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We study a class of periodic general 𝑛-species competitive Lotka-Volterra systems with pure delays. Based on the continuation
theorem of the coincidence degree theory and Lyapunov functional, some new sufficient conditions on the existence and global
attractivity of positive periodic solutions for the 𝑛-species competitive Lotka-Volterra systems are established. As an application,
we also examine some special cases of the system, which have been studied extensively in the literature.

1. Introduction

As we know well, in recent years the application of the
continuation theorem of the coincidence degree theory
developed by Gaines andMawhin to the existence of positive
periodic solutions in population dynamical systems has been
studied extensively [1–21]. For example, in [1–3, 12, 14–20],
the authors studied existence of positive periodic solutions for
population competition systems, in [4, 5, 8, 13, 21], the authors
studied existence of positive periodic solutions for population
cooperative systems, in [9], the authors studied existence
of positive periodic solutions for population predator-prey
system, and in [6, 11], the authors studied existence of
positive periodic solutions for single species systems. The
continuation theorem is a powerful tool to study the existence
of periodic solutions of periodic high-dimensional time-
delayed problems.When dealing with time-delayed problem,
it is very convenient and the result is relatively simple [4, 5].

Frequently, the environments ofmost natural populations
undergo temporal variation, causing changes in the growth
characteristics of these populations. One of the methods of
incorporating temporal nonuniformity of the environments
in models is to assume that the parameters are periodic with
the same period of the time variable [14].

However, in the real world, the growth rate of a natural
species will not often respond immediately to changes in

its own population or that of an interacting species but will
rather do so after a time lag [22]. Research [23, 24] has shown
that time delays have a great destabilizing influence on the
species population. Usually, time delays are of two types:
discrete delay and distributed time delay. For a competition
system, competitors have both an instantaneous competition
and a memory competition in the past. Therefore, we should
introduce distributed delay into model foundation, which
will have more resemblance to the real ecosystem. In fact,
during the last decades, most of the authors study dynamics
of population with delays [1–7, 10–21, 25–31], which is useful
for the control of the population of mankind, animals, and
environment.

It is well known that the focus in theoretical models of
population and community dynamics must be not only on
how populations depend on their own population densities
or the population densities of other organisms but also
on how populations change in response to the physical
environment [19]. To consider periodic environmental factor,
it is reasonable to study Lotka-Volterra systems with periodic
coefficients. One of the celebrated population dynamical
systems is Lotka-Volterra competition system. Since the
Lotka-Volterra competition system has been established and
was accepted by many scientists, now it has became the most
important means to explain the ecological phenomenon.
Recently, a great deal of Lotka-Volterra competition system
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with delays have been proposed to study the existence of
periodic solutions [1–3, 12, 14–21, 25–31] and many good
results were obtained by using of the continuation theorem
[1–3, 12, 14–21].

In [1], the authors studied the following nonautonomous
𝑁-species Lotka-Volterra competitive systems with continu-
ous time delays:

𝑥̇ = 𝑥 (𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1
𝑎
𝑖𝑗 (

𝑡) 𝑥𝑗
(𝑡 − 𝜏
𝑖𝑗 (

𝑡))
]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(1)

By using the method of coincidence degree and Lyapunov
functional, a set of easily verifiable sufficient conditions of the
existence and global attractivity of positive periodic solutions
are established. In [2], the authors considered the following
nonautonomous 𝑁-species Lotka-Volterra competitive sys-
tems with distributed time delays,

𝑢̇ = 𝑢 (𝑡)
[

[

𝑟
𝑖 (
𝑡) − 𝑎
𝑖𝑖 (
𝑡) 𝑢𝑖 (

𝑡)

−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗 (

𝑡) ∫

0

−𝑇𝑖𝑗

𝐾
𝑖𝑗 (

𝑠) 𝑢𝑗 (
𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . , 𝑛,

(2)

and the periodic state dependent delay Lotka-Volterra com-
petition system,

𝑢̇ = 𝑢 (𝑡)
[

[

𝑟
𝑖 (
𝑡) − 𝑎
𝑖𝑖 (
𝑡) 𝑢𝑖 (

𝑡)

−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗 (

𝑡) 𝑢𝑗
(𝑡 − 𝜏
𝑗
(𝑡, 𝑢1 (𝑡) , . . . , 𝑢𝑛 (𝑡)))]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(3)

By using the Mawhin’s continuation theorem, the sufficient
conditions on the existence of positive periodic solutions
are established. In [3], the authors considered the following
nonautonomous delay 𝑁-species competitive systems with
delays:

𝑢̇ = 𝑢 (𝑡)
[

[

𝐹
𝑖
(𝑡, 𝑢
𝑖
(𝑡 − 𝜏
𝑖𝑖 (
𝑡)))

−

𝑛

∑

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗 (

𝑡) 𝑢𝑗
(𝑡 − 𝜏
𝑖𝑗 (

𝑡))
]

]

,

𝑡 ∈ R, 𝑖 = 1, 2, . . . , 𝑛.

(4)

By means of the Mawhin’s continuation theorem and
Lyapunov function method, the sufficient conditions for

the existence and global attractivity of positive periodic
solutions are established. In [21], the authors studied the
following nonautonomous 𝑁-species Lotka-Volterra coop-
erative systems with continuous time delays and feedback
controls:

𝑥̇
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) 𝑥𝑖
(𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))

+

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) 𝑥𝑗
(𝑡 − 𝜏
𝑖𝑗𝑙 (

𝑡))
]

]

−𝑑
𝑖 (
𝑡) 𝑢𝑖 (

𝑡) − 𝑒
𝑖 (
𝑡)

⋅ 𝑢
𝑖
(𝑡 − 𝜀
𝑖 (
𝑡)) ,

𝑢̇
𝑖 (
𝑡) = − 𝑏

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝛽
𝑖 (
𝑡) 𝑥𝑖 (

𝑡) + 𝛾
𝑖 (
𝑡) 𝑥𝑖

(𝑡 − 𝜎
𝑖 (
𝑡)) ,

𝑖 = 1, 2, . . . , 𝑛.

(5)

The sufficient conditions for the existence of positive periodic
solutions are established, based on theMawhin’s continuation
theorem.

