
Research Article
Native Process Migration in Wireless Sensor Networks

Syed Ishtiaq Hussain,1 Huma Javed,1 Tehseen Khan,2 Sara Shazad,1 and Falak Naz Khalil1

1Department of Computer Science, University of Peshawar, Peshawar, Pakistan
2Department of Computer Science, FAST National University Peshawar, Peshawar, Pakistan

Correspondence should be addressed to Syed Ishtiaq Hussain; ishtiaquop@yahoo.com

Received 27 April 2015; Revised 15 August 2015; Accepted 16 August 2015

Academic Editor: Mohammad M. Hassan

Copyright © 2015 Syed Ishtiaq Hussain et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a novel architecture for native process migration (PM) in wireless sensor networks (WSNs) without the use of
virtual execution environment. Resources in WSN are scarce; therefore creating virtual execution environment puts extra burden
on already stringent resources. In addition, the proposed architecture is migrating with complete process instead of code only
which also saves resources. The proposed architecture makes process migration decisions by continuously monitoring resources,
such as remaining battery life and free memory space on a node. The architecture is suitable for networks with fewer expensive
sensor nodes as it allows for better utilization of network resources. Transferring a live executing process from one node to another
to meet processing demands dynamically improves fault tolerance, resource utilization, and network management in WSN. The
architecture has been successfully tested and implemented on both COOJA simulator and a test bed of TelosB motes.

1. Introduction

Wireless sensor networks (WSNs) are distributed networks of
sensors nodes typically comprising of a large number of com-
municating nodes. A sensor node is designed to be physically
small and of low cost; therefore it has limited computational
power and small memory space. It is equipped with short
range wireless radio [1] for exchanging sensed data to other
nodes on the network. WSNs find their use in applications
needing measurements and monitoring of environmental
attributes such as temperature, humidity, light, pressure,
sound, acceleration, orientation, vibration, smoke, radiation,
and geographical location. They find their applications in
health, medicine, military, environment, and industrial envi-
ronments for measuring and monitoring physical attributes.

In WSN nodes failure is a very frequent and common
phenomenon. If a node fails the process or data are lost. In
case of physical destruction the data and programs cannot
be recovered but in case of depleted batteries recovery is
possible. As soon as the batteries life crosses a certain
threshold the sensors can transfer data and code to another
node having more energy or resources. It can transfer not
only data and programs but also processes which have been
processed partially and can save more energy.

Processmigration is the task ofmoving a process between
nodes during execution. Advantages of process migration
include dynamic processing load distribution [2], improved
fault tolerance [3], easier system administration, resource
sharing, data access locality, and distributed computing [4].

Process migration is generally accomplished in the fol-
lowing generic three steps [4]: (a) suspending a process to
be migrated at the source node, (b) sending process state,
memory space, and executable code over the network to
destination node, and finally (c) restoring process using
information received from source at target node.

Process migration has been done in WSN in agent based
systems such as Agilla using virtual environment. Virtual
environment consumes resources which is an expensive
overhead in WSN because of its very limited resources. An
implication and comparison of energy consumption of dif-
ferent strategies including native and virtual machine based
code execution are given in Dunkels et al. [5]. The authors
have compared Java VM based code and a native code energy
consumption and conclude that native code outperformsVM
code in terms of energy efficiency for extendedduration tasks.
It is therefore established that native code is better at energy
saving than agent code.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 607143, 9 pages
http://dx.doi.org/10.1155/2015/607143

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207034845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of Distributed Sensor Networks

Table 1: Comparison of WSN operating systems and middleware.

TinyOS BerthaOS MagnetOS Agilla Mate Contiki Proposed system
Code migration Yes Yes Yes Yes Yes Yes Yes
Process migration No No No Yes No No Yes
Platform heterogeneity No No Yes Yes Yes No No
Virtual machine No No Yes Yes Yes No No
High energy and memory space consumption No No Yes Yes Yes No No

The work presented in this paper focuses on creation
of a resource aware architecture for process migration in
homogenous WSNs [6] without using virtual environment.
The proposed process migration architecture enables native
live (running) processes to migrate between nodes. We have
used Contiki as a platform for implementing and experi-
menting with process migration and further extend runtime
dynamic linking [5] in Contiki.

