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With the continuous development of biological experiment technology, more and more data related to uncertain biological
networks needs to be analyzed. However, most of current alignmentmethods are designed for the deterministic biological network.
Only a few can solve the probabilistic network alignment problem.However, these approaches only use the part of probabilistic data
in the original networks allowing only one of the two networks to be probabilistic. To overcome the weakness of current approaches,
an improvedmethod called completely probabilistic biological network comparison alignment (C PBNA) is proposed in this paper.
This new method is designed for complete probabilistic biological network alignment based on probabilistic biological network
alignment (PBNA) in order to take full advantage of the uncertain information of biological network. The degree of consistency
(agreement) indicates that C PBNA can find the results neglected by PBNA algorithm. Furthermore, the GO consistency (GOC)
and global network alignment score (GNAS) have been selected as evaluation criteria, and all of them proved that C PBNA can
obtain more biologically significant results than those of PBNA algorithm.

1. Introduction

The development of biological experiment technology has
generated more and more biological network data such as
protein-protein interaction and gene transcriptional regu-
latory network data, which brings considerable number of
pieces of information about the interactions and relationships
between biological organisms. For this reason scientists
carried out a lot of research in this area. Comparative anal-
ysis, namely, biological network alignment, is an important
method in biological network research. Biological networks
alignment can simply be described as the analysis of biolog-
ical networks by comparing the data to find the correlation
between structure and function of organisms and thus to
help the study of biological development and evolution.
This study demonstrates great potentials to discover basic
functions and to reveal essential mechanisms for various
biological phenomena, by understanding biological systems
not at individual component level but at a system-wide level
[1, 2].

Ogata et al. first proposed the graph comparison approach
to identify local similarities between two graphs, which
allows gaps and mismatch of nodes and edges and is
especially suitable for detecting biological features in 2000
[3]. They used the above-mentioned comparative method to
discover the relationship between enzymes and positions of
their corresponding gene encodings in the entire genome.
After analyzing these results, they found the local structure
similarities corresponding to functionally related enzyme
clusters. Thereafter, the graph comparison research attracted
many scholars’ research interests in this field. Kelley et al.
in 2003 introduced the value of the concept called BLASTE
into protein interaction network and thereby described a
new way to detect the highly conserved pathway and the
highly conserved functional module in the two networks
[4]. Subsequently, Koyutürk et al. took advantage of the
duplication/divergence model to translate protein-protein
interaction (PPI) network comparison into the maximum
weight subgraphs problems and used the greedy method
to solve the problem [5]. In 2007, Singh et al. proposed
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the IsoRank algorithm, which converted the problem to a
constraint-based optimization objective function problem.
Then they also introduced an algorithm called IsoRankN,
which was an approach similar to the PageRank-Nibble
algorithm, to align multiple PPI network [6]. The Match-
and-Split algorithm proposed by Narayanan and Karp, 2007,
with the idea of dividing and conquering strategy divided
biological networks into submodules. This approach deals
with biological networks alignment by comparing smaller
modules [7]. In 2009, Klau [8] normalized the problem to
an optimization problem and solved the problem with the
integer linear programming method. So far, most of the
researches are focused on determining biological network
data.

However due to the size, density, and redundancy of
interacting molecules in the network and even errors in bio-
logical experiments [9], interactions in biological networks
are probabilistic events. For example, in a living cell, DNA
binding proteins are believed to be in equilibrium between
the bound and unbound states, thus introducing uncertain-
ties in protein-DNA interactions. Similar circumstance holds
for protein-protein interactions, which are crucial to cellular
functions both in assembling protein machinery and in
signaling cascades. Therefore we abstract the biological net-
works into the uncertain networks whose edges are denoted
by the values, respectively. Our solution is closer to realistic
situation. Incorporation of uncertain information will bring
more challenges to the biological networks alignment and
analysis.