Motivated by the above works, in this paper, we inves-
tigate the following 𝑛 species periodic Lotka-Volterra type
competitive systems with pure delays

𝑥̇
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) 𝑥𝑖
(𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))

−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) 𝑥𝑗 (
𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(6)

By using the technique of coincidence degree developed
by Gaines and Mawhin in [32], we will establish some
new sufficient conditions, which guarantee that the system
has at least one positive periodic solution. By means of
the Lyapunov functionals we also will further establish the
sufficient conditions on the global attractivity of the positive
periodic solution.

2. Preliminaries

In system (6), we have that 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) represent

the density of 𝑛 competitive species 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

at time 𝑡, respectively; 𝑟
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) represent the

intrinsic growth rate of species 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) at time 𝑡,

respectively; 𝑎
𝑖𝑖𝑙
(𝑡) (𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚) represent

the intrapatch restriction density of species 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

at time 𝑡, respectively; 𝑎
𝑖𝑗𝑙
(𝑡) (𝑙 = 1, 2, . . . , 𝑚, 𝑖 ̸= 𝑗, 𝑖, 𝑗 =

1, 2, . . . , 𝑛) represent the competitive coefficients between 𝑛

species 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) at time 𝑡, respectively. In this paper,

we always assume the following.
(H1) 𝜏

𝑖𝑗𝑙
> 0 and 𝜏

𝑖𝑖𝑙
(𝑡) (𝑙 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛),

𝑟
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are continuous 𝜔-periodic functions

with 𝜏
󸀠

𝑖𝑖𝑙
(𝑡) < 1 and ∫

𝜔

0 𝑟
𝑖
(𝑡)𝑑𝑡 > 0. 𝑎

𝑖𝑗𝑙
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑙 =

1, 2, . . . , 𝑚), (𝑖 = 1, 2, . . . , 𝑛) are continuous positive 𝜔-
periodic functions. 𝑘

𝑖𝑗𝑙
(𝑠) (𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑚)
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are nonnegative integrable functions on [−𝜏
𝑖𝑗𝑙
, 0] satisfying

∫

0
−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙
(𝑠)𝑑𝑠 = 1.

From the viewpoint of mathematical biology, in this
paper for system (6) we only consider the solution with the
following initial conditions:

𝑥
𝑖 (
𝑡) = 𝜙

𝑖 (
𝑡) , ∀𝑡 ∈ [−𝛾, 0] , 𝑖 = 1, 2, . . . , 𝑛, (7)

where 𝜙
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are nonnegative continuous

functions defined on [−𝛾, 0] satisfying 𝜙
𝑖
(0) > 0 (𝑖 =

1, 2, . . . , 𝑛) with 𝛾 = max
𝑡∈[0,𝜔]{𝜏𝑖𝑗𝑙(𝑡), (𝑖, 𝑗 = 1, 2, 𝑙 =

1, 2, . . . , 𝑚)}.
In this paper, for any 𝜔-periodic continuous function

𝑓(𝑡), we denote

𝑓
𝐿
= min
𝑡∈[0,𝜔]

𝑓 (𝑡) ,

𝑓
𝑀

= max
𝑡∈[0,𝜔]

𝑓 (𝑡) ,

𝑓 =

1
𝜔

∫

𝜔

0
𝑓 (𝑡) 𝑑𝑡.

(8)

In order to obtain the existence of positive 𝜔-periodic
solutions of system (6), we will use the continuation theorem
developed by Gaines and Mawhin in [32]. For the reader’s
convenience, we will introduce the continuation theorem in
the following.

Let 𝑋 and 𝑍 be two normed vector spaces. Let 𝐿 :

Dom 𝐿 ⊂ 𝑋 → 𝑍 be a linear operator and 𝑁 : 𝑋 → 𝑍

a continuous operator. The operator 𝐿 is called a Fredholm
operator of index zero, if dimKer 𝐿 = co dim Im 𝐿 < ∞ and
Im𝐿 is a closed set in 𝑍. If 𝐿 is a Fredholm operator of index
zero, then there exist continuous projectors 𝑃 : 𝑋 → 𝑋

and 𝑄 : 𝑍 → 𝑍 such that Im𝑃 = Ker 𝐿 and Im𝐿 =

Ker𝑄 = Im(𝐼 − 𝑄). It follows that 𝐿 | Dom 𝐿 ∩ Ker𝑃 :

Dom 𝐿∩Ker𝑃 → Im𝐿 is invertible and its inverse is denoted
by 𝐾
𝑃
and denote by 𝐽 : Im𝑄 → Ker 𝐿 an isomorphism of

Im𝑄 onto Ker𝐿. LetΩ be a bounded open subset of𝑋; we say
that the operator𝑁 is 𝐿-compact onΩ, whereΩ denotes the
closure of Ω in 𝑋, if 𝑄𝑁(Ω) is bounded and 𝐾

𝑃
(𝐼 − 𝑄)𝑁 :

Ω → 𝑋 is compact. Such definitions can be found in [4, 5].

Lemma 1 (see [10]). Suppose 𝜏 ∈ 𝐶
1
(𝑅, 𝑅)with 𝜏(𝑡+𝜔) ≡ 𝜏(𝑡)

and 𝜏
󸀠
(𝑡) < 1, ∀𝑡 ∈ [0, 𝜔]. Then the function 𝑡 − 𝜏(𝑡) has a

unique inverse function 𝜇(𝑡) satisfying 𝜇 ∈ 𝐶(𝑅, 𝑅), 𝜇(𝑢+𝜔) =
𝜇(𝑢) + 𝜔, ∀𝑢 ∈ 𝑅.

Lemma 2 (see [32]). Let 𝐿 be a Fredholm operator of index
zero and let𝑁 be 𝐿-compact on Ω. If

(a) for each 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥,

(b) for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0,

(c) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0,

then the operator equation 𝐿𝑥 = 𝑁𝑥 has at least one solution
lying in Dom𝐿 ∩ Ω.

3. Main Results

Now, for convenience of statements we denote the functions

𝑎
𝑖𝑗 (

𝑡) =

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (9)

The following theorem is about the existence of positive
periodic solutions of system (6).

