

𝐺
𝑖
the cost of the tree obtained by the algorithm that solves

the instance 𝑖. Additionally, we define 𝛼 and 𝛽 as two real
numbers in [0, 1], where𝛼+𝛽 = 1.0.Then, the fitness function
is defined by

𝑓 =
1

𝜑
(𝛼

𝜑

∑

𝑖=1

𝐺
∗

𝑖
− 𝐺

𝐺
∗

𝑖

+ 𝛽

𝜑

∑

𝑖=1

𝑚 − 𝑦
𝑖
− 1

𝑚 − 1
) . (1)

Two groups of the problem instances listed in Table 1 were
used [11]. The first group consists of 150 instances containing
between 48 and 226 vertices with known optima [39, 40].The
second group consisted of 101 instances containing between
229 and 783 vertices and was generated by Öncan et al. [13];
only the lower bounds for these instances are known. Each
group was subdivided by type of clustering center; that is, 𝜇 =

3, 𝜇 = 5, 𝜇 = 7, and 𝜇 = 10, where 𝜇 was the approximate
mean number of vertices in a cluster [6]. For the evolution
stage, the 29 instances of 𝜇 = 3 clustering type in group 1 were
used. In the validation stage of the generated algorithms, all
instances were used.

2.4. Operators and Parameters for GPGA. The appropriate
selection of genetic algorithm operators has several options
[41]. In this study, operators are selected based on previous
studies dealing with the automatic generation of algorithms
and preliminary runs [14, 27, 29]. Thus, a selection operator
used double tournament which consists in selecting four
individuals that compete first in fitness and then in size
[42, 43]. In addition, the two-point crossover, the bit-flip
mutation, and the generational population model were used
[30].

The parameters used in GPGA were population size,
number of generations, crossover andmutation probabilities,
chromosome length, and 𝛼 and 𝛽 parameters of the fitness
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Table 2: Summary of the experiment.

Fitness Height Number of nodes Generation found Time (sec) Algorithms generated
Average 0.0301 5.79 22.13 69.60 9149.43 6892.23
Min. 0.0188 4.00 16.00 0.00 299.45 3.00
Max. 0.1465 10.00 39.00 198.00 147971.00 9573.00
St. dev. 0.0134 1.23 3.78 67.28 22270.99 3512.81

function. The crossover probability was set to 0.9. The muta-
tion probability was fine-tuned considering the following
values: {0.005, 0.01, 0.02, 0.04, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18,
0.20} and from this set, 0.12 was the best value in terms
of the fitness function. Moreover, preliminary experiments
that considered 50 strings by population showed that no
improvements in the fitness function are detected after 200
generations suggesting this value as the stopping criterion for
theGPGA. Furthermore, taking into account that the size of a
generated algorithm affects its readability the chromosome’s
length was set at 60 to obtain algorithms easy to be decoded.
Additionally, 𝛼 = 0.6 and 𝛽 = 0.4 are set to give more
importance to the solution quality. Actually, the second term
reaches a zero value during the first generations, ensuring that
the algorithms only inspect feasible GMSTP solutions.

2.5. Hardware and Software Used. A cluster of computers
with 2.10GHz, 64 cores (32 were used), and 128GB RAM
with AMD Opteron� 6272 Processors were used, with a
GNU/Linux operating system (CentOS 6.2 distribution).
The evolutionary algorithm was implemented in the C++
language, and the data structures were managed by the Boost
Graph Library [36] and STL library [37]. The fitness function
was evaluated in parallel using a set of processors with shared
memory and the OpenMP library [44]. The evaluation cycle
of each individualwas thus asynchronous, and each processor
evaluates one individual at a time. The mathematical model
was implemented in C++ language and CPLEX 12.6 was run
on a computer equipped with 2.10GHz, 32 cores, and 64GB
RAM.The processor was an Intel(R) Xeon(R) CPU E7-4830.
CPLEX runs were performed sequentially by using only one
core.