The rest of the paper is organized as follows. Section 2
reviews process migration in various operating systems as
well as middleware and motivates the development of pro-
cess migration in WSNs by highlighting several application
scenarios for process migration in practical applications. Sec-
tion 3 shows our proposed architecture for process migration
in WSNs. Evaluation of our process migration architecture
is presented Section 4. We also compare our architecture to
other known architectures of WSNs in Section 4.1. Finally
future work and conclusion are presented in Section 5.

2. Process Migration in WSN

This section presents a brief review of process migration.
In the past process migration has been extensively used in
heterogeneous and homogenous distributed systems [4, 7].
Recent efforts focusing on process migration include Lin-
uxPMI [8] for Linux clusters, [9] CRIU (Checkpoint/Restore
in Userspace) for Linux systems [9], DMTCP (Distributed
Multithreaded Checkpointing) [10], and BLCR (Berkeley
Lab Checkpoint/Restart) [11]. In smart phones and mobile
computing a framework for migration of android application
to Cloud has also been proposed [12].

Process migration architectures can be divided into two
types. The first type of architectures is based on native
process migration, whereas the second type of architectures
is based on virtual machines where applications run on
virtual machines and are migrated from one machine to
another while the application is active. When a process
has to be migrated, both the code and the current state
of the process have to be transferred across the network.
The most important components which are transferred are
the following: data segment, code segment, stack segment,
and resource handles (unique identifiers to resources on the
system) such as open file and network sockets. In addition,
process control-block contains instruction pointer, process
priority, process metrics, and privileges, as well as thread
control block. In the virtual machine based systems the
applications are often implemented as agents.

An agent is a program which runs on a virtual machine.
The use of virtual machine makes agent programs highly

portable and more secure. The agent can move from one
machine to another during execution on a virtual machine
[7].

Agent and code migration have been implemented in
various WSN middleware and operating systems. Table 1
gives a brief comparison of the WSN middleware and oper-
ating systems which include BerthaOS [13], MagnetOS [14],
Agilla [15], Mate [16], and Contiki [17]. Several Java virtual
machines have also been implemented on embedded systems
which include AOT (Ahead-of-Time) compilation [18, 19],
Darjeeling JVM [20, 21], and TakaTuka JVM [22, 23]. Agilla
[15] is a middleware supporting self-adaptive applications for
WSN using mobile agents and allows agents to move from
one sensor node to another during execution. BesidesWSNs,
agents also find widespread roles in gathering high quality
information on the Internet, such as database searches, online
transactions in e-commerce, and system diagnostics [15].

Although agents are very useful, the primary disadvan-
tage of agent based paradigm, such as Agilla, is execution
inefficiency such that programs take longer time to execute
because the program has to be interpreted by the virtual
machine, thereby taking more time, using more energy, and
using more memory space. In comparison, native code is
much faster and uses less energy and space [5], and it can be
suggested that short duration tasks are more suitable to be
run as agents (virtual machine based application programs),
while long running tasks should be executed as native code.

Being resource constrained, the sensor nodes can be
affected by the following inherent vulnerabilities:

(a) Low battery.
(b) Low memory.
(c) Hardware failure.

Common energy sources for powering sensors nodes are
battery and solar cells. Because battery has a finite amount
of energy to deliver, energy efficiency is very critical to
the operation of sensor node. In practical deployments, the
battery levels on nodes in a deployed WSN differ from one
node to another, as all nodes cannot have the same level
of remaining energy at a given moment, because of varying
communication patterns and workloads on individual nodes
in the network. If on a given sensor node battery is low and
cannot sustain node operation any longer, a mechanism can
be devised to transfer long running processes by means of
processmigration to another node which is idle and hasmore
or continuous energy supply from a solar cell [8].

Nodes with continuous energy source are better for run-
ning computationally intensive jobs when the battery is being

International Journal of Distributed Sensor Networks 3

charged and excess energy is used up for running application
on sensor node. Moreover, on solar powered sensor nodes,
some nodes may be under full sunlight, whereas some nodes
might be in partial or full shade. For nodes which are not
receiving sunlight, conserved use of battery is a requirement
to remain functional for a longer duration. In such a situation,
if there are several processes that are executing on the node,
highly active processes should preferably be moved to those
nodes that have continuous energy supply and might run the
processes at full processor speed. This can help in preserving
energy resources of those nodes which do not have access to
continuous energy source such as sun. In addition, it is more
efficient to compute information locally instead of sending it
to base station.