Theorem 3. Suppose that assumption (H1) holds and there
exists a constant 𝜃

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

min
𝑡∈𝜔

{

{

{

𝑟
𝑖
𝜃
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑀

𝑖𝑗𝑙
𝜃
𝑗

∑
𝑛

𝑖=1 𝑟𝑖
𝐴
𝑗

}

}

}

=: 𝐵
𝑖
> 0, (10)

where

min
𝑡∈𝜔

{

{

{

𝑚

∑

𝑙=1
(𝛿
𝑖𝑖𝑙 (

𝑡) +

𝑛

∑

𝑗 ̸=𝑖

∫

0

−𝜏

𝑎
𝑗𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑗𝑖𝑙 (
𝑠) 𝑑𝑠)

}

}

}

=: 𝐴
𝑖
,

𝛿
𝑖𝑖𝑙 (

𝑡)

=

𝑎
𝑖𝑖𝑙
(𝜑
𝑖𝑖𝑙 (

𝑡))

1 − 𝜏
󸀠

𝑖𝑖𝑙
(𝜑
𝑖𝑖𝑙 (

𝑡))

,

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚,

(11)

and the algebraic equation,

𝑟
𝑖
− 𝑎
𝑖𝑖
V
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛, (12)

has a unique positive solution. Then system (6) has at least one
positive 𝜔-periodic solution.

Proof. For system (6) we introduce new variables 𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) such that

𝑥
𝑖 (
𝑡) = exp {𝑦

𝑖 (
𝑡)} , 𝑖 = 1, 2, . . . , 𝑛. (13)

Then system (6) is rewritten in the following form:

̇𝑦
𝑖 (
𝑡) = 𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))}

−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(14)

In order to apply Lemma 2 to system (14), we intro-
duce the normed vector spaces 𝑋 and 𝑍 as follows. Let
𝐶(𝑅, 𝑅

𝑛
) denote the space of all continuous function 𝑦(𝑡) =

(𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)) : 𝑅 → 𝑅
𝑛. We take

𝑋 = 𝑍 = {𝑦 (𝑡)

∈𝐶 (𝑅, 𝑅
𝑛
) : 𝑦 (𝑡) is an 𝜔-periodic function} ,

(15)
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with norm

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
=

𝑛

∑

𝑖=1
max
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
. (16)

It is obvious that 𝑋 and 𝑍 are the Banach spaces. We define
a linear operator 𝐿 : Dom 𝐿 ⊂ 𝑋 → 𝑍 and a continuous
operator𝑁 : 𝑋 → 𝑍 as follows:

𝐿𝑦 (𝑡) = ̇𝑦 (𝑡) ,

𝑁𝑦 (𝑡) = (𝑁𝑦1 (𝑡) ,𝑁𝑦2 (𝑡) , . . . , 𝑁𝑦𝑛 (𝑡)) ,
(17)

where

𝑁𝑦
𝑖 (
𝑡)

= 𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))}

−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠.

(18)

Further, we define continuous projectors 𝑃 : 𝑋 → 𝑋 and
𝑄 : 𝑍 → 𝑍 as follows:

𝑃𝑦 (𝑡) =

1
𝜔

∫

𝜔

0
𝑦 (𝑡) 𝑑𝑡,

𝑄V (𝑡) =
1
𝜔

∫

𝜔

0
V (𝑡) 𝑑𝑡.

(19)

We easily see Im𝐿 = {V ∈ 𝑍 : ∫

𝜔

0 V(𝑡)𝑑𝑡 = 0} and Ker 𝐿 = 𝑅
𝑛.

It is obvious that Im𝐿 is closed in𝑍 and dim Ker 𝐿 = 𝑛. Since
for any V ∈ 𝑍 there are unique V1 ∈ 𝑅

𝑛 and V2 ∈ Im𝐿 with

V1 =
1
𝜔

∫

𝜔

0
V (𝑡) 𝑑𝑡,

V2 (𝑡) = V (𝑡) − V1,
(20)

such that V(𝑡) = V1 + V2(𝑡), we have co dim Im 𝐿 = 𝑛. There-
fore, 𝐿 is a Fredholm mapping of index zero. Furthermore,
the generalized inverse (to 𝐿) 𝐾

𝑝
: Im𝐿 → Ker𝑃 ∩ Dom 𝐿

is given in the following form:

𝐾
𝑝
V (𝑡) = ∫

𝑡

0
V (𝑠) 𝑑𝑠 −

1
𝜔

∫

𝜔

0
∫

𝑡

0
V (𝑠) 𝑑𝑠 𝑑𝑡. (21)

For convenience, we denote 𝐹(𝑡) = (𝐹1(𝑡), 𝐹2(𝑡), . . . , 𝐹𝑛(𝑡)) as
follows:

𝐹
𝑖 (
𝑡) = 𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))}

−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠.

(22)

Thus, we have

𝑄𝑁𝑦 (𝑡) =

1
𝜔

∫

𝜔

0
𝐹 (𝑡) 𝑑𝑡,

𝐾
𝑝 (
𝐼 −𝑄)𝑁𝑢 (𝑡) = 𝐾

𝑝
𝐼𝑁𝑢 (𝑡) −𝐾

𝑝
𝑄𝑁𝑢 (𝑡)

= ∫

𝑡

0
𝐹 (𝑠) 𝑑𝑠 −

1
𝜔

∫

𝜔

0
∫

𝑡

0
𝐹 (𝑠) 𝑑𝑠 𝑑𝑡

+ (

1
2
−

𝑡

𝜔

)∫

𝜔

0
𝐹 (𝑠) 𝑑𝑠.

(23)

From formulas (23), we easily see that 𝑄𝑁 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁

are continuous operators. Furthermore, it can be verified that
𝐾
𝑝
(𝐼 − 𝑄)𝑁(Ω) is compact for any open bounded set Ω ⊂

𝑋 by using Arzela-Ascoli theorem and 𝑄𝑁(Ω) is bounded.
Therefore,𝑁 is 𝐿-compact onΩ for any open bounded subset
Ω ⊂ 𝑋.

Now, we reach the position to search for an appropriate
open bounded subset Ω for the application of the continua-
tion theorem (Lemma 2) to system (14).

Corresponding to the operator equation 𝐿𝑦(𝑡) = 𝜆𝑁𝑦(𝑡)

with parameter 𝜆 ∈ (0, 1), we have

̇𝑦
𝑖 (
𝑡) = 𝜆𝐹

𝑖 (
𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (24)

where 𝐹
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are given in (22).

Assume that 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)) ∈ 𝑋 is a
solution of system (24) for some parameter 𝜆 ∈ (0, 1). By
integrating system (24) over the interval [0, 𝜔], we obtain

∫

𝜔

0
[

[

𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))}

−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠
]

]

𝑑𝑡

= 0, 𝑖 = 1, 2, . . . , 𝑛.