3. Results and Discussion

The experiment consisted in executing the evolutionary
algorithm 90 times with the set of grid instances 𝜇 = 3 of
group 1. Table 2 displays the average, maximum, minimum,
and the standard deviation values for the fitness, the height,
and the number of nodes that the best algorithm found,
including the number of generations in which each algorithm
was found. The average time taken for the evolution was
9149.43 seconds. During the 90 evolutions, 6,892 algorithms
were generated (on average), which satisfactorily solved the
GMSTP. A total of 900,000 algorithms were generated in
the entire process, of which 620,301 or 68.92% were feasible
algorithms, that is, algorithms that produced a feasible
spanning tree.The average fitness is approximately 3.01%, and
the best algorithms had 1.9% error in solving the 29 evolution
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Figure 2: Evolution of fitness and number of feasible algorithms.

instances. The size of the algorithm is between 16 and 39
nodes. It did not detect a fixed generation in which the best
algorithm arises during the run; in fact, at least in one run,
the better algorithm emerged in the initial population. The
production process of the algorithms is expensive, requiring
2.5 hours on average for each run and as many as 41.1 hours
for the longest run.

At the end of each run there is a convergence toward
populations that contain individuals of variable quality,
which have fitness values close to the best value of the pop-
ulation. Figure 2 indicates this typical behavior for the first
75 generations. The left ordinate axis gives the fitness value
of the best algorithm in the population; the right ordinate
gives the number of feasible algorithms; and the abscissa gives
the generation number. In this case, the randomly generated
population exhibits fitness values between approximately
0.048 and 1.00. Starting in generation 14, the average fitness
approaches the value of the best individual, which is found
in generation 43, marked in the figure as “minimum.” The
results indicate that the fitness value of the worst individual
fluctuates around the value of 1, with some occurrences near
to the value of the best individuals. This behavior agrees
with our definition of fitness; that is, individuals who do
not cover all of the problem’s clusters have a penalized
value. The presence of the worst individual is detected with
less frequency because the number of feasible algorithms
typically increases, following the trend illustrated in Figure 2;
in consequence, many of the algorithms in a population are
capable of finding feasible solutions for all 29 instances.

The different algorithms generated during the evolution-
ary process can be decodedmanually from their tree structure
to obtain their corresponding pseudocode. An illustrative
case is presented in Algorithm 1 that builds a solution in
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Input: Graph
Output: Generalized minimum spanning tree
(1) repeat
(2) condition-repeat1← false
(3) condition-repeat2← false
(4) if least-cluster-initial-connection () or tree-leaf-connection-improvement ()
(5) condition-repeat1← true
(6) else
(7) while1 [condition-repeat1← connect-cluster-with-fewer- vertices ()] = true do
(8) tree-leaf-connection-improvement ()
(9) end while1
(10) end if
(11) if condition-repeat1 = true
(12) repeat
(13) flag← connection-cluster-improvement ()
(14) if internal-edge-connection-improvement ()
(15) while1 [flag2← subtree-4-cluster-connection-improvement ()] = true do
(16) connect-smallest-edge-with-the-tree ()
(17) end while1
(18) else
(19) flag2← false
(20) end if
(21) if flag = flag2
(22) condition-repeat2← true
(23) while1 connect-cluster-with-fewer-vertices() do
(24) connect-cluster-with-fewer- vertices ()
(25) end while1
(26) end if
(27) until condition-repeat2
(28) end if
(29) until condition-repeat1
(30) return GMSTP

Algorithm 1: Pseudocode of GMSTP2.

two stages. The first stage operates in a constructive way,
building a spanning tree that connects the minimum cost
edges of the clusters that have the fewest vertices. This stage
ends when it connects one-quarter of the total clusters.
Then, it continues connecting in the same way, including
new edges in the tree, applying improvements that consist
in reconfiguring the current structure, and replacing higher
cost edges with others of lower cost. Such operations are
performed with the internal-edge-connection-improvement
terminal. To a lesser degree, the terminals connection-cluster-
improvement, tree-leaf-connection-improvement, and subtree-
4-cluster-connection-improvement also act in the correspond-
ing participation order. In general, the various algorithms
that have been found contain common structures that have
greedy and constructive characteristics, as observed in the
algorithms of Kruskal and Prim. However, the most sophisti-
cated algorithms have a constructive stage and an additional
stage in which the construction and reconfiguration of
the spanning tree are intercalated, similar to the stage in
Algorithm 1. The intercalation primarily occurs due to the
various while functions.