To the best of our knowledge, there are only two biological
network alignment algorithms that can deal with uncertain
network. Weighted IsoRankN [10] based on the IsoRank was
proposed to deal with the probabilistic case. But the prob-
ability information in Weighted IsoRankN was considered
as “weight” rather than the true “probability.” Essentially,
the Weighted IsoRankN algorithm merely simplifies the
probability graph into the deterministic diagram. Hence a
majority of pieces of information were neglected via this
measure. PBNA (probabilistic biological network alignment)
[11] proposed by Todor et al. in 2013 was an advanced version
of the IsoRank algorithm. The core of this algorithm was
to replace the determining variables in the IsoRank with a
random variable so as to establish a model for biological
network alignment problem.Then this probability algorithm
was optimized by using conditional probability distribution
knowledge to reduce its complexity. However, the PBNA
approach requires at least one of the networks participating
in alignment be determined diagram. In other words, if
the participating networks are all uncertain networks, one
of them will be considered automatically as a deterministic
graph. Clearly, the neglect of the probability information of
the networks may lead to the deviation.

In order to simplify the discussion in the rest of the cases,
“deterministic network alignment” refers to the algorithm
in which two participators are all deterministic network
and “part probabilistic network alignment” refers to the
algorithm in which one of participators is probability graph
and “complete probabilistic network alignment” refers to the
algorithm in which both participators are uncertain graphs.

In this paper, we develop a method called “complete
probabilistic biological network alignment” (C PBNA) based
on “part probabilistic biological network alignment (PBNA).”
Our approach can take full advantage of the information for
the uncertain network alignment with two uncertain net-
works. Finally, we conduct 122 groups of contrast tests based
on uncertain protein interactions network data preprocessed
by Todor et al. from MINT database. We use the agreement
to tell the difference between two algorithms. The biological
significance of the network comparison is quantified by
global network alignment score, gene ontology consistency,
and functional coherence of the alignments. The experiment
results indicate that C PBNA can find the results neglected
by PBNA algorithm. Furthermore, C PBNA can obtain more
biologically significant results than those of PBNA algorithm.

The rest of the paper is organized as follows. In Section 2,
we describe theC PBNAalgorithm. In Section 3,we apply the
C PBNAalgorithm intoMINT [12] and analyze the results. In
Section 4, the conclusions are given.

2. Methods

TheC PBNA proposed in the paper is an advanced biological
networks alignment algorithm derived from the PBNA [9].
Both of the algorithms are based on the framework of
IsoRank for deterministic network. The PBNA approach
takes the uncertainties of the networks into consideration.
However, the precondition of PBNA is that at least one of
the biological networks participating in alignment must be
deterministic network. Our approach can deal with align-
ment of two uncertain biological networks. Furthermore
it can directly deal with the deterministic and partially
probabilistic situation. In the following sections, we start
by analyzing the probabilistic biological networks which are
dealt with by the C PBNA algorithm then and the results
discovered by C PBNA. Our whole approach is described
in five sections: (1) Probabilistic Biological Network; (2)
Probabilistic Support Matrix; (3) Probabilistic Model of the
Eigenvector; (4) Extracting Alignment Results; (5) C PBNA
Algorithm.

2.1. Probabilistic Biological Network. Traditional determinis-
tic biological network can be characterized by a two-tuple
𝐺 = (𝑉, 𝐸), where 𝑉 denotes the vertex and 𝐸 denotes the
set of graph edges. Different types of biological networks
correspond to different graphs; for instance, PPI network
(protein-protein interaction network) can be abstracted into
an undirected graph with the vertices tagged by labels denot-
ing different proteins and the edges denoting the interaction
relationship of proteins.

It is important to note that biological networks usually
are indeterminate; for instance, the interactions of proteins
often exist at certain probability. Therefore, we consider the
uncertain biological network as a network in which the pro-
teins are denoted by determinate nodes and the interactions
of proteins are denoted by edges with a probability value.

Uncertain network is characterized by a three-tuple 𝑔 =
(𝑉, 𝐸,Pr

𝐸
), where 𝑉, 𝐸 denote the vertex set and edge set,

respectively [13]. Consider
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Figure 1: Original uncertain graph, as well as its eight-implication graph.

