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This paper proposes a fuzzy adaptive control method for uncertain horizontal platform system with unknown control gain, which
is capable of guaranteeing the prescribed performance bounds. An error transformation is introduced to transform the original
constrained system into an equivalent unconstrained one. Then, based on the error transformation technique and the predefined
performance technique, a fuzzy adaptive controller is designed for the unconstrained system. It is shown that all the variables of the
resulting closed-loop system are bounded. Finally, an illustrative example is given to demonstrate the effectiveness and usefulness
of the proposed method.

1. Introduction

Over the past two decades, it has been acknowledged that
several mechanical systems exhibit chaotic behavior [1–3].
The horizontal platform system (HPS) is one of the most
interesting and attractive nonlinear dynamical systems. It is a
mechanical device that can freely rotate around the horizontal
axis. The horizontal platform devices are widely used in off-
shore and earthquake engineering. Recent research has found
that these systems displaymany dynamic behaviors including
chaotic. So, how to suppress chaotic phenomenon for hori-
zontal platform systems (HPSs) is a hot research topic. Until
now, a wide variety of approaches have been proposed for
HPSs. For example, Wu et al. [4] have applied the Lyapunov
direct method to achieve a sufficient criterion for chaos
synchronization between two identical HPSs which have
been coupled by a linear state error feedback controller. In [5],
Pai andChang proposed a fuzzy slidingmode control scheme
to achieve generalized projective synchronization (GPS) of
two horizontal chaos platform vibration systems with system
uncertainty and external disturbance. By using time-delay
feedback control, Ding and Han [6] discussed master-slave
synchronization for two identical nonautonomous HPSs.
Using a linear state error feedback controller, the robust

synchronization of the chaotic HPSs with phase difference
and parameter mismatches has been studied in [7]. Based
on Lyapunov stability theory, Pai and Yau [8] designed an
adaptive sliding mode controller such that the controlled
HPS state can be driven to a desired orbit. The problem of
robust finite-time synchronization of two nonautonomous
HPSs is investigated in [9]. Recently, Xiang and Liu [10]
proposed an adaptive fuzzy terminal sliding mode control
scheme for uncertain HPS. Based on fuzzy system rules,
the proposed control approach guarantees the boundedness
of all the signals in closed-loop system. These considered
horizontal platform systems are in the form 𝑥̇

1
= 𝑥

2
, 𝑥̇
2

=

𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)𝑢, where 𝑥 = [𝑥

1
, 𝑥

2
]

𝑇 and 𝑔(𝑡, 𝑥) = 1.
If control gain 𝑔(𝑡, 𝑥) is unknown, how can we design the
control scheme to achieve the stability for uncertain HPS?

To the author’s best knowledge, there are few literatures
to research the stability problem for uncertain HPS with
unknown control gain. To handle unknown nonlinear func-
tion 𝑔(𝑡, 𝑥) in HPS, several nonlinear approximators, for
example, fuzzy logic systems and neural networks, have been
used. Two of the main features of adaptive fuzzy approaches
are as follows: (i) they can be used to deal with those
nonlinear systemswithout satisfying thematching conditions
and (ii) they do not require the unknown nonlinear functions
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being linearly parameterized [11–15]. In order to meet control
objectives, the used controller in indirect adaptive schemes
is in the form 𝑢 = 𝑔

−1
(𝑥, 𝜃

𝑔
)(V − 𝑓(𝑡, 𝑥)), where V is a new

control input. 𝑔(𝑥, 𝜃

𝑔
) is parameterized approximation of

actual function𝑔(𝑡, 𝑥). 𝜃
𝑔
represents the adjustable parameter

of the approximation. Since the approximation 𝑔(𝑥, 𝜃

𝑔
) is

generated online by estimating the parameter 𝜃

𝑔
, one can

notice that the above controller is not well-defined because
of the singular problem of the controller. In this paper,
we use the regularized inverse of 𝑔

−1
(𝑥, 𝜃

𝑔
) as 𝑔(𝑥, 𝜃

𝑔
)(𝜖 +

𝑔

2
(𝑥, 𝜃

𝑔
))

−1. The regularized inverse is well-defined even
when𝑔(𝑥, 𝜃

𝑔
) is singular. Comparedwith relatedworks, there

are fourmain contributions that are worth being emphasized:

(1) Compared with the results in [4–10], the uncertain
HPS with unknown control gain is considered.

(2) The prescribed performance function (PPF) is incor-
porated into the control design.

(3) Adaptive laws are proposed to update the fuzzy
parameters.

(4) The controller will not appear as singular problem.

Recently, an attempt to establish a priori specified perfor-
mance control paradigm has been exploited [16], where the
maximum overshoot, the convergence rate, and steady-state
error are all addressed. Motivated by the above discussion,
we will propose an adaptive fuzzy control for HPSs with
prescribed transient and steady-state tracking performance.
Inspired by [17, 18], an improved prescribed performance
function (PPF) is incorporated into the control design. An
error transformed system is derived by applying the PPF
on the original system. Consequently, the tracking error
of the original system can be guaranteed within the pre-
scribed bound provided the transformed system is stable.
For this purpose, an adaptive prescribed performance control
(APPC) is designed for uncertain HPS in the presence of sys-
temuncertainties and external disturbance, which also allows
proving the closed-loop stability. A comparative example is
given to emphasize the effectiveness of the proposed APPC
based on the PPF design.