Similarlymemory is also of limited size and is very crucial
resource inWSN. If a wireless sensor node is running several
processing threads simultaneously, very little free memory
may be left. In addition, if a process demands more memory
which is not available on the host node, the requesting process
can be migrated to another node having more memory.

Process migration can offer the following broad advan-
tages in WSNs.

2.1. Ease of Deployment. New sensor applications can be pro-
grammed dynamically using process migration. An instance
of process can be cloned across a group of nodes to set up
new sensor application. This can also help in dynamically
changing the configuration of the network. Some processes
maymove through the network and perform configuration or
maintenance tasks on sensor nodes in an agent like manner.
Such processes do not need to be fully installed on each node
but migrate from node to another which saves code space on
the entire WSN.

2.2. ResourceManagement and Distributed Processing. Nodes
in a wireless sensor network may have different resource lev-
els, such as battery level or memory available. A process can
move to more resourceful nodes if it needs more resources.
Long running specially can benefit from process migration as
it allows transparent resumption of computational work after
migration to another node. Process migration can also help
in distributing tasks among nodes in a distributed processing
by cloning initialized tasks among sensor nodes. In data
aggregation tasks such as cluster heads, clustering tasks can
be migrated from node to another instead of being installed
on every node in the network, thus saving significant amount
of code space across WSN nodes.

2.3. Ubiquitous Computing. The ubiquitous computing [24]
andmore specifically Internet ofThings (IoT) [25] emphasize
computing everywhere and all the time by small powerful
communicating nodes. WSNs are part of ubiquitous com-
puting and IoT environments, allowing nodes to sense their
environment, communicate with each other, and react to
changes in the surrounding environment. Process migration
can allow long running processes to migrate from node
to another and allow administrative tasks to be performed
in ubiquitous networks. Hence process migration can play

vital role in these systems by allowing task distribution and
management of network wide resources.

Processmigration can be difficult when a resource depen-
dency exists; security is also a concern. In the case of resource
dependency, when a process migrates, it should transfer from
one node to another along with all of its moveable resources.
An unmovable resource creates resource dependency and can
prevent a process from migrating to another node. Instances
of such resources dependencies include open files and node
specific sensors (only available on a particular node). Finally
the cost can increase whenmigrating a large process, because
its code has to be transmitted; however, data compression
techniques can be used for the purpose of reducing the
amount of data to be transmitted. Security issues with process
migration can be solved by using security protocols such as
SPINS [26] and LEAP [2].

3. Process Migration Architecture

Although process migration is a relatively old feature in var-
ious Unix-like operating systems, no known process migra-
tion mechanism has been developed for any of the WSNs
operating systems.Themain component of all processmigra-
tion architectures is process checkpoint and restore [9]mech-
anism. Checkpoint stores the state of a live running process
and restore is responsible for restoring an instance of check-
pointed process from stored state of a process. The process
state data is typically stored in a file which is later on used for
restoring the process.The file typically stores stack, heap, and
registers. The restorer can recover the state of a process from
this file and resume the execution of checkpointed process.

Checkpointing can be implemented by user library or
may be provided as an operating system service.When imple-
mented in operating systemkernel as a service, it can facilitate
the suspension and resumption of running process for very
long durations over multiple reboots of machine. Example
of actively developed system for checkpointing is CRIU
(Checkpoint/Restore in Userspace) [27], which provides
checkpoint/restore for Linux processes. CRIU allows the user
to checkpoint and restore a running process or groups of
processes. Checkpointing is the core component of process
migration implementation. In our architecture checkpoint
and restore have been implemented as a middleware service
and are used for storing process execution state for a later
resumption. Checkpoint and restore concept can be applied
in wider context to the whole WSN. Brouwers et al. [21]
present an architecture for checkpointing and restoring the
state of full WSN.

The proposed architecture for processmigration has been
split into several individual components. Figure 1 shows the
complete architecture of process migration middleware for
WSNs. The architecture is based on generic steps common
to all process migration system [4].