(25)

Consequently,

∫

𝜔

0
[

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))}] 𝑑𝑡

+∫

𝜔

0
[

[

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠
]

]

𝑑𝑡

= 𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛.

(26)

Let 𝑠
𝑖𝑖𝑙
(𝑡) = 𝑡 − 𝜏

𝑖𝑖𝑙
(𝑡) (𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚);

then from Lemma 1 and (H1) we get that function 𝑠
𝑖𝑖𝑙
(𝑡) has

a unique 𝜔 periodic inverse function 𝜑
𝑖𝑖𝑙
(𝑡); then for every

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚, we have

∫

𝜔

0
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))} 𝑑𝑡

= ∫

𝜔−𝜏𝑖𝑖𝑙(𝜔)

−𝜏𝑖𝑖𝑙(0)

𝑎
𝑖𝑖𝑙
(𝜑
𝑖𝑖𝑙 (

𝑡))

1 − 𝜏
󸀠

𝑖𝑖𝑙
(𝜑
𝑖𝑖𝑙 (

𝑡))

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡.

(27)
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One can see that

𝑎
𝑖𝑖𝑙
(𝜑
𝑖𝑖𝑙 (

𝑡))

1 − 𝜏
󸀠

𝑖𝑖𝑙
(𝜑
𝑖𝑖𝑙 (

𝑡))

=: 𝛿
𝑖𝑖𝑙 (

𝑡) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚,

(28)

are 𝜔 periodic functions. Then for every 𝑖 = 1, 2, . . . , 𝑛, 𝑙 =
1, 2, . . . , 𝑚, we have

∫

𝜔

0
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))} 𝑑𝑡

= ∫

𝜔

0
𝛿
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡)} 𝑑𝑡.
(29)

For each 𝑖, 𝑗 = 1, 2, . . . , 𝑛, and 𝑙 = 1, 2, . . . , 𝑚, we have

∫

𝜔

0
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠 𝑑𝑡

= ∫

0

−𝜏

∫

𝜔

0
𝑎
𝑖𝑗𝑙 (

𝑡) 𝑘𝑖𝑗𝑙 (
𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑡 𝑑𝑠

= ∫

0

−𝜏

∫

𝑠+𝜔

𝑠

𝑎
𝑖𝑗𝑙 (

V− 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) exp {𝑦𝑗 (V)} 𝑑V 𝑑𝑠

= ∫

0

−𝜏

∫

𝜔

0
𝑎
𝑖𝑗𝑙 (

V− 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) exp {𝑦𝑗 (V)} 𝑑V 𝑑𝑠

= ∫

𝜔

0
∫

0

−𝜏

𝑎
𝑖𝑗𝑙 (

V− 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) exp {𝑦𝑗 (V)} 𝑑𝑠 𝑑V

= ∫

𝜔

0
(∫

0

−𝜏

𝑎
𝑖𝑗𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) 𝑑𝑠) exp {𝑦

𝑗 (
𝑡)} 𝑑𝑡.

(30)

From ((26)–(30)), we obtain

𝑛

∑

𝑖=1
(∫

𝜔

0
[

[

𝑚

∑

𝑙=1
𝛿
𝑖𝑖𝑙 (

𝑡) exp {𝑢𝑖 (𝑡)} +
𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
(∫

0

−𝜏

𝑎
𝑖𝑗𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) 𝑑𝑠) exp {𝑢

𝑗 (
𝑡)}

]

]

𝑑𝑡)

=

𝑛

∑

𝑖=1
(∫

𝜔

0
[

[

𝑚

∑

𝑙=1
𝛿
𝑖𝑖𝑙 (

𝑡) exp {𝑢𝑖 (𝑡)} +
𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
(∫

0

−𝜏

𝑎
𝑗𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑗𝑖𝑙 (
𝑠) 𝑑𝑠) exp {𝑢

𝑖 (
𝑡)}

]

]

𝑑𝑡)

=

𝑛

∑

𝑖=1
(∫

𝜔

0

𝑚

∑

𝑙=1
(𝛿
𝑖𝑖𝑙 (

𝑡) + ∫

0

−𝜏

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑗𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑗𝑖𝑙 (
𝑠) 𝑑𝑠) exp {𝑢

𝑖 (
𝑡)} 𝑑𝑡) =

𝑛

∑

𝑖=1
𝑟
𝑖
𝜔.

(31)

From the above equality we have

∫

𝜔

0

𝑚

∑

𝑙=1
(𝛿
𝑖𝑖𝑙 (

𝑡) +∫

0

−𝜏

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑗𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑗𝑖𝑙 (
𝑠) 𝑑𝑠)

⋅ exp {𝑢
𝑖 (
𝑡)} 𝑑𝑡 ≤

𝑛

∑

𝑖=1
𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛.

(32)

From (32) we can obtain

𝐴
𝑖
∫

𝜔

0
exp {𝑦

𝑖 (
𝑡)} 𝑑𝑡 ≤

𝑛

∑

𝑖=1
𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛, (33)

where

𝐴
𝑖

= min
𝑡∈𝜔

{

{

{

𝑚

∑

𝑙=1
(𝛿
𝑖𝑖𝑙 (

𝑡) +

𝑛

∑

𝑗 ̸=𝑖

∫

0

−𝜏

𝑎
𝑗𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑗𝑖𝑙 (
𝑠) 𝑑𝑠)

}

}

}

.

(34)

Consequently,

∫

𝜔

0
exp {𝑦

𝑖 (
𝑡)} 𝑑𝑡 ≤

∑
𝑛

𝑖=1 𝑟𝑖𝜔

𝐴
𝑖

, 𝑖 = 1, 2, . . . , 𝑛. (35)

From the continuity of 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)), there
exist constants 𝜉

𝑖
, 𝜂
𝑖
∈ [0, 𝜔] (𝑖 = 1, 2, . . . , 𝑛) such that

𝑦
𝑖
(𝜉
𝑖
) = max
𝑡∈[0,𝜔]

𝑦
𝑖 (
𝑡) ,

𝑦
𝑖
(𝜂
𝑖
) = min
𝑡∈[0,𝜔]

𝑦
𝑖 (
𝑡) ,

𝑖 = 1, 2, . . . , 𝑛.