The organization of this paper is described as follows. In
the next section, system model is derived, and the assump-
tions are also given. In Section 3, the design of the proposed
control strategies is discussed.The simulation results are pre-
sented to demonstrate the effectiveness of proposed control
scheme in Section 4. Conclusion is presented in Section 5.

2. System Descriptions and
Problem Formulations

The HPS is a mechanical device composed of a platform
and an accelerometer located on the platform (see Figure 1).
The platform can freely rotate about the horizontal axis,
which penetrates its mass center.The accelerometer produces
an output signal to the actuator, subsequently generating a
torque to inverse the rotation of the platform to balance

1

2

3

Figure 1: Physical model of the horizontal platform system (1).
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Figure 2: Phase plane trajectory of the horizontal platform system
(1).

the HPS, when the platform deviates from horizon. The
motion equations of the HPS are given by [9, 10]

𝐴 ̈𝑦 + 𝐷 ̇𝑦 + 𝑘𝑔 sin𝑦 −

3𝑔

𝑅

(𝐵 − 𝐶) cos𝑦 sin𝑦

= 𝐹 cos𝜔𝑡,

(1)

where 𝑦 is the rotation of the platform relative to horizon,
𝐴, 𝐵, and 𝐶 are inertia moment of the platform, 𝐷 is the
damping coefficient, 𝑘 is the proportional constant of the
accelerometer, 𝑔 is the acceleration constant of gravity, 𝑅 is
the radius of Earth, and 𝐹 cos𝜔𝑡 is the harmonic torque.
System (1) exhibits chaotic behavior with 𝐴 = 0.3, 𝐵 = 0.5,
𝐶 = 0.2,𝐷 = 0.4, 𝑘 = 0.11559633, 𝑅 = 6378000, 𝐹 = 3.4, and
𝜔 = 1.8 (see Figure 2).

For simplicity, we introduce the following notations: 𝑥 =

[𝑥

1
, 𝑥

2
]

𝑇
= [𝑦, ̇𝑦]

𝑇; then the dynamic model of (1) with
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unknown control gain and external disturbances can be
described by the following equations:

𝑥̇

1
= 𝑥

2
,

𝑥̇

2
= 𝑓 (𝑡, 𝑥) + 𝑑 (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥) 𝑢 (𝑡) ,

(2)

where 𝑢(𝑡) ∈ 𝑅 is the control input, 𝑔(𝑡, 𝑥) is unknown
control gain, and 𝑑(𝑡, 𝑥) is unknown external disturbance.
𝑓(𝑡, 𝑥) = −𝑎𝑥

2
−𝑏 sin𝑥

1
+𝑙 cos𝑥

1
sin𝑥

1
+ℎ cos𝜔𝑡 is assumed

to be unknown, 𝑎 = 𝐷/𝐴, 𝑏 = 𝑘𝑔/𝐴, 𝑙 = 3𝑔(𝐵 − 𝐶)/𝑅𝐴, and
ℎ = 𝐹/𝐴.

The objective of this paper is to construct a fuzzy adaptive
controller for system (2) such that

(P1) the system state 𝑦 tracks the reference signal 𝑦
𝑑

∈ 𝑅

and all the signals in the closed-loop system remain
bounded,

(P2) both prescribed transient and steady-state behavioral
bounds on the tracking error 𝑒 = 𝑦−𝑦

𝑑
= 𝑥

1
−𝑦

𝑑
are

achieved.

To meet the objective, the following assumptions are
made for the system (2).

Assumption 1. The state vector 𝑥 is measurable, and the
references 𝑦

𝑑
, ̇𝑦

𝑑
, and ̈𝑦

𝑑
are continuous and bounded.

Assumption 2. 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are unknown but bounded.
And there exists 𝛿 > 0 such that 𝑔(𝑡, 𝑥) > 𝛿.

Remark 3. The present control scheme in this paper can
guarantee control objectives without the knowledge of the 𝛿

value in Assumption 2.

2.1. Prescribed Performance

Definition 4. A smooth function 𝜇(𝑡) : 𝑅

+
→ 𝑅

+ is called a
prescribed performance function (PPF) if 𝜇(𝑡) is decreasing
and lim

𝑡→∞
𝜇(𝑡) = 𝜇

∞
.

In this paper, we select 𝜇(𝑡) as

𝜇 (𝑡) = (𝜇

0
− 𝜇

∞
) 𝑒

−𝜅𝑡
+ 𝜇

∞
, (3)

where 𝜇

0
> 𝜇

∞
and 𝜅 > 0 are design parameters.

It is sufficient to achieve the control objective (P2) if
condition (4) holds

−𝛿min𝜇 (𝑡) < 𝑒 (𝑡) < 𝛿max𝜇 (𝑡) , ∀𝑡 ≥ 0, (4)

where 𝛿min and 𝛿max are design constants.