The central component of our architecture is migration
manager. It provides support and functionality for various
tasks required in migration of a process, such as check-
pointing, restoration, serialization, broadcasting, listening to
incoming migration requests, and transportation of process
code image and state data. The resource monitor has two

4 International Journal of Distributed Sensor Networks

Processes

Resource monitor

Program loader
and

deserializer
Migration manager Request broadcaster

and listener

Process transporter Configuration manager

Contiki OS

Figure 1: Process migration architecture for WSN.

responsibilities, estimating battery charge and monitoring
free memory. Battery charge estimation is done by battery
estimator which is responsible for predicting the amount of
charge left in the battery and determines how much time
the battery can sustain the node operation. It uses battery
voltage sensor to periodically sample the battery voltage.
The request broadcaster and listener component is responsible
for broadcasting migration request to other nodes on the
network. The listener waits for migration request broadcasts
being “request broadcast listener.” It continuously listens to
requests on broadcast channel. After the request has been
received by the request broadcast listener it replies back with
acceptance message to the sender. The sender then selects
a target node and then transmits the process state and
executable code using process code image transporter. After
the process state and code have been received at the target
node, the program loader initializes process space from image
received, and then state deserializer restores process’s local
and global variables. After process has been restored on the
target node, it is resumedby themigrationmanager by adding
it to the scheduling queue.

Steps for migrating a process are shown by activity
diagram in Figure 2.

This is described in detail by steps (a) to (h). The Source
Migration Manager suspends the process to be migrated
and issues a migration request to Target Migration Manager
which then replieswith acceptancemessage.When the accep-
tance message is received by the Source Migration Manager,
it saves a process image containing process code and state.
The process image is sent to Target Migration Manager which
then creates a new process and initializes it with the code and
state of migrated process. Next the migrated process resumes
execution. At the same time an acknowledgment of successful
migration is sent to Source Migration Manager, which then
destroys the original process.

(a) The source node wanting to migrate out a process
continuously monitors its battery and memory space.
The battery charge is estimated by sampling battery
voltage at regular fixed intervals. In the event of
detecting low battery power ormemory space beyond
a user specified threshold it initiates process migra-
tion procedure. Process migration begins with node
“A” broadcasting a request for migrating a process 𝑃.
Any node that has the requested resources available
(such as battery) can send back acknowledgement.
The reply from accepting node is sent using a unicast
reply channel.The replying node first makes sure that
it can accommodate the migrated process in memory
and storage. After checking for resource availability,
migration request is accepted or may be rejected
in case resources cannot be allocated. The sender
node selects the physically nearest destination node
if multiple replies are received. On the receiver side, if
multiple requests are received, they are processed in
the order of arrival one at a time. Before proceeding to
next request the receiver has to complete the current
migration request.

(b) The process being migrated is removed from parent
source node. Process P is suspended and marked
for migration. At this stage the parent node is ready
for redirecting/rerouting any open communication
channels held/opened by process P.

(c) Communication connections are redirected tem-
porarily. This is done by storing incoming messages
to the process P in a message queue and by delivering
the message queue to process P after migration of P is
complete.This step runs in parallel with steps (d), (e),
and (f).

International Journal of Distributed Sensor Networks 5

Process SourceMigrationProcess TargetMigrationProcess

Process

ProcessMigrationRequest()

RequestAccepted()

Suspend()

CreateProcessImage()

TransferImage()

Resume()

AcknowledgeTransfer()

Destroy()

Create

Figure 2: Basic process migration control flow.

6 International Journal of Distributed Sensor Networks

WHILE (true)
BEGIN
SET battery charge = get estimated battery charge()
SET free memory = get free memory left()
IF battery charge < battery threshold

OR free memory < free memory threshold THEN
SET p = choose a process to migrate()

suspend process(p)
initialize message queue(q)

SET p data = get process local data()
save process local data(p data)
SET R = create request for process migration()

open broadcast connection()
send broadcast(R)
wait for N acceptance replies from other nodes()

SET best reply = choose nearest reply()
SET target node = get target address from best reply()
SET unicast con = open unicast connection(target node)

send data(p.image, target node, unicast con)
send data(p.state, target node, unicast con)
close(unicast con)
close all process data connections()
broadcast new location(p.name, target node)
send message queue(q, target node)
remove process(p)

END

Algorithm 1: Algorithm for sender node.

(d) The state of process is copied (check-pointed). The
process state includes process heap, global variables,
process stack, processor state (register contents),
and communication state (e.g., opened files and
open network connections). This step is also called
checkpointing as described in Section 2. The process
state is kept on the source node until the successful
completion of migration. If migration attempt fails
due to some communication problem it may have to
be reattempted.