(36)

From (35) and (36), we further obtain

𝑦
𝑖
(𝜂
𝑖
) ≤ ln(

∑
𝑛

𝑖=1 𝑟𝑖
𝐴
𝑖

) , 𝑖 = 1, 2, . . . , 𝑛. (37)

From ((26)–(30)), we can obtain

∫

𝜔

0
[

𝑚

∑

𝑙=1
𝛿
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡)}] 𝑑𝑡

+

𝑛

∑

𝑗 ̸=𝑖

∫

𝜔

0

𝑚

∑

𝑙=1
∫

0

−𝜏𝑖𝑗𝑙

𝑎
𝑖𝑗𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) 𝑑𝑠 exp {𝑦𝑗 (𝑡)} 𝑑𝑡

= 𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛.

(38)
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From (38) we can obtain

𝑚

∑

𝑙=1
𝜎
𝑀

𝑖𝑖𝑙
∫

𝜔

0
exp {𝑦

𝑖 (
𝑡)} 𝑑𝑡

≥ 𝑟
𝑖
𝜔−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑀

𝑖𝑗𝑙
∫

𝜔

0
exp {𝑦

𝑗 (
𝑡)} 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛.

(39)

From the assumptions of Theorem 3 and (35), (38), and (39)
we further obtain

𝑦
𝑖
(𝜉
𝑖
) ≥ ln(

𝐵
𝑖

∑
𝑚

𝑙=1 𝜎
𝑀

𝑖𝑖𝑙

) , 𝑖 = 1, 2, . . . , 𝑛, (40)

where

𝐵
𝑖
= min
𝑡∈𝜔

{

{

{

𝑟
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑀

𝑖𝑗𝑙

∑
𝑛

𝑖=1 𝑟𝑖
𝐴
𝑗

}

}

}

. (41)

On the other hand, directly from system (14) we have

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
̇𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ ∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑟
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+∫

𝜔

0
(

𝑚

∑

𝑙=1
𝑎
𝑖𝑖𝑙 (

𝑡) exp {𝑦𝑖 (𝑡 − 𝜏
𝑖𝑖𝑙 (

𝑡))}

+

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) exp {𝑦𝑗 (𝑡 + 𝑠)} 𝑑𝑠)𝑑𝑡

≤ ∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑟
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 +

𝑚

∑

𝑙=1
𝛿
𝑀

𝑖𝑖𝑙
∫

𝜔

0
exp {𝑦

𝑖 (
𝑡)} 𝑑𝑡

+

𝑚

∑

𝑙=1

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑀

𝑖𝑗𝑙
∫

𝜔

0
exp {𝑦

𝑗 (
𝑡)} 𝑑𝑡 ≤ ∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝑟
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+

𝑚

∑

𝑙=1
𝛿
𝑀

𝑖𝑖𝑙

∑
𝑛

𝑖=1 𝑟𝑖𝜔

𝐴
𝑖

+

𝑚

∑

𝑙=1

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑀

𝑖𝑗𝑙

∑
𝑛

𝑖=1 𝑟𝑖𝜔

𝐴
𝑗

≤
󵄨
󵄨
󵄨
󵄨
𝑟
𝑖

󵄨
󵄨
󵄨
󵄨
𝜔

+𝐶
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(42)

where

𝐶
𝑖
=

𝑚

∑

𝑙=1
(𝛿
𝑀

𝑖𝑖𝑙

∑
𝑛

𝑖=1 𝑟𝑖𝜔

𝐴
𝑖

+

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑀

𝑖𝑗𝑙

∑
𝑛

𝑖=1 𝑟𝑖𝜔

𝐴
𝑗

) ,

𝑖 = 1, 2, . . . , 𝑛.

(43)

From (37), (40), and (42), we have for any 𝑡 ∈ [0, 𝜔]

𝑦
𝑖 (
𝑡) ≤ 𝑦

𝑖
(𝜂
𝑖
) +∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
̇𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤ ln(
∑
𝑛

𝑖=1 𝑟𝑖
𝐴
𝑖

)+
󵄨
󵄨
󵄨
󵄨
𝑟
𝑖

󵄨
󵄨
󵄨
󵄨
𝜔 +𝐶
𝑖
=: 𝑀
𝑖
,

𝑖 = 1, 2, . . . , 𝑛,

(44)

𝑦
𝑖 (
𝑡) ≥ 𝑦

𝑖
(𝜉
𝑖
) −∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
̇𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≥ ln(
𝐵
𝑖

∑
𝑚

𝑙=1 𝜎
𝑀

𝑖𝑖𝑙

)−
󵄨
󵄨
󵄨
󵄨
𝑟
𝑖

󵄨
󵄨
󵄨
󵄨
𝜔 −𝐶
𝑖
=: 𝑁
𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(45)

Therefore, from (44) and (45), we have

max
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
≤ max {󵄨󵄨󵄨

󵄨
𝑀
𝑖

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑁
𝑖

󵄨
󵄨
󵄨
󵄨
} =: 𝐵

𝑖
,

𝑖 = 1, 2, . . . , 𝑛.
(46)

It can be seen that the constants 𝐵
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are

independent of parameter 𝜆 ∈ (0, 1). For any 𝑦 = (𝑦1,
𝑦2, . . . , 𝑦𝑛) ∈ 𝑅

𝑛, from (18) we can obtain

𝑄𝑁𝑦 = (𝑄𝑁𝑦1, 𝑄𝑁𝑦2, . . . , 𝑄𝑁𝑦𝑛) ,

𝑄𝑁𝑦
𝑖
= 𝑟
𝑖
− 𝑎
𝑖𝑖
exp {𝑦

𝑖
} −

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
exp {𝑦

𝑗
} ,

𝑖 = 1, 2, . . . , 𝑛.

(47)

We consider the following algebraic equation:

𝑟
𝑖
− 𝑎
𝑖𝑖
V
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
V
𝑗
= 0 𝑖 = 1, 2, . . . , 𝑛. (48)

From the assumption ofTheorem 3, the equation has a unique
positive solution V∗ = (V∗1 , V

∗

2 , . . . , V
∗

𝑛
). Hence, the equation

𝑄𝑁𝑦 = 0 has a unique solution 𝑦
∗

= (𝑦
∗

1 , 𝑦
∗

2 , . . . , 𝑦
∗

𝑛
) =

(lnV∗1 , lnV
∗

2 , . . . , lnV
∗

𝑛
) ∈ 𝑅
𝑛.