The height of the algorithms tends to stabilize at approxi-
mately 4, which is theminimum possible value that a tree can
have, according to the length of the chromosome. The initial
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randomly generated population determines a dispersed range
of possible heights for the algorithms. Gradually, as the
evolutionary process occurs, the range tends to decrease. A
typical case is displayed in Figure 3, which corresponds to the
run that generates Algorithm 1. Figure 3 depicts the values of
the largest, average, and smallest heights for each population.
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In the first population, algorithms with the minimum height
are found, but starting in generation 13, those individuals
disappear, and individuals are produced that are stabilized at a
value of 5 until the end of the process.This behavior is caused
by the double tournament selection genetic operator, which
selects by fitness and by height.Thus, individuals with heights
that oscillate between 5 and 8 can also be observed because of
the probabilistic nature of the operator.

The algorithms obtained are numerically competitive
with the existing heuristics for the GMSTP. The generated
algorithms, similar to the existing heuristics, exhibit errors
of small magnitude with respect to the optimum. In Table 3
the numerical results for three algorithms are displayed:
GMSTP1, GMSTP2, and GMSTP3 that are produced and
tested with instances of group 1. In addition, the solutions
obtained by solving the local-global mixed integer program-
ming formulation proposed by Pop [9, 10] are presented.
Solutions are obtained with CPLEX denoting as CPLE 1 runs
with a running time limited to 300 seconds and CPLEX 2
runs with a running time limited to 3600 seconds. Table 3
also contains the results from three adaptations of the
classical algorithms of Kruskal, Prim, and Sollin proposed by
Feremans et al. [39], a simple heuristic called the spanning
tree lower bound (STLB), three improved heuristics from
the adaptations of Kruskal, Prim, and Sollin, IKH, IPH,
and ISH, proposed by Golden et al. [6], and five heuristics
(C1, RC2, RC3, RC4, and RC5) proposed by Ferreira et
al. [11]. The first column of Table 3 displays the name of
the heuristic. The following five columns correspond to the
performance of each heuristic (percentage of error) and to
the computational time (seconds) used for the subsets of the
instances of group 1, grouped by type of clustering. The last
column displays the performance for all instances of group
1. The sign “—” means that the computational time was not
available. In the results for the instances of group 1, GMSTP3,
the best overall performance, is exhibited, with an average
error of 5.42%, followed by GMSTP2 with 5.55% error; the
closest to the other heuristics is ISH, with an error of 6.27%,
followed by IKH and GMSTP1, with errors of 6.34% and
6.42%, respectively. In terms of the performance by clustering
type, GMSTP2 exhibits the results with the lowest errors,
that is, 3.28%, 4.90%, and 6.38% for 𝜇 = 3, 𝜇 = 5, and
𝜇 = 7, respectively. However, regarding the clustering center,
GMSTP3 exhibits a better performance, that is, an error of
4.71%. IKH exhibits the best performance for 𝜇 = 10, with
6.76%, and GMSTP3 and GMSTP2 exhibit errors of 7.47%
and 7.86%, respectively. With respect to time, GMSTP2 and
GMSTP3 used average computational times of 0.029 and
0.027 seconds, respectively, to solve each of the 150 instances;
ISH solved it in 17.60 seconds.

Table 4 displays the numerical results comparing the
group 2 instances with the heuristic of Ferreira et al. [11].
This group of instances was not available in the paper by
Golden et al. [6]. The data indicate that the three algorithms
perform better than the five heuristics in all clustering type
subsets of these instances. In addition, in the overall column,
the new algorithms exhibit better results, with average errors
between 5.99% and 6.07%, while the best RC2 heuristic
results in an error of 8.92%. Moreover, the majority of the

instances solved with GMSTP1, GMSTP2, and GMSTP3 use
less computational time.With respect to time, GMSTP2 used
an average of 6.336 seconds to solve each of the 101 instances
in group 2, compared to the 0.005 seconds used by RC2.

Produced heuristics perform better than the two runs of
CPLEX in terms of quality of solutions and computational
time (Tables 3 and 4). Some optimal solutions are found
for small instances by CPLEX 1 and CPLEX 2 runs and the
average gaps in both runs are greater than the gaps for the
three selected algorithms. Exceptions are found for 𝜇 = 7
and 𝜇 = 10. However, this result is not remained for the
global average. Furthermore, with group 2 instances the gap
degraded even more reaching values up to 636.61%. This fact
shows that integer programming based algorithms are not yet
competitive with heuristics or metaheuristics.