(e) An instance of process is created at the target node
into which the transferred state of process P will be
copied. The new instance at the destination node is
not started until complete state of process P has not
been transferred from the source node.

(f) Process execution state is copied into the newly cre-
ated instance (restored instance) on the remote node.
This includes global variables, heap, and stack of pro-
cess P. At the receiving end the target node unpacks
the memory space and code from the received data.
The migrating process is loaded into memory and
resumes execution from the point of last suspension at
the source node.The sender and receiver ends execute
identical algorithms whose pseudocode is listed in
Algorithms 1 and 2, respectively. The configuration
parameters store permissions and user settings for
controlling process migration. Configuration param-
eters allow the system to selectively block and unblock

WHILE (true)
BEGIN

wait for incoming broadcast requests()
IFmigration request arrived() THEN

R = get migration request()
SET requested memory = R.requested free memory
SET free memory = get free memory()
IF free memory ≥ requested free memory THEN
SET reply node address = R.source address

send(accept reply, reply node address)
SET unicast con = open unicast connection(listening port)

wait for incoming connection(unicast con)
SET rp = receive process(unicast con)
SET p = create process()

save process image(rp.image, p)
allocate memory(sizeof(rp.state), p)
copy process state(rp.state, p)
close(unicast con)
link symbol table()

SET q = get message queue()
open process data connections()
deliver message queue(p, q)
add to scheduler(p)

END

Algorithm 2: Algorithm for receiver node.

migration of different processes. The settings are
stored in a text.

(g) Reference forwarding is done at the source node after
the last step (f) to maintain open communication
channels created by process P to other connected
nodes in WSN. The new location of process P is
broadcast in WSN by the source node which enables
all other nodes previously connected to P to close
connections to process P. Process P now opens new
connections to premigration connected nodes. The
message queue from step (c) is also delivered at this
stage to the process P.

(h) The migrated process P is resumed at the destina-
tion node. This marks the successful completion of
migration for process P.The resources held by process
P after migration can now be released at the source
node.

4. Implementation and Evaluation

The implementation of process migration architecture was
tested on COOJA [17]. The communication between nodes
was achieved using Contiki’s Rime Communication Stack.
Themain thread in the programnamed pmig process opened
broadcast channels andunicast channels andperformednode
monitoring and managed the process migration steps. The
first program tested was the LED blinker program which
migrated for several times between randomly selected nodes.

In Figure 3 the lower panel of COOJA simulator window
shows the led blinking on node 1 and node 2. Half of the red-
led blinks are on node 1 and remaining half are on the node 2

International Journal of Distributed Sensor Networks 7

Table 2: Comparison of proposed process migration architecture with other architectures.

TakaTuka VM [22, 23] Darjeeling [20, 21] Dunkels et al. [17] Agilla [15] Proposed architecture
Based on Agents No No No Yes No
Virtual machine Yes (JVM) Yes (JVM) No Yes No
Dynamic linking and loading Yes Yes Yes Yes Yes
Compact ELF Class file(s) Class file(s) Yes No Yes
Live transfer No No No Yes Yes
State transfer No No No Yes Yes
Resource monitoring No No No No Yes
Energy aware No No No No Yes
Live process migration No No No Yes Yes

Figure 3: Process migration between two nodes in COOJA.

after migration completed which was initiated while the
blinker process was running at node 1.

We also tested the proposed process migration system
on a test bed of 25 TelosB nodes. In our implementation
on TelosB nodes, we measured battery voltage using battery
sensor in TelosBmote.Multiple readings were averaged to get
approximate voltage reading.Themeasured voltage was used
for estimating the battery remaining charge percentage.

4.1. Comparison with Related Architectures. In practical sce-
narios, nodes may be physically unreachable and repro-
gramming of the sensor nodes can be impossible or very
difficult. To enable reconfiguration and reprogramming of
software on WSN nodes, WSN middleware provides code
management. Table 2 shows comparison of our work with
other architectures including Dunkels et al. [17], Agilla [15]
based on Mate [16], Darjeeling JVM [20, 21], and TakaTuka
JVM [22, 23] for wireless sensor motes.

4.1.1. Code Migration. Code management in WSNs is typi-
cally achieved by code migration [16, 28] which allows the
migration of application code from one node to another.This
facilitates the remote installation of the software on nodes
with ease and without the need of having physical access
to nodes. Our implementation differs from code migration,

because in addition to code migration it also supports
the migration of the execution state which means that the
whole process state is migrated. This allows the execution
of migrated process to be resumed seamlessly on a different
host node after migration has completed. This saves precious
resources from being wasted.