Pr
𝐸
: 𝐸 → [0, 1] . (1)

Note that Pr
𝐸

is a function which denotes a value
probability in [0, 1] for each edge 𝑒 = (𝑢, V); specifically
Pr
𝑒
= 1 indicates that edge 𝑒 = (𝑢, V) definitely exists:

Pr (𝑔 ⇒ 𝐺)

= ∏

𝑒∈𝐸


Pr
𝐸 (𝑒) ∏

𝑒∈𝐸∩(𝑉

×𝑉

)\𝐸


(1 − Pr
𝐸 (𝑒)) .

(2)

𝑔 = (𝑉, 𝐸,Pr
𝐸
) denotes uncertain graph and 𝐺 = (𝑉, 𝐸)

denotes deterministic graph, respectively. Particularly, uncer-
tain graph 𝑔 contains deterministic𝐺, which is abbreviated as
𝑔 ⇒ 𝐺, when and only when 𝑉 = 𝑉 and 𝐸 ⊆ 𝐸 ∩ (𝑉 ×𝑉),
where𝐸∩(𝑉×𝑉)denotes an edge set inwhich two endpoints
of the edge are both in the vertex set 𝑉.

Example 1. Observe that original uncertain graph in Figure 1
has three probability sides. Hence, it contains 8 kinds of
different deterministic networks with different probability.
This means that in a probabilistic network with |𝐸| edges
there are actually 2|𝐸| deterministic networks which occur at
a certain probability.

Note that, with the uncertainty added, the complexity
of the graph increases greatly. For instance, the MINT [12]
network data used in the experiments contain 2313 implica-
tion graphs for the maximum organism containing 313 edges.
Precise comparison seems almost impossible for such a large
amount of data.

2.2. Probabilistic Support Matrix. Firstly, our approach pro-
posed in the paper is based on the primal framework
of IsoRank algorithm which aimed at deterministic graph
alignment. One of the core ideas of IsoRank is that the
similarity between two vertices may be determined by all the
neighborhood vertices’ similarity. First of all, we introduce
the simple case of pairwise global network alignment (GNA).

For deterministic networks 𝐺
1
= (𝑉

1
, 𝐸
1
) and 𝐺

2
=

(𝑉
2
, 𝐸
2
), the similarity score 𝑅

𝑖𝑗
between vertexes V

𝑖
and V

𝑗

can be calculated by

𝑅
𝑖𝑗
= ∑

𝑢∈𝑁(𝑖)

∑

V∈𝑁(𝑗)

1

𝑑
𝑢
𝑑V
𝑅
𝑢V, (3)

where V
𝑖
∈ 𝑉
1
, V
𝑗
∈ 𝑉
2
, 𝑁(𝑖), 𝑁(𝑗), respectively, denote the

neighbor vertexes set of V
𝑖
and V

𝑗
, and 𝑑

𝑢
, 𝑑V, respectively,

denote the degrees of V
𝑢
and VV. We assume that 𝑚 = |𝑉

1
|,

𝑛 = |𝑉
2
|, all similarity scores 𝑅

𝑖𝑗
(0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛)

constituting an𝑚×𝑛 dimensional similarity score vector𝑅.𝑅
can be seen as a vector form converted from an𝑚 × 𝑛matrix.
Therefore (4) can be rewritten inmatrix form:𝑅 = 𝐴𝑅, where

𝐴 [𝑖, 𝑗] [𝑢, V] =

{{{{{{{

{{{{{{{

{

1

𝑑
𝑢
𝑑V
, if (V

𝑖
, V
𝑢
) ∈ 𝐸
1
, (V
𝑗
, VV) ∈ 𝐸2

1

𝑚𝑛
, if 𝑑

𝑢
𝑑V = 0

0, otherwise,

(4)

where 𝐴[𝑖, 𝑗][𝑢, V] is a (𝑚𝑛) × (𝑚𝑛) matrix with dou-
ble indexed row and column. And 𝐴[𝑖, 𝑗][𝑢, V] denotes
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Table 1: Degree distribution of nodes.

𝐷 𝑃 (𝐷)

0 ∏

𝑒∈𝐸

(1 − Pr
𝐸
(𝑒))

1 ∑

𝑒𝑖∈𝐸

Pr
𝐸
(𝑒
𝑖
) ∏

𝑒∈𝐸/𝑒𝑖

(1 − Pr
𝐸
(𝑒))

.

.