Remark 5. The transient and steady-state performances can
be designed a priori by tuning the parameters 𝛿min, 𝛿max, 𝜇0,
𝜅, 𝜇
∞
.

To represent (4) by an equality form, we employ an error
transformation as

𝑒 (𝑡) = 𝜇 (𝑡) 𝑠 (𝑧) , (5)

where 𝑧 is the transformed error and 𝑠(⋅) is smooth, strictly
increasing function and satisfies the following condition:

−𝛿min < 𝑠 (𝑧) < 𝛿max, ∀𝑧 ∈ 𝐿

∞
,

lim
𝑧→−∞

𝑠 (𝑧) = −𝛿min,

lim
𝑧→+∞

𝑠 (𝑧) = 𝛿max.

(6)

Note that 𝑠(𝑧) are strictly increasing functions; we have

𝑧 = 𝑠

−1
(

𝑒 (𝑡)

𝜇 (𝑡)

) . (7)

Note that, for any initial condition 𝑒(0), if parameters 𝜇
0
,

𝛿min, and 𝛿max are selected such that −𝛿min𝜇(0) < 𝑒(0) <

𝛿max𝜇(0) and 𝑧 can be controlled to be bounded, then
−𝛿min < 𝑠(𝑧) < 𝛿max holds. Thus, the condition −𝛿min𝜇(𝑡) <

𝑒(𝑡) < 𝛿max𝜇(𝑡) can be guaranteed. Now, the tracking control
problem of system (2) is now transformed to stabilize the
transformed system (7).

Differentiating (7) with respect to time 𝑡 yields

𝑧̇ =

𝜕𝑠

−1

𝜕 (𝑒 (𝑡) /𝜇 (𝑡))

1

𝜇 (𝑡)

[𝑥

2
− ̇𝑦

𝑑
−

𝑒 (𝑡) 𝜇̇ (𝑡)

𝜇 (𝑡)

] . (8)

Let 0 < 𝑟 = (𝜕𝑠

−1
/𝜕(𝑒(𝑡)/𝜇(𝑡)))(1/𝜇(𝑡)) < 𝑟

𝑚
, where 𝑟

𝑚
is a

positive constant. Then (8) can be rewritten as

𝑧̇ = 𝑟 [𝑥

2
− ̇𝑦

𝑑
−

𝑒𝜇̇

𝜇

] . (9)

Moreover, we obtain

𝑧̈ = 𝑟𝐹

1
(𝑥, 𝜇, 𝑒) + 𝑟𝐹

2
(𝑡, 𝑥) + 𝑟𝑔 (𝑡, 𝑥) 𝑢, (10)

where 𝐹

1
(𝑥, 𝜇, 𝑒) = ( ̇𝑟/𝑟)(𝑥

2
− ̇𝑦

𝑑
− 𝑒𝜇̇/𝜇) − ( ̈𝑦

𝑑
+ ̇𝑒𝜇̇/𝜇 +

𝑒𝜇̈𝜇/𝜇

2
− 𝑒𝜇̇

2
/𝜇

2
) is known nonlinear function and 𝐹

2
(𝑡, 𝑥) =

𝑓(𝑡, 𝑥) + 𝑑(𝑡, 𝑥) is a nonlinear function including unknown
dynamics and disturbances.

Remark 6. In general, 𝑠(𝑧) is chosen as 𝑠(𝑧) = (𝛿max𝑒
𝑧

−

𝛿min𝑒
−𝑧

)/(𝑒

𝑧
+𝑒

−𝑧
). So, we can calculate that 𝑟 = (1/(𝜆+𝛿min)−

1/(𝜆−𝛿max))/2𝜇 such that 0 < 𝑟 < (𝛿max+𝛿min)/𝜇∞𝛿max𝛿min,
where 𝜆 = 𝑒/𝜇.

2.2. Fuzzy Logic Systems. The basic configuration of a fuzzy
logic system consists of a fuzzifier, some fuzzy IF-THEN
rules, a fuzzy inference engine, and a defuzzifier. The fuzzy
inference engine uses the fuzzy IF-THEN rules to perform a
mapping from an input vector 𝑥 = [𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
]

𝑇
∈ 𝑅

𝑛 to
an output 𝛼(𝑥) ∈ 𝑅. The 𝑖th fuzzy rule is written as

Rule 𝑖: if 𝑥

1
is 𝐹

𝑖

1
and . . . and 𝑥

𝑛
is 𝐹

𝑖

𝑛
then 𝛼 (𝑥)

is 𝛼

𝑖
,

(11)

where 𝐹

𝑖

1
, 𝐹

𝑖

2
, . . . and 𝐹

𝑖

𝑛
are fuzzy sets and 𝛼

𝑖
is the fuzzy

singleton for the output in the 𝑖th rule. By using the sin-
gleton fuzzifier, product inference, and the center-average
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defuzzifier, the output of the fuzzy system can be expressed
as follows:

𝛼 (𝑥) =

∑

𝑁

𝑗=1
𝛼

𝑗
∏

𝑛

𝑖=1
𝜇

𝐹
𝑗

𝑖

(𝑥

𝑖
)