Choosing constant 𝐵 > 0 large enough such that |𝑦∗1 | +
|𝑦
∗

2 | + ⋅ ⋅ ⋅ + |𝑦
∗

𝑛
| < 𝐵 and 𝐵 > 𝐵1 + 𝐵2 + ⋅ ⋅ ⋅ + 𝐵

𝑛
, we define a

bounded open setΩ ⊂ 𝑋 as follows:

Ω = {𝑦 ∈𝑋 :
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
< 𝐵} . (49)

It is clear that Ω satisfies conditions (𝑎) and (𝑏) of Lemma 2.
On the other hand, by directly calculating we can obtain

deg {𝐽𝑄𝑁,Ω∩Ker 𝐿, (0, 0, . . . , 0)}

= sgn

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
𝑦1

𝑓
1
𝑦2

⋅ ⋅ ⋅ 𝑓
1
𝑦𝑛

𝑓
2
𝑦1

𝑓
2
𝑦2

⋅ ⋅ ⋅ 𝑓
2
𝑦𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
𝑛

𝑦1
𝑓
𝑛

𝑦2
⋅ ⋅ ⋅ 𝑓

𝑛

𝑦𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(50)
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where

𝑓
𝑖

𝑦𝑗
= − 𝑎
𝑖𝑗
exp {𝑦∗

𝑗
} , 𝑖 = 𝑗,

𝑓
𝑖

𝑦𝑗
= − 𝑎
𝑖𝑗
exp {𝑦∗

𝑗
} , 𝑖 ̸= 𝑗,

𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(51)

From the assumption of Theorem 3, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
𝑦1

𝑓
1
𝑦2

⋅ ⋅ ⋅ 𝑓
1
𝑦𝑛

𝑓
2
𝑦1

𝑓
2
𝑦2

⋅ ⋅ ⋅ 𝑓
2
𝑦𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
𝑛

𝑦1
𝑓
𝑛

𝑦2
⋅ ⋅ ⋅ 𝑓

𝑛

𝑦𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̸= 0. (52)

From this, we finally have

deg {𝐽𝑄𝑁,Ω∩Ker 𝐿, (0, 0, . . . , 0)} ̸= 0. (53)

This shows that Ω satisfies condition (𝑐) of Lemma 2.
Therefore, system (14) has a 𝜔-periodic solution 𝑦

∗
(𝑡) =

(𝑦
∗

1 (𝑡), 𝑦
∗

2 (𝑡), . . . , 𝑦
∗

𝑛
(𝑡)) ∈ Ω. Finally, we have system (6)

which has a positive 𝜔-periodic solution. This completes the
proof.

Theorem 4. Suppose that the conditions of Theorem 3 hold
and 𝜏
𝑖𝑖𝑙
(𝑡) ≡ 0 (𝑖, 𝑗 = 1, 2, 𝑙 = 1, 2, . . . , 𝑚); further, there exists

a constant 𝜋
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛) such that

min
𝑡∈[0,𝜔]

{

{

{

𝑚

∑

𝑙=1
(𝜋
𝑖
𝑎
𝑖𝑖𝑙 (

𝑡) −

𝑛

∑

𝑗 ̸=𝑖

𝜋
𝑗
∫

0

−𝜏𝑖𝑗𝑙

𝑎
𝑖𝑗𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) 𝑑𝑠)

}

}

}

=: 𝛿
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛;

(54)

then system (6) has a positive 𝜔-periodic solution which is
globally attractive.

Proof. From Theorem 3, we can obtain that system (6) has a
positive periodic solution.

Let 𝑥∗(𝑡) = (𝑥
∗

1 (𝑡), 𝑥
∗

2 (𝑡), . . . , 𝑥
∗

𝑛
(𝑡)) be a positive periodic

solution of system (6). Choose positive constants 𝑚
𝑖
> 0,

𝑀
𝑖
> 0 such that

𝑚
𝑖
≤ 𝑥
∗

𝑖
(𝑡) ≤ 𝑀

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (55)

From the assumptions ofTheorem 4, there exist constant 𝛽 >

0 such that for all 𝑡 ≥ 0 we have

𝛿
𝑖
≥ 𝛽 > 0, 𝑖 = 1, 2, . . . , 𝑛. (56)

Let (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)) be any solution of system (6); we
define Lyapunov functional as follows:

𝑉
𝑖 (
𝑡) = 𝜋

𝑖

󵄨
󵄨
󵄨
󵄨
ln𝑥∗
𝑖
(𝑡) − ln𝑥

𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝜋
𝑗
∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) ∫

𝑡

𝑡+𝑠

𝑎
𝑖𝑗𝑙 (

𝜃 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
(𝜃) − 𝑥

𝑗 (
𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜃 𝑑𝑠.

(57)

Calculating the upper right derivation of 𝑉
𝑖
(𝑡) along system

(6) for 𝑖 = 1, 2, . . . , 𝑛, we have

𝐷
+
𝑉
𝑖 (
𝑡) = sign (𝑥∗

𝑖
(𝑡) − 𝑥

𝑖 (
𝑡))

[

[

−

𝑚

∑

𝑙=1
𝜋
𝑖
𝑎
𝑖𝑖𝑙 (

𝑡) (𝑥
∗

𝑖
(𝑡)

− 𝑥
𝑖 (
𝑡)) +

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝜋
𝑗
𝑎
𝑖𝑗𝑙 (

𝑡)

⋅ ∫

0

−𝜏

𝑘
𝑖𝑗𝑙 (

𝑠) (𝑥
∗

𝑗
(𝑡 + 𝜃) − 𝑥

𝑗 (
𝑡 + 𝜃)) 𝑑𝑠

]

]

+

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝜋
𝑗
∫

0

−𝜏

𝑎
𝑖𝑗𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
(𝑡) − 𝑥

𝑗 (
𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝜋
𝑗
𝑎
𝑖𝑗𝑙 (

𝑡)

⋅ ∫

0

−𝜏

𝑘
𝑖𝑗𝑙 (

𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
(𝑡 + 𝜃) − 𝑥

𝑗 (
𝑡 + 𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ −

𝑚

∑

𝑙=1
𝜋
𝑖
𝑎
𝑖𝑖𝑙 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝜋
𝑗
∫

0

−𝜏

𝑎
𝑖𝑗𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑗𝑙 (
𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
(𝑡) − 𝑥

𝑗 (
𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
.