.
.
.
.

𝑑
max

∏

𝑒∈𝐸

Pr
𝐸
(𝑒)

the element of [𝑖, 𝑗] rows and [𝑢, V] column of the matrix 𝐴.
The term 1/𝑚𝑛 denotes that point 𝑑

𝑢
or point 𝑑V is an acnode.

As can be seen, formula, 𝑅 = 𝐴𝑅, indicates that vector 𝑅 is a
characteristic feature vector of matrix 𝐴 when the eigenvalue
is 1.

The important improvement of PBNA algorithm is to
replace the deterministic variable in original algorithm with
a random variable so as to simplify the model by calculating
the expectation 𝐸(𝐴) instead of 𝐴 itself. It should be stressed
that, due to the complexity in calculating desired𝐸(𝐴), PBNA
alignment algorithm requires that one of the graphs must
be determined. Considering this idea as a reference, we
propose C PBNA algorithm which can be extended to the
network alignment problem in which two graphs,𝐺

1
and𝐺

2
,

are both uncertain graphs. Hence, the degrees of uncertain
graph nodes set of V

𝑢
and VV are both uncertain rather than

deterministic values. The degree values 𝑑V, 𝑑𝑢 are denoted by
discrete random variables 𝐷V, 𝐷𝑢 respectively, and then (4)
can be rewritten as

𝐴 [𝑖, 𝑗] [𝑢, V] =

{{{{{{{

{{{{{{{

{

1

𝐷
𝑢
𝐷V
, if (V

𝑖
, V
𝑢
) ∈ 𝐸
1
, (V
𝑗
, VV) ∈ 𝐸2

1

𝑚𝑛
, if 𝐷

𝑢
𝐷V = 0

0, otherwise,
(5)

where 𝐷V, 𝐷𝑢 are discrete distribution: 𝑃(𝐷V = 𝑘), 𝑘 =
0, 1, . . . , 𝑑

max, 𝐷V is the degree distribution of node VV. We
assume that 𝐸V is a set of edges connecting to point VV; hence,
𝑃(𝐷V) can be obtained via probabilistic graphical models
shown in Table 1.

Clearly, adding uncertain information increases the com-
plexity of the algorithm. As a result, the time complexity for
calculating each node degree distribution sequence increase
to exponential time, because the neighbor points degrees in
the matrix 𝐴 as an item subject to the discrete distribution
rather than a certain value. Therefore, based on the core
idea of literature [9], we use 𝐸(𝐴) instead of 𝐴 involved
in the calculation. The following section summarizes the
calculation arriving at expectation 𝐸(𝐴) of matrix 𝐴.

2.3. Probabilistic Model of the Eigenvector. We start by dis-
cussing (5) in the first case. Clearly, as discussed earlier,
(V
𝑖
, V
𝑢
) ∈ 𝐸

1
, (V
𝑗
, VV) ∈ 𝐸2; hence V

𝑢
and VV have at least

one connecting edge. So bring 𝐷
𝑢
= 𝑘
1
(𝑘
1
= 1, . . . , 𝑑

max
𝑢
),

𝐷V = 𝑘2, (𝑘2 = 1, . . . , 𝑑
max
V ) into (5) as follows:

𝐸 [𝐴 [𝑖, 𝑗] [𝑢, V]]

= ∑

𝑘
1
∈𝐷
𝑢
,𝑘
2
∈𝐷V

1

𝑘
1
𝑘
2

⋅ 𝑃 (𝐴 [𝑖, 𝑗] [𝑢, V] =
1

𝑘
1
𝑘
2

| (V
𝑖
, V
𝑢
) ∈ 𝐸
1
, (V
𝑗
, VV) ∈ 𝐸2) .

(6)

Because of assuming that the edges of the network𝐺
1
and𝐺

2

are independent events, so the 𝐷
𝑢
and 𝐷V are independent

too, we can derive as follows:

𝐸 [𝐴 [𝑖, 𝑗] [𝑢, V]] = ∑

𝑘
1
∈𝐷
𝑢
,𝑘
2
∈𝐷V

1

𝑘
1
𝑘
2

⋅ 𝑃 (𝐷
𝑢
= 𝑘
1
| (V
𝑖
, V
𝑢
) ∈ 𝐸
1
)

⋅ 𝑃 (𝐷V = 𝑘2 | (V𝑗, VV) ∈ 𝐸2) .