∑

𝑁

𝑗=1
[∏

𝑛

𝑖=1
𝜇

𝐹
𝑗

𝑖

(𝑥

𝑖
)]

= 𝜃

𝑇
𝜓 (𝑥) , (12)

where 𝜇

𝐹
𝑗

𝑖

(𝑥

𝑖
) is the degree of membership of 𝑥

𝑖
to 𝐹

𝑗

𝑖
, 𝑁 is

the number of fuzzy rules, 𝜃 = [𝛼

1
, . . . , 𝛼

𝑁
]

𝑇 is the adjustable
parameter vector, and 𝜓(𝑥) = [𝑝

1
(𝑥), 𝑝

2
(𝑥), . . . , 𝑝

𝑁
(𝑥)]

𝑇,
where

𝑝

𝑗
(𝑥) =

∏

𝑛

𝑖=1
𝜇

𝐹
𝑗

𝑖

(𝑥

𝑖
)

∑

𝑁

𝑗=1
[∏

𝑛

𝑖=1
𝜇

𝐹
𝑗

𝑖

(𝑥

𝑖
)]

(13)

is the fuzzy basis function. It is assumed that fuzzy basis
functions are selected so that there is always at least one active
rule.

3. Main Results

Define the filtered error as

𝜎 = 𝜄𝑧 + 𝑧̇, (14)

where 𝜄 > 0 is a positive constant such that the tracking error
𝑧 is bounded as long as 𝜎 is bounded.

Due to the fact that 𝐹

2
(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are unknown,

we need to use fuzzy logic system to approximate the
nonlinear unknown functions. By applying the introduced
fuzzy systems, approximation of function 𝐹

2
(𝑡, 𝑥) and 𝑔(𝑡, 𝑥)

can be expressed as follows:

̂

𝐹

2
(𝑥, 𝜃

𝐹2
) = 𝜃

𝑇

𝐹2
𝜓

𝐹2
(𝑥) ,

𝑔 (𝑥, 𝜃

𝑔
) = 𝜃

𝑇

𝑔
𝜓

𝑔
(𝑥) .

(15)

Optimal parameters 𝜃∗
𝐹2
and 𝜃

∗

𝑔
can be defined such that

𝜃

∗

𝐹2
= argmin

𝜃

[sup 󵄨

󵄨

󵄨

󵄨

󵄨

𝐹

2
(𝑡, 𝑥) −

̂

𝐹

2
(𝑥, 𝜃

𝐹2
)

󵄨

󵄨

󵄨

󵄨

󵄨

] ,

𝜃

∗

𝑔
= argmin

𝜃

[sup 󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝑥) − 𝑔 (𝑥, 𝜃

𝑔
)

󵄨

󵄨

󵄨

󵄨

󵄨

] .

(16)

Define the parameter estimation errors and the fuzzy
approximation errors as follows:

̃

𝜃

𝐹2
= 𝜃

𝐹2
− 𝜃

∗

𝐹2
,

̃

𝜃

𝑔
= 𝜃

𝑔
− 𝜃

∗

𝑔
,

𝜀

𝐹2
(𝑥) = 𝐹

2
(𝑥, 𝜃

∗

𝐹2
) − 𝐹

2
(𝑡, 𝑥) ,

𝜀

𝑔
(𝑥) = 𝑔 (𝑥, 𝜃

∗

𝑔
) − 𝑔 (𝑡, 𝑥) .

(17)

We assume that |𝜀
𝐹2
| ≤ 𝜀

1
and |𝜀

𝑔
| ≤ 𝜀

2
, where 𝜀

1
and 𝜀

2
are

positive constants.

The adaptive prescribed performance controller can be
specified as

𝑢 = 𝑢

1
+ 𝑢

2
, (18)

where

𝑢

1
= −𝑔 (𝑥, 𝜃

𝑔
) [𝜖 + 𝑔

2
(𝑥, 𝜃

𝑔
)]

−1

⋅ [𝐹

3
(𝑥, 𝜇, 𝑒) +

̂

𝐹

2
(𝑥, 𝜃

𝐹2
) + 𝜂

1
𝜎] ,

(19)

𝑢

2
= −

(𝜀

1
+ 𝜀

2

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

) ⋅ sign (𝜎)

𝛿

,

(20)

where 𝜖 is a small positive constant, 𝜂
1
is a designed positive

constant, 𝑢
3
= 𝜖[𝜖+𝑔

2
(𝑥, 𝜃

𝑔
)]

−1
[𝐹

3
(𝑥, 𝜇, 𝑒)+

̂

𝐹

2
(𝑥, 𝜃

𝐹2
)+𝜂

1
𝜎],

𝐹

3
(𝑥, 𝜇, 𝑒) = 𝐹

1
(𝑥, 𝜇, 𝑒) + 𝜄(𝑥

2
− ̇𝑦

𝑑
− 𝑒 ̇𝜇/𝜇), and 𝛿 is assumed

to be known.
To generate the approximations 𝐹

2
(𝑡, 𝑥) and 𝑔(𝑡, 𝑥)

online, we choose the following adaptive laws:

̇

𝜃

𝐹2
= 𝑟𝜍

1
𝜎𝜓

𝐹2
,

̇

𝜃

𝑔
= 𝑟𝜍

2
𝑢

1
𝜎𝜓

𝑔
,

(21)

where 𝜍

1
, 𝜍

2
are positive constants.