(58)

Further, we define a Lyapunov function as follows:

𝑉 (𝑡) =

𝑛

∑

𝑖=1
𝑉
𝑖 (
𝑡) . (59)

Calculating the upper right derivation of 𝑉(𝑡), from (58) we
finally can obtain, for all 𝑡 ≥ 0,

𝐷
+
𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1
𝛿
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
. (60)

Integrating both sides of (60) from 0 to 𝑡 and by (56), we
derive

𝑉 (𝑡) + 𝛽∫

𝑡

0
(

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑠) − 𝑥

𝑖 (
𝑠)
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠 ≤ 𝑉 (0) ,

𝑡 ≥ 0;

(61)

then

∫

𝑡

0
(

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑠) − 𝑥

𝑖 (
𝑠)
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠 ≤

𝑉 (0)
𝛽

, 𝑡 ≥ 0. (62)

By the definition of 𝑉(𝑡) and (59) we have

𝑛

∑

𝑖=1
𝜇
𝑖

󵄨
󵄨
󵄨
󵄨
ln𝑥∗
𝑖
(𝑡) − ln𝑥

𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑉 (𝑡) ≤ 𝑉 (0) , 𝑡 ≥ 0. (63)
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Therefore, for 𝑖 = 1, 2, . . . , 𝑛 we have

𝜇
𝑖

󵄨
󵄨
󵄨
󵄨
ln𝑥∗
𝑖
(𝑡) − ln𝑥

𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑉 (0) , 𝑡 ≥ 0, (64)

which, together with (55), lead to

𝑚
𝑖
exp{−𝑉 (0)

𝜇
𝑖

} ≤ 𝑥
𝑖 (
𝑡) ≤ 𝑀

𝑖
exp{𝑉 (0)

𝜇
𝑖

} ,

𝑖 = 1, 2, . . . , 𝑛,
(65)

and hence ∑
𝑛

𝑖=1 |𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)| ∈ 𝐿

1
[0, +∞). From the

boundedness of 𝑥∗
𝑖
(𝑡) and (64), it follows that 𝑥

𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are bounded for 𝑡 ≥ 0. It is obvious that both 𝑥
𝑖
(𝑡)

and 𝑥
∗

𝑖
(𝑡) satisfy the equations of system (9); then by system

(9) and the boundedness of 𝑥
𝑖
(𝑡) and 𝑥

∗

𝑖
(𝑡) we know that the

derivatives 𝑥̇
𝑖
(𝑡) and 𝑥̇∗

𝑖
(𝑡) are bounded. Furthermore, we can

obtain that 𝑥̇∗
𝑖
(𝑡) − 𝑥̇

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) and their derivatives

remain bounded on [0, +∞). Therefore ∑𝑛
𝑖=1 |𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)| is

uniformly continuous on [0, +∞). Thus from (62), we have

lim
𝑡→+∞

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
= 0. (66)

Therefore,

lim
𝑡→+∞

(𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖 (
𝑡)) = 0, 𝑖 = 1, 2, . . . , 𝑛. (67)

This completes the proof of Theorem 4.

Corollary 5. Suppose that the conditions of Theorem 4 hold;
then system (6) is permanent.

Proof. From the global attractivity of bounded positive solu-
tions, we can get that the permanence of system (6).

4. Applications

In this section, to illustrate the generality of our result,
we apply Theorem 3 to some particular Lotka-Volterra type
competition systemswith pure delays. Consider the following
periodic 𝑛-species competition systems:

𝑥̇
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1

𝑛

∑

𝑗=1
𝑎
𝑖𝑗𝑙 (

𝑡) 𝑥𝑗
(𝑡 − 𝜏
𝑖𝑗𝑙 (

𝑡))
]

]

,

𝑖 = 1, 2, . . . 𝑛.

(68)

𝑥̇
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)

⋅
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1
𝑎
𝑖𝑗𝑙 (

𝑡) ∫

0

−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙 (

𝑠) 𝑥𝑗 (
𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . 𝑛.

(69)

𝑥̇
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑚

∑

𝑙=1

𝑛

∑

𝑗=1
𝑎
𝑖𝑗𝑙 (

𝑡) 𝑥𝑗
(𝑡 − 𝜏
𝑖𝑗𝑙
)
]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(70)

For system ((68)–(70)), we assume the following:
(H2) 𝜏

𝑖𝑗𝑙
(𝑡) (𝑙 = 1, 2, . . . , 𝑚, 𝑖, 𝑗 = 1, 2, . . . , 𝑛), 𝑟

𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are continuous 𝜔-periodic functions with 𝜏󸀠
𝑖𝑗𝑙
(𝑡) <

1 and ∫

𝜔

0 𝑟
𝑖
(𝑡)𝑑𝑡 > 0. 𝑎

𝑖𝑗𝑙
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑙 = 1, 2, . . . , 𝑚) are

continuous, positive 𝜔-periodic functions.
(H3) 𝑟

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are 𝜔-periodic continuous

functions with ∫

𝜔

0 𝑟
𝑖
(𝑡)𝑑𝑡 > 0; 𝑎

𝑖𝑗𝑙
(𝑡) (𝑖, 𝑗 = 1, 2, . . ., 𝑛; 𝑙 =

1, 2, . . . , 𝑚) are positive 𝜔-periodic continuous functions;
𝑘
𝑖𝑗𝑙
(𝑠) (𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑚) are nonnegative

integrable functions on [−𝜏
𝑖𝑗𝑙
, 0] (𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑙 =

1, 2, . . . , 𝑚) satisfying ∫0
−𝜏𝑖𝑗𝑙

𝑘
𝑖𝑗𝑙
(𝑠)𝑑𝑠 = 1.

(H4) 𝜏
𝑖𝑗𝑙

> 0 (𝑙 = 1, 2, . . . , 𝑚, 𝑖, 𝑗 = 1, 2, . . . , 𝑛) are
constants, 𝑟

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are continuous 𝜔-periodic

functions with ∫

𝜔

0 𝑟
𝑖
(𝑡)𝑑𝑡 > 0. 𝑎

𝑖𝑗𝑙
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑙 =

1, 2, . . . , 𝑚) are continuous, positive 𝜔-periodic functions.
Thus fromTheorem 3 we have the following.