(7)

In the next case of (5), the probability is denoted by
𝑃(𝐷
𝑢
𝐷V = 0). Note that 𝐷

𝑢
and 𝐷V are also indepen-

dent; we can get (8), after some manipulations as follows:
𝐸[𝐴[𝑖, 𝑗][𝑢, V]] = (1/𝑚𝑛)𝑃(𝐷

𝑢
𝐷V = 0)

𝐸 [𝐴 [𝑖, 𝑗] [𝑢, V]] =
1

𝑚𝑛
(𝑃 (𝐷

𝑢
= 0) + 𝑃 (𝐷V = 0)) . (8)

Similarly, substituting the results of (7) and (8) for 𝑃
0
and

𝑃
𝑘
1
𝑘
2

, respectively, we obtain

𝐸 (𝐴 [𝑖, 𝑗] [𝑢, V]) =
1

𝑚𝑛
× 𝑃
0
+

𝑑
max
𝑢

∑

𝑘
1
=1

𝑑
max
V

∑

𝑘
2
=1

1

𝑘
1
𝑘
2

⋅ 𝑃
𝑘
1
𝑘
2

, (9)

where the probability distributions of 𝐷
𝑢
and 𝐷V are calcu-

lated as discussed inTable 1; thuswe get the𝐸(𝐴). However, as
discussed above in Section 2.2, calculating𝑃(𝐷

𝑢
= 𝑘) directly

means that the computational complexity of the algorithm
can reach 𝑂(2𝑑V+𝑑𝑢). In order to reduce the high complexity,
we use the probability generating function introduced in the
literature.

Definition 2 (see [14]). Assume that 𝑋 is a discrete random
integer variable ranging from 0 to𝑁; therefore the probability
generating function (PGF) of 𝑋may be defined as a polyno-
mial of 𝑧:

𝑄
𝑋 (𝑧) = 𝐸 [𝑧

𝑋
] =

𝑁

∑

𝑘=0

𝑃 (𝑋 = 𝑘) 𝑧
𝑘
. (10)

As we see in Definition 2, the coefficient distribution
sequence corresponds to discrete random variables distri-
bution of 𝑋 in probability generating function. Clearly, as
long as the probability generating function is calculated, the
probability distribution will be obtained easily. Moreover,
the probability generating function may be calculated by
Theorem 3.
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Table 2: Degree distribution of node 𝑎.

𝑁
𝑎

0 1 2
𝑃 (𝑁
𝑎
) 0.06 0.58 0.36

Theorem 3 (see [14]). Suppose that 𝐺 = (𝑉, 𝐸,Pr
𝐸
) is an

uncertain graph and 𝐸V denotes a set of edges connecting with
V endpoint; hence, the degree of V is a discrete random variable
whose probability generating function is shown as

𝑄
𝑁V
(𝑧) = ∏

𝑒∈𝐸V

(1 − 𝑝
𝑒
+ 𝑝
𝑒
𝑧) . (11)

For example, Figure 1 shows an uncertain network, in
which there are two edges connecting with the node and
the appearance probability of those two edges is 0.4 and 0.9,
respectively. As a result, the probability generating function of
degree distribution for node 𝑎 is 𝑄

𝑁
𝑎

(𝑧) = (0.6 + 0.4𝑧)(0.1 +

0.9𝑧) = 0.06 + 0.58𝑧 + 0.36𝑧
2; then we can easily get the

distribution of degree for node 𝑎 as in Table 2.
Therefore, we can calculate the probability generating

function of the node degree distribution for V and then obtain
node distribution sequence via the probability generating
function. The computational complexity of this process can
decrease Naive Approach Complexity from 𝑂(2𝑑

max
V +𝑑

max
𝑢 ) to

𝑂((𝑑
max
V 𝑑

max
𝑢
)
2
).