So, we have the following result.

Theorem 7. Consider the controlled HPS (2) and the error
transform (7). Suppose that Assumptions 1 and 2 are satisfied.
Then controller (18) with the adaptive laws given by (21)
can guarantee that all signals in the closed-loop system are
bounded. Furthermore,The prescribed control performance (4)
is preserved.

Proof. Consider a Lyapunov function as

𝑉 =

1

2

[

[

𝜎

2
+

̃

𝜃

𝑇

𝐹2

̃

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̃

𝜃

𝑔

𝜍

2

]

]

. (22)

The time derivative of 𝑉 is given by

̇

𝑉 = 𝜎 [𝜄𝑧̇ + 𝑧̈] +

̃

𝜃

𝑇

𝐹2

̇

̃

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

̃

𝜃

𝑔

𝜍

2

= 𝜎(𝑟𝜄 (𝑥

2
− ̇𝑦

𝑑
−

𝑒𝜇̇

𝜇

) + 𝑟𝐹

1
(𝑥, 𝜇, 𝑒) + 𝑟𝐹

2
(𝑡, 𝑥)

+ 𝑟𝑔 (𝑡, 𝑥) 𝑢) +

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

= 𝜎 (𝑟𝐹

3
(𝑥, 𝜇, 𝑒)

+ 𝑟 (𝐹

∗

2
(𝑥, 𝜃

∗

𝐹2
) − 𝜀

𝐹2
) + 𝑟 (𝑔 (𝑡, 𝑥) − 𝑔 (𝑥, 𝜃

𝑔
)) 𝑢

1

+ 𝑟𝑔 (𝑥, 𝜃

𝑔
) 𝑢

1
+ 𝑟𝑔 (𝑡, 𝑥) 𝑢

2
) +

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

.

(23)
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Notice that 𝑔

2
(𝑥, 𝜃

𝑔
)[𝜖 + 𝑔

2
(𝑥, 𝜃

𝑔
)]

−1
= 1 − 𝜖[𝜖 +

𝑔

2
(𝑥, 𝜃

𝑔
)]

−1. One can obtain

̇

𝑉 = 𝜎 (−𝑟𝜂

1
𝜎 + 𝑟

̃

𝜃

𝑇

𝐹2
𝜓

𝐹2
− 𝑟𝜀

𝐹2
+ 𝑟

̃

𝜃

𝑇

𝑔
𝜓

𝑔
𝑢

1
− 𝑟𝜀

𝑔
𝑢

1

+ 𝑟𝑢

3
+ 𝑟𝑔 (𝑡, 𝑥) 𝑢

2
) +

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

≤ −𝑟𝜂

1
𝜎

2

+ 𝑟𝜎

̃

𝜃

𝑇

𝐹2
𝜓

𝐹2
+ 𝑟𝜀

1 |
𝜎| + 𝑟𝜎

̃

𝜃

𝑇

𝑔
𝜓

𝑔
𝑢

1
+ 𝑟𝜀

2 |
𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+ 𝑟 |𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

+ 𝑟𝜎𝑔 (𝑡, 𝑥) 𝑢

2
+

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

.

(24)

According to Assumption 2 and (20), we have
𝜎𝑔(𝑡, 𝑥)𝑢

2
< −𝐿|𝜎|, where 𝐿 = 𝜀

1
+ 𝜀

2
|𝑢

1
| + |𝑢

3
|. So, by

using adaptation laws (21), we obtain

̇

𝑉 ≤ −𝑟𝜂

1
𝜎

2
. (25)

Therefore, ̇

𝑉 is negative semidefinite and 𝑉 ∈ 𝐿

∞
, which

implies that 𝑧, ̃

𝜃

𝐹2
, and ̃

𝜃

𝑔
are bounded. So, 𝑧 ∈ 𝐿

∞
. Then,

according to the properties of function 𝑠(𝑧), we know that
−𝛿min < 𝑠(𝑧) < 𝛿max. Then, one can conclude that tracking
control of system (2) with prescribed error performance (4)
is achieved. This completes the proof.

Remark 8. Comparedwith the results in [7–10], the unknown
control gain is considered in this paper.

Remark 9. In order to avoid the chatter in controller (18), we
can modify 𝑢

2
as follows:

𝑢

2
= −

𝜎 |𝜎| (𝜀1
+ 𝜀

2

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

𝛿 |𝜎|

2
+ 𝜉

, (26)

where 𝜉 is a design time-varying parameter defined as ̇

𝜉 =

−𝜂

2
|𝜎|(𝜀

1
+ 𝜀

2
|𝑢

1
| + |𝑢

3
|)/(𝛿|𝜎|

2
+ 𝜉), where 𝜂

2
is a positive

constant.