Table 5 displays the overall results for both groups.
GMSTP2 achieved an average error of 5.58%, followed by
GMSTP3 and GMSTP1, with errors of 5.65% and 6.28%,
respectively. Of the other five heuristics, RC2 exhibited the
best performance, with an average error of 10.10%. With
respect to computational time, GMSTP2 solved each of the
251 instances in an average of 2.567 seconds, compared to the
0.002 seconds used by RC2.

Although requiring low computational time, the pro-
duced algorithms do not obtain the same solution quali-
ties as the tabu search, GRASP, and MGA. Table 6 shows
the difference between the performances of the three new
algorithms and the metaheuristics. The use of different
software and hardware in the three studies produces an
unfair comparison of the computer times in Table 6. On the
contrary, we note a clear difference in the solution qualities.
The produced algorithms execute a set of constructive and
improvement instructions during a fixed number of steps;
thus, a variation in computer time does not imply a change
in the number of iterations. Tabu search, GRASP, and MGA
repeat a metarule until a convergence gap is found, and
thus, a longer computing time may achieve a better solution.
These reasons partly explain the differences in performance.
Therefore, more research is needed to integrate the strengths
of these approaches.

4. Conclusions

This paper presents a technique to obtain new combinations
of heuristics for the GMSTP. The algorithms were produced
with an evolutionary computation procedure designed and
implemented to combine components of elementary heuris-
tics and control structures. The algorithms thus generated
are characterized by a first stage that contains structures
similar to those found in the heuristics that already exist for
the problem. In the second stage, the algorithms implement
several methods to improve the partial solution.

The algorithms were evolved using 90 executions on 29
instances chosen from group 1, which includes all of 𝜇 = 3

clustering grid types. Then, a set of 251 instances was used
to test the algorithms. Including the new while functions
helped the generated algorithms to work in stages and avoid
becoming structured as a single large constructive stage.
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Table 5: Summary of the heuristics using group 1 and group 2.

Heuristics Avg. gap (%) Avg. time (sec)
C1 29.05 0.0015
RC2 10.11 0.0020
RC3 12.22 0.0025
RC4 17.83 0.0018
RC5 12.59 0.4807
GMSTP1 6.28 1.5124
GMSTP2 5.58 2.5670
GMSTP3 5.65 2.1015

Table 6: Summary of the heuristics and metaheuristics using group
1 and group 2.

Algorithm
Group 1
Avg. gap
(%)

Group 2
Avg. gap
(%)

Overall
Avg. gap
(%)

Avg. time
(sec)

GMSTP1 6.42 6.07 6.28 1.5124
GMSTP2 5.55 5.62 5.58 2.5670
GMSTP3 5.42 5.99 5.65 2.1015
TS 0.01 0.03 0.02 736.8500
GRASP 0.00 0.01 0.01 59.1300
MGA — 0.01 — 49.43

In general, the height of an algorithm converges toward
the minimum possible value. The new algorithms were
competitive in terms of the quality of the solution obtained
compared to the existing heuristics, and the errors for the
251 instances were smaller than the errors obtained using the
heuristics considered.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thank the Complex Engineering
Systems Institute (ICM: P-05-004-F, CONICYT: FBO16,
DICYT: 61219-USACH, ECOS/CONICYT: C13E04, and STI-
CAMSUD: 13STIC-05).

References

[1] J. B. Kruskal, “On the shortest spanning subtree of a graph and
the traveling salesman problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48–50, 1956.

[2] R. C. Prim, “Shortest connection networks and some general-
izations,” Bell System Technical Journal, vol. 36, no. 6, pp. 1389–
1401, 1957.

[3] P. C. Pop, Generalized Network Design Problems. Modeling and
Optimization, De Gruyter, Berlin, Germany, 2012.

[4] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha, “On the generalized
minimum spanning tree problem,” Networks, vol. 26, no. 4, pp.
231–241, 1995.

[5] M. Dror, M. Haouari, and J. Chaouachi, “Generalized spanning
trees,” European Journal of Operational Research, vol. 120, no. 3,
pp. 583–592, 2000.

[6] B. Golden, S. Raghavan, andD. Stanojević, “Heuristic search for
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