Corollary 6. Suppose that assumption (H2) holds and there
exists a constant 𝜁

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

min
𝑡∈[0,𝜔]

{

{

{

[

[

𝑟
𝑖
𝜁
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝛿
𝑀

𝑖𝑗𝑙
𝜁
𝑗

∑
𝑛

𝑖=1 𝑟𝑖
𝐸
𝑗

]

]

}

}

}

=: 𝐷
𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛,

(71)

where

min
𝑡∈[0,𝜔]

{

{

{

𝑚

∑

𝑙=1

[

[

𝛿
𝑖𝑖𝑙 (

𝑡) +

𝑛

∑

𝑗 ̸=𝑖

𝛿
𝑗𝑖𝑙 (

𝑡)
]

]

}

}

}

=: 𝐸
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝛿
𝑖𝑗𝑙 (

𝑡)

=

𝑎
𝑖𝑗𝑙
(𝜑
𝑖𝑗𝑙 (

𝑡))

1 − 𝜏
󸀠

𝑖𝑗𝑙
(𝜑
𝑖𝑗𝑙 (

𝑡))

,

𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚,

(72)

and the algebraic equation,

𝑟
𝑖
− 𝑎
𝑖𝑖
V
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛, (73)

has a unique positive solution.Then system (68) has at least one
positive 𝜔-periodic solution.

Corollary 7. Suppose that assumption (H3) holds and there
exists a constant 𝛽

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

min
𝑡∈[0,𝜔]

{

{

{

[

[

𝑟
𝑖
𝛽
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑀

𝑖𝑗𝑙
𝛽
𝑗

∑
𝑛

𝑖=1 𝑟𝑖
𝐾
𝑗

]

]

}

}

}

=: 𝐺
𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛,

(74)
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where

min
𝑡∈[0,𝜔]

{

{

{

𝑚

∑

𝑙=1
∫

0

−𝜏

[

[

𝑎
𝑖𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑖𝑖𝑙 (
𝑠) +

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑗𝑖𝑙 (

𝑡 − 𝑠) 𝑘𝑗𝑖𝑙 (
𝑠)
]

]

𝑑𝑠

}

}

}

=: 𝐾
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(75)

and the algebraic equation,

𝑟
𝑖
− 𝑎
𝑖𝑖
V
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛, (76)

has a unique positive solution.Then system (69) has at least one
positive 𝜔-periodic solution.

Corollary 8. Suppose that assumption (H4) holds and there
exists a constant 𝛾

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

min
𝑡∈[0,𝜔]

{

{

{

[

[

𝑟
𝑖
𝛾
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑚

∑

𝑙=1
𝑎
𝑀

𝑖𝑗𝑙
𝛾
𝑗

∑
𝑛

𝑖=1 𝑟𝑖
𝐿
𝑗

]

]

}

}

}

=: 𝐻
𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛,

(77)

where

min
𝑡∈[0,𝜔]

{

{

{

𝑚

∑

𝑙=1

[

[

𝑎
𝑖𝑖𝑙
(𝑡 + 𝜏
𝑖𝑖𝑙
) +

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑗𝑖𝑙
(𝑡 + 𝜏
𝑗𝑖𝑙
)
]

]

}

}

}

=: 𝐿
𝑖
,

𝑖 = 1, 2, . . . , 𝑛,

(78)

and the algebraic equation,

𝑟
𝑖
− 𝑎
𝑖𝑖
V
𝑖
−

𝑛

∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛, (79)

has a unique positive solution.Then system (70) has at least one
positive 𝜔-periodic solution.

5. One Example

In this section, we will give one example to illustrate the
results obtained in this paper. From the example, we will see
that if the conditions of Theorem 3 hold, then the system has
a positive periodic solution. If the conditions of Theorem 4
hold, then the system has a positive periodic solution and
which is globally attractive.

Example. We consider the following periodic three-species
competition systems:

𝑥̇1 (𝑡) = 𝑥1 (𝑡) [1.1+ cos (𝑡)

− (6+ sin (𝑡)) 𝑥1 (𝑡 − 𝜏111 (𝑡))

− (

22 + 11 sin (𝑡)
20

)∫

0

−𝜏121

𝑘121 (𝑠) 𝑥2 (𝑡 + 𝑠) 𝑑𝑠

− (

22 + 11 sin (𝑡)
20

)∫

0

−𝜏131

𝑘131 (𝑠) 𝑥3 (𝑡 + 𝑠) 𝑑𝑠] ,

𝑥̇2 (𝑡) = 𝑥2 (𝑡) [1.1+ sin (𝑡)

− (6+ sin (𝑡)) 𝑥2 (𝑡 − 𝜏221 (𝑡))

− (

22 + 11 sin (𝑡)
20

)∫

0

−𝜏211

𝑘211 (𝑠) 𝑥1 (𝑡 + 𝑠) 𝑑𝑠

− (

2 + sin (𝑡)
2

)∫

0

−𝜏231

𝑘231 (𝑠) 𝑥3 (𝑡 + 𝑠) 𝑑𝑠] ,

𝑥̇3 (𝑡) = 𝑥3 (𝑡) [1.1+ cos (𝑡)

− (6+ cos (𝑡)) 𝑥3 (𝑡 − 𝜏331 (𝑡))

− (

27 + 9 cos (𝑡)
20

)∫

0

−𝜏311

𝑘311 (𝑠) 𝑥1 (𝑡 + 𝑠) 𝑑𝑠

− (

18 + 9 cos (𝑡)
20

)∫

0

−𝜏321

𝑘321 (𝑠) 𝑥2 (𝑡 + 𝑠) 𝑑𝑠] ,

(80)

where 𝜏111(𝑡) = 𝜏221(𝑡) = 𝜏331(𝑡) = 0, 𝑛 = 3, 𝑚 = 1, 𝜔 = 2𝜋;
by direct calculation we can get

𝐵1 = 0.5,

𝐵2 = 0.65,

𝐵3 = 1.25,

(81)

and the following system of equations has a unique positive
solution

2V1 − 0.5V2 − 0.5V3 = 1.9802,

2V2 − 0.5V1 − 0.4V3 = 1.9608,

3V3 − 0.75V1 − 0.5V2 = 1.9417,

(82)

and get

V1 = 1.7554,

V2 = 1.6929,

V3 = 1.3682.

(83)

It is clear that all the conditions of Theorems 3 and 4 hold.
From the Figure 1. we can see, system (80) is permanent

and has a positive periodic solution which is globally attrac-
tive.
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Figure 1: Dynamic behaviors of system (80).
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