Remark 10. The control law (18) can effectively avoid the
singularity problem, because even when 𝑔(𝑥, 𝜃

𝑔
) is singular,

this controller is well-defined.
In order to obtain a control law with its adaptive laws

guaranteeing control objectives without the knowledge of
the 𝛿 value (see Assumption 2) and the reconstruction error
bounds 𝜀

1
and 𝜀

2
in the controller, we will propose a new

adaptive control scheme.

Theorem 11. Consider the controlled HPS (2) and the error
transform (7), and suppose that Assumptions 1 and 2 are
satisfied. Consider the control law

𝑢 = 𝑢

1
+ 𝑢

2
, (27)

where

𝑢

1
= −𝑔 (𝑥, 𝜃

𝑔
) [𝜖 + 𝑔

2
(𝑥, 𝜃

𝑔
)]

−1

⋅ [𝐹

3
(𝑥, 𝜇, 𝑒) +

̂

𝐹

2
(𝑥, 𝜃

𝐹2
) + 𝜂

1
𝜎] ,

(28)

𝑢

2
= −

𝜎 |𝜎| (𝜀𝐹
+ 𝜀

𝑔

󵄨

󵄨

󵄨

󵄨

𝑢

𝑐

󵄨

󵄨

󵄨

󵄨

+ 𝜀

𝛿

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

|𝜎|

2
+ 𝜉

,

(29)

where 𝑢

3
= 𝜖[𝜖 + 𝑔

2
(𝑥, 𝜃

𝑔
)]

−1
[𝐹

3
(𝑥, 𝜇, 𝑒) +

̂

𝐹

2
(𝑥, 𝜃

𝐹2
) + 𝜂

1
𝜎].

And the adaptive laws are given as

̇

𝜃

𝐹2
= 𝑟𝜍

1
𝜎𝜓

𝐹2
,

̇

𝜃

𝑔
= 𝑟𝜍

2
𝑢

1
𝜎𝜓

𝑔
,

̇

𝜀̂

𝐹
= 𝜂

2
𝑟 |𝜎| ,

̇

𝜀̂

𝑔
= 𝜂

3
𝑟 |𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

,

̇

𝜀̂

𝛿
= 𝜂

4
𝑟 |𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

,

̇

𝜉 = −

𝜂

5 |
𝜎| (𝜀𝐹

+ 𝜀

𝑔

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+ 𝜀

𝛿

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

|𝜎|

2
+ 𝜉

,

(30)

where 𝜀

𝐹
, 𝜀
𝑔
, and 𝜀

𝛿
are the estimates of 𝜀∗

𝐹
= 𝜀

1
/𝛿, 𝜀∗
𝑔

= 𝜀

2
/𝛿,

and 𝜀

∗

𝛿
= 1/𝛿, respectively. Suppose 𝜍

1
> 0, 𝜍

2
> 0, 𝜂

𝑖
> 0,

𝑖 = 1, 2, 3, 4, 5, 𝜉(0) > 0, and all signals of the overall closed-
loop system are bounded and the tracking errors remain in a
neighborhood of the origin within the prescribed performance
bounds for all 𝑡 ≥ 0.

Proof. Consider a Lyapunov function as

𝑉 =

1

2

[

[

𝜎

2
+

̃

𝜃

𝑇

𝐹2

̃

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̃

𝜃

𝑔

𝜍

2

+

𝛿

𝜂

2

𝜀

2

𝐹
+

𝛿

𝜂

3

𝜀

2

𝑔
+

𝛿

𝜂

4

𝜀

2

𝛿

+

𝛿

𝜂

5

𝜉

2
]

]

,

(31)

where 𝜀

𝐹
= 𝜀

∗

𝐹
− 𝜀

𝐹
, 𝜀
𝑔
= 𝜀

∗

𝑔
− 𝜀

𝑔
, and 𝜀

𝛿
= 𝜀

∗

𝛿
− 𝜀

𝛿
.
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The time derivative of 𝑉 is given by

̇

𝑉 = 𝜎 [𝜄𝑧̇ + 𝑧̈] +

̃

𝜃

𝑇

𝐹2

̇

̃

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

̃

𝜃

𝑔

𝜍

2

−

𝛿

𝜂

2

𝜀

𝐹
𝜀

𝐹
−

𝛿

𝜂

3

𝜀

𝑔
𝜀

𝑔

−

𝛿

𝜂

4

𝜀

𝛿
𝜀

𝛿
+

𝛿

𝜂

5

𝜉

̇

𝜉 = 𝜎 (𝑟𝐹

3
(𝑥, 𝜇, 𝑒)