4.1.2. Virtual Machine Agents. Process migration uses code
migration. It incorporates the migration or transfer of state
of executing process along with code from one sensor node
to another in the WSN. By definition a live process has both
native executable code image and state. The main focus in
this work has been on the migration of natively executable
processes alongwith state so that aftermigration themigrated
process can resume execution at the target node. The native
code is faster and more energy efficient [5]. This is similar to
agent based systems in which code as well as the state of exe-
cuting agent ismigrated; however agent code is run on virtual
machine and the code has to be interpreted at runtime.There-
fore it requires extra resources to run the virtual environment.

An example of this strategy is Agilla [15] middleware
which allows the mobile agents running on a byte code
interpreter virtual machine to migrate state and executable
code from one node to another node at runtime. It has
been suggested thatmigrating small executable codemodules
consume less energy than a full application [29] and for
shorter tasks this strategy is energy efficient, but for long
running tasks the nature of code interpretation makes it
less energy efficient. In real world situations virtual machine
based applications typically consume more resources includ-
ing time, space, and energy than the native applications. A
comparison of the running times of different algorithms has
been provided by Ellul [18, 19] and summarized in Table 3,
which benchmarks Ahead-of-Time (AOT) compilation, with
native and TakaTuka JVM. The increased time of execution
indicates more energy consumed compared to native code.

4.1.3. Long Running Tasks. Levis and Culler [16] suggest
that it is more energy efficient to implement long running
and complex application programs with frequent executions
as native code rather than as virtual machine based code,
because of the overhead caused by virtual machine’s inter-
preted execution. Furthermore the energy saving in the long
term outweighs the energy consumed during the migration

8 International Journal of Distributed Sensor Networks

Table 3: Comparison of VM with native code [18, 19] using
BubbleSort16 benchmark for sorting 256 values.

Execution time Binary size Energy consumed
TakaTuka 120 seconds 1050 bytes 587.76mJ
AOT 13 seconds 110 bytes 63.67mJ
Native Code 2 seconds 230 bytes 9.769mJ

of large and complex processes needing frequent executions.
The authors recommend that for smaller applications with
small sized executable code and frequent migration require-
ments mobile agents are suitable. And for larger and complex
applications, process migration is preferred.

5. Conclusion and Future Work

This paper proposed architecture for native processmigration
in WSNs. The proposed architecture incorporates resource
monitoring anddynamic processmigration.This architecture
improves fault tolerance and energy consumption of a WSN
network without using virtual environment which is an extra
burden.We have tested and implemented our architecture on
both simulation and real test bed using Contiki and TelosB
successfully.

In the future we will incorporate a security mechanism
in our architecture to make native process migration secure.
Energy consumption can also be improved even further in the
proposed architecture by using a compression algorithm for
compressing process images before transfer takes place; see
Ansel et al. [10]. We also intend to work on solving resource
dependency problem and on improving resource monitoring
to better estimate the resource capacity of wireless sensor
nodes.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol.
38, no. 4, pp. 393–422, 2002.

[2] S. Zhu, S. Setia, and S. Jajodia, “LEAP+: efficient security
mechanisms for large-scale distributed sensor networks,” ACM
Transactions on Sensor Networks, vol. 2, no. 4, pp. 500–528,
2006.

[3] Y. Artsy and R. Finkel, “Designing a process migration facility:
the Charlotte experience,” Computer, vol. 22, no. 9, pp. 47–56,
1989.

[4] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S.
Zhou, “Processmigration,”ACMComputing Surveys, vol. 32, no.
3, pp. 241–299, 2000.

[5] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time
dynamic linking for reprogramming wireless sensor networks,”
in Proceedings of 4th International Conference on Embedded
Networked Sensor Systems (SenSys ’06), pp. 15–28, November
2006.

[6] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,”ComputerNetworks, vol. 52, no. 12, pp. 2292–2330, 2008.

[7] H. Jiang and V. Chaudhary, “Process/thread migration and
checkpointing in heterogeneous distributed systems,” in Pro-
ceedings of the 37th Annual Hawaii International Conference on
System Sciences, p. 10, January 2004.

[8] LinuxPMI, 2008, http://linuxpmi.org/trac/.
[9] C Team, “CRIU,” http://criu.org/.
[10] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: transparent

checkpointing for cluster computations and the desktop,” in
Proceedings of the IEEE International Symposium on Parallel &
Distributed Processing (IPDPS ’09), pp. 1–12, IEEE, Rome, Itlay,
May 2009.

[11] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart
(BLCR) for Linux clusters,” Journal of Physics: Conference Series,
vol. 46, no. 1, pp. 494–499, 2006.

[12] S.-H. Hung, J.-P. Shieh, and L. E. E. Chen-Pang, “Virtualizing
smartphone applications to the cloud,” Computing and Infor-
matics, vol. 30, no. 6, pp. 1083–1097, 2012.

[13] J. Lifton, D. Seetharam, M. Seltzer, and J. Paradiso, “Bertha: the
os for pushpin computers,” Tech. Rep., 2002.

[14] R. Barr, J. C. Bicket, D. S. Dantas et al., “On the need for system-
level support for ad hoc and sensor networks,” ACM SIGOPS
Operating Systems Review, vol. 36, pp. 1–5, 2002.

[15] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent
middleware for self-adaptive wireless sensor networks,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 4, no.
3, article 16, 2009.

[16] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” ACM SIGPLAN Notices, vol. 37, no. 10, pp. 85–95,
2002.

[17] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks, pp. 455–462, IEEE, November 2004.

[18] J. Ellul and K. Martinez, “Run-time compilation of bytecode in
sensor networks,” in Proceedings of the 4th International Confer-
ence on Sensor Technologies and Applications (SENSORCOMM
’10), pp. 133–138, July 2010.

[19] J. Ellul, Run-time compilation techniques for wireless sensor net-
works [Ph.D. thesis], University of Southampton, Southampton,
UK, 2012.

[20] N. Brouwers, P. Corke, and K. Langendoen, “Darjeeling, a Java
compatible virtual machine for microcontrollers,” in Proceed-
ings of the ACM/IFIP/USENIXMiddleware ’08 Conference Com-
panion (Companion ’08), pp. 18–23, ACM, Leuven, Belgium,
December 2008.

[21] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a
feature-rich VM for the resource poor,” in Proceedings of
7th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’09), pp. 169–182, November 2009.

[22] F. Aslam, Challenges and solutions in the design of a Java
Virtual Machine for resource constrained microcontrollers [Ph.D.
dissertation], Department of Computer Science, Faculty of
Applied Sciences, University of Freiburg, Breisgau, Germany,
2011.

[23] F. Aslam, C. Schindelhauer, G. Ernst, D. Spyra, J. Meyer, and
M. Zalloom, “Introducing TakaTuka: a Java virtualmachine
for motes,” in Proceedings of the 6th ACM Conference on
Embedded Network Sensor Systems (SenSys ’08), pp. 399–400,
ACM, Raleigh, NC, USA, November 2008.

International Journal of Distributed Sensor Networks 9

[24] U. Hansmann, Pervasive Computing: The Mobile World,
Springer, 2003.

[25] J. Holler, V. Tsiatsis, C.Mulligan, S. Avesand, S. Karnouskos, and
D. Boyle, From Machine-to-Machine to the Internet of Things:
Introduction to a New Age of Intelligence, Academic Press, 2014.

[26] L. Jing, F. Liu, and Y. Li, “Energy saving routing algorithm based
on SPIN protocol in WSN,” in Proceedings of the 3rd Interna-
tional Conference on Image Analysis and Signal Processing (IASP
’11), pp. 416–419, IEEE, Hubei, China, October 2011.

[27] W. Zhang, L. Chen, Q. Lu, P. Zhang, and S. Yang, “Flexible
component migration in an OSGi based pervasive cloud infras-
tructure,” in Proceedings of the Service-Oriented Computing
Workshops (ICSOC ’13), pp. 505–514, 2014.

[28] M.-M. Wang, J.-N. Cao, J. Li, and S. K. Dasi, “Middleware for
wireless sensor networks: a survey,” Journal of Computer Science
and Technology, vol. 23, no. 3, pp. 305–326, 2008.

[29] S. Hadim and N. Mohamed, “Middleware: middleware chal-
lenges and approaches for wireless sensor networks,” IEEE
Distributed Systems Online, vol. 7, no. 3, p. 1, 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