+ 𝑟 (𝐹

∗

2
(𝑥, 𝜃

∗

𝐹2
) − 𝜀

𝐹2
) + 𝑟 (𝑔 (𝑡, 𝑥) − 𝑔 (𝑥, 𝜃

𝑔
)) 𝑢

1

+ 𝑟𝑔 (𝑥, 𝜃

𝑔
) 𝑢

1
+ 𝑟𝑔 (𝑡, 𝑥) 𝑢

2
) +

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

−

𝛿

𝜂

2

𝜀

𝐹
𝜀

𝐹
−

𝛿

𝜂

3

𝜀

𝑔
𝜀

𝑔
−

𝛿

𝜂

4

𝜀

𝛿
𝜀

𝛿
+

𝛿

𝜂

5

𝜉

̇

𝜉 = 𝜎 (−𝑟𝜂

1
𝜎

+ 𝑟

̃

𝜃

𝑇

𝐹2
𝜓

𝐹2
− 𝑟𝜀

𝐹2
+ 𝑟

̃

𝜃

𝑇

𝑔
𝜓

𝑔
𝑢

1
− 𝑟𝜀

𝑔
𝑢

1
+ 𝑟𝑢

3

+ 𝑟𝑔 (𝑡, 𝑥) 𝑢

2
) +

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

−

𝛿

𝜂

2

𝜀

𝐹
𝜀

𝐹
−

𝛿

𝜂

3

⋅ 𝜀

𝑔
𝜀

𝑔
−

𝛿

𝜂

4

𝜀

𝛿
𝜀

𝛿
+

𝛿

𝜂

5

𝜉

̇

𝜉 ≤ −𝑟𝜂

1
𝜎

2
+ 𝑟𝜎

̃

𝜃

𝑇

𝐹2
𝜓

𝐹2

+ 𝑟𝜀

1 |
𝜎| + 𝑟𝜎

̃

𝜃

𝑇

𝑔
𝜓

𝑔
𝑢

1
+ 𝑟𝜀

2 |
𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+ 𝑟 |𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

+ 𝑟𝜎𝑔 (𝑡, 𝑥) 𝑢

2
+

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

−

𝛿

𝜂

2

𝜀

𝐹
𝜀

𝐹
−

𝛿

𝜂

3

⋅ 𝜀

𝑔
𝜀

𝑔
−

𝛿

𝜂

4

𝜀

𝛿
𝜀

𝛿
+

𝛿

𝜂

5

𝜉

̇

𝜉 ≤ −𝑟𝜂

1
𝜎

2
+ 𝑟𝜎

̃

𝜃

𝑇

𝐹2
𝜓

𝐹2

+ 𝑟𝜎

̃

𝜃

𝑇

𝑔
𝜓

𝑔
𝑢

1
+ 𝑟𝛿𝜀

∗

𝐹
|𝜎| + 𝑟𝜀

∗

𝑔
|𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+ 𝑟𝛿𝜀

∗

𝛿
|𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

+ 𝑟𝜎𝑔 (𝑡, 𝑥) 𝑢

2
+

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

−

𝛿

𝜂

2

𝜀

𝐹
𝜀

𝐹
−

𝛿

𝜂

3

⋅ 𝜀

𝑔
𝜀

𝑔
−

𝛿

𝜂

4

𝜀

𝛿
𝜀

𝛿
+

𝛿

𝜂

5

𝜉

̇

𝜉.

(32)

According to Assumption 2 and (29), we have

𝑟𝜎𝑔 (𝑡, 𝑥) 𝑢

2
< −

𝑟𝛿 |𝜎|

2
|𝜎| (𝜀𝐹

+ 𝜀

𝑔

󵄨

󵄨

󵄨

󵄨

𝑢

𝑐

󵄨

󵄨

󵄨

󵄨

+ 𝜀

𝛿

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

|𝜎|

2
+ 𝜉

= −𝑟 |𝜎| (𝜀𝐹
+ 𝜀

𝑔

󵄨

󵄨

󵄨

󵄨

𝑢

𝑐

󵄨

󵄨

󵄨

󵄨

+ 𝜀

𝛿

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

+

𝑟𝜉 |𝜎| (𝜀

𝐹
+ 𝜀

𝑔

󵄨

󵄨

󵄨

󵄨

𝑢

𝑐

󵄨

󵄨

󵄨

󵄨

+ 𝜀

𝛿

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

|𝜎|

2
+ 𝜉

.

(33)

So, by using inequality (33), we obtain

̇

𝑉 ≤ −𝑟𝜂

1
𝜎

2
+ 𝑟𝜎

̃

𝜃

𝑇

𝐹2
𝜓

𝐹2
+ 𝑟𝜎

̃

𝜃

𝑇

𝑔
𝜓

𝑔
𝑢

1
+ 𝑟𝛿𝜀

𝐹 |
𝜎|

+ 𝑟𝜀

𝑔 |
𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

+ 𝑟𝛿𝜀

𝛿 |
𝜎|

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

+

𝑟𝜉 |𝜎| (𝜀𝐹
+ 𝜀

𝑔

󵄨

󵄨

󵄨

󵄨

𝑢

𝑐

󵄨

󵄨

󵄨

󵄨

+ 𝜀

𝛿

󵄨

󵄨

󵄨

󵄨

𝑢

3

󵄨

󵄨

󵄨

󵄨

)

|𝜎|

2
+ 𝜉

+

̃

𝜃

𝑇

𝐹2

̇

𝜃

𝐹2

𝜍

1

+

̃

𝜃

𝑇

𝑔

̇

𝜃

𝑔

𝜍

2

−

𝛿

𝜂

2

𝜀

𝐹
𝜀

𝐹
−

𝛿

𝜂

3

𝜀

𝑔
𝜀

𝑔
−

𝛿

𝜂

4

𝜀

𝛿
𝜀

𝛿
+

𝛿

𝜂

5

𝜉

̇

𝜉.

(34)

Using adaptive laws (30), we have

̇

𝑉 ≤ −𝑟𝜂

1
𝜎

2
. (35)

By following the same reasoning as inTheorem 7, we con-
clude that tracking control of system (2)with prescribed error
performance (4) is achieved. This completes the proof.

4. Numerical Simulations

In this section, the numerical simulations are performed
to verify and demonstrate the effectiveness of the proposed
control scheme. Firstly, we employ sliding mode control
scheme (see [5]) to control uncertain HPS (2). Let 𝑒

1
= 𝑒 =

𝑥

1
−𝑦

𝑑
, 𝑒
2
= ̇𝑒

1
, and the error dynamic systemcanbe rewritten

as follows:

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
= 𝑓 (𝑡, 𝑥) + 𝑑 (𝑡, 𝑥) − ̈𝑦

𝑑
+ 𝑔 (𝑡, 𝑥) 𝑢 (𝑡) .

(36)

Due to the boundedness of chaotic phenomena, we assume
|𝑓(𝑡, 𝑥) + 𝑑(𝑡, 𝑥)| < 𝜌, where 𝜌 is unknown positive constant.
In order to eliminate the influence of 𝑔(𝑡, 𝑥), we still adopt the
same method in this paper.

Define sliding surface:

𝑠 = 𝑐

1
𝑒

1
+ 𝑒

2
, (37)

where 𝑐

1
is a designed positive constant. So, the control law is

designed as

𝑢 = 𝑢

1
+ 𝑢

2
,

𝑢

1
= −𝑔 (𝑥, 𝜃

𝑔
) [𝜖 + 𝑔

2
(𝑥, 𝜃

𝑔
)]

−1

[− ̈𝑦

𝑑
+ 𝜌] ,

𝑢

2

= −

(𝜀

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

1

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜖 [𝜖 + 𝑔

2
(𝑥, 𝜃

𝑔
)]

−1

[𝐹

3
(𝑥, 𝜇, 𝑒) + 𝜌]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝜂)

𝛿

⋅ sign (𝑠) ,

̇

𝜌̂ = 𝜍

1 |
𝑠| ,

̇

𝜃

𝑔
= 𝜍

2
𝑢

1
𝑠𝜓

𝑔
,

(38)

where 𝜌 is the estimate function of 𝜌. In all the simula-
tion process, the initial values of the chaotic system are
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Figure 3: Time response 𝑒(𝑡) of error dynamic system (36) under
the method of (38).
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Figure 4: Time response 𝑒(𝑡) of error dynamic system (36) under
the present method of (18).

[𝑥

1
(0), 𝑥

2
(0)]

𝑇
= [−0.2, 0.5]

𝑇, 𝑦
𝑑

= 0.4 sin(2𝑡), 𝑑(𝑡, 𝑥) =

0.5 sin(2𝑥
1
), 𝑔(𝑡, 𝑥) = 2− sin(𝑥

1
), 𝑐
1
= 𝜍

1
= 𝜍

2
= 3, 𝜂 = 2,𝐴 =

0.3, 𝐵 = 0.5, 𝐶 = 0.2, 𝐷 = 0.4, 𝑘 = 0.11559633, 𝑅 = 6378000,
𝐹 = 3.4, 𝜔 = 1.8, and 𝛿 = 0.5. We define seven Gaussian
membership functions uniformly distributed on the interval
[−10, 10]. And we choose the initial values of parameters of
the fuzzy systems as 𝜃

𝐹2
= 𝜃

𝑔
= 0.1. Figure 3 shows the time

response of the error state 𝑒(𝑡) under the controlmethod (38).
From Figure 3, we know that the tracking error 𝑒(𝑡) violates
the prescribed error bounds and cannot achieve the good
performances in the beginning stage.

Now, by using the present control scheme (18), we choose
𝛿max = 𝛿min = 1, 𝜇(𝑡) = 0.89𝑒

−3.5𝑡
+ 0.01. The simulation

results are shown in Figures 4 and 5. From Figures 4 and
5, we know that the present control method can guarantee
that all the variables are bounded. Moreover, the error 𝑒(𝑡)

remains within the prescribed performance bounds for all
time. All the aforementioned results clearly show that the
present PPF-based control method (18) can obtain better
regulation performance; that is, 𝑒(𝑡) can be retained within
the PPF bound and achieves faster convergence performance
compared to method (38).

The simulation results show that the proposed prescribed
transient and steady-state performances are achieved. Thus,
the numerical simulations verify theoretical analysis.
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Figure 5: Time response 𝑒(𝑡) (𝑡 ∈ [4.52, 4.70]) of error dynamic
system (36) under the present method of (18).

5. Conclusions

For a class of uncertain HPS with unknown control gain, the
adaptive fuzzy feedback tracking control problem has been
considered. By using prescribed performance functions, we
transform the system into an equivalent one, and the fuzzy
logic systems are used to identify the unknown nonlinear
functions. It is sufficient to guarantee the boundedness of all
the variables in the closed-loop system. Simulation results
have shown the effectiveness of the proposed scheme.
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