Our ultimate objective is the conditional probability
distribution of the degree. In other words, the purpose is
to calculate the distribution sequence of node V with the
presupposition that there exists an edge connecting to node
V and edge 𝑒 ∈ 𝐸V. As a result, the probability generating
function of the conditional probability can be obtained by
simply dividing (1 − 𝑝

𝑒
+ 𝑝
𝑒
𝑧).

Now we can easily calculate the probability generating
function of the conditional probability 𝑃(𝐷V = 𝑘 | 𝑒 ∈

𝐸V) 𝑘 = 1, 2, . . . , 𝑑
max
V . And we can get the support matrix

𝐸(𝐴) within the time expected in the polynomial equation
(9). In particular, the sequence similarity method is also
added to the score vector according to the literature [5] as

𝑅 = 𝛼𝐸 (𝐴) 𝑅 + (1 − 𝛼) 𝐸, (12)

where 𝐸 is the vector denoting normalization of sequence
similarity score BLAST and 𝛼 is a constant used for balancing
influence of topological similarity and sequence similarity
on calculating the pairwise similarity. Finally, we use a
power iteration method [15, 16] to calculate 𝑅 and record all
similarity score. See Algorithm 2.

2.4. Extracting Alignment Results. After calculating similarity
vector 𝑅, the last step of our model is to extract the final
alignment results from vector 𝑅. In order to extract the
final alignment results, we introduce a breadth first searching
approach by using maximum weight bipartite matching
technique [17, 18]. First of all, we introduce the concept of
bipartite graph and maximum weight bipartite matching.

Bipartite graph: a graph 𝐺
12
= (𝑉
12
, 𝐸
12
) is bipartite if

there exists 𝑉
12
= 𝑉
1
∪ 𝑉
2
with 𝑉

1
∩ 𝑉
2
= 0. And for each

Construct support matrix 

Calculate the eigenvector 

Alignment results

(the algorithm of extracting
alignment results) 

G1 G2

(the algorithm of computing E(A))

(computing R algorithm)

Figure 2: The framework of C PBNA.

edge 𝑒 ∈ 𝐸
12
, the two end vertices must belong to the two

different subsets 𝑉
1
and 𝑉

2
.

Maximum weight bipartite matching: given a bipartite
graph 𝐺

12
= (𝑉
12
, 𝐸
12
) with bipartition (𝑉

1
, 𝑉
2
) and weight

function 𝑤 : 𝐸 → 𝑅 find matching of maximum weight
where the weight of matching 𝑀 is given by 𝑤(𝑀) =

∑
𝑒∈𝐸
12

𝑤(𝑒).
The process of extracting results from the feature vector

𝑅 is the process to find a max-weight matching𝑀 in 𝐺
12
.

Let us call a function 𝑦 : (𝑉
1
∪ 𝑉
2
) → 𝑅 a potential

if 𝑦(𝑖) + 𝑦(𝑗) ≤ 𝑤(𝑖, 𝑗) for each 𝑖 ∈ 𝑉
1
, 𝑗 ∈ 𝑉

2
. The

value of potential is ∑V∈𝑉
1
∪𝑉
2

𝑦(V). It can be seen that the
cost of each perfect matching is at least the value of each
potential.The Hungarianmethod finds perfect matching and
a potential with equal value which proves the optimality of
both. In fact it finds perfect matching of tight edges: an edge
𝑒
𝑖𝑗
is called tight for a potential if 𝑦(𝑖) + 𝑦(𝑗) = 𝑤(𝑖, 𝑗). See

Algorithm 3.

2.5. C PBNA Algorithm. The C PBNA algorithm can be
roughly divided into three steps, constructing the support
matrix, calculating the eigenvector of thematrix, and extract-
ing alignment results, as in Figure 2. These steps will give
detailed descriptions by Algorithms 1, 2, and 3.

First we build probabilistic support matrix based on
the conclusions of Section 2.2 and calculate 𝐸(𝐴) based on
formula (9) in Section 2.3. The pseudocode can be seen
in Algorithm 1. Secondly, we calculate the feature vector 𝑅
by using an iterative approach denoted as in Algorithm 2.
Thirdly, we extract optimal comparison by interpreting 𝑅 as
encoding a bipartite graph and finding the maximum weight
bipartite matching, which is denoted as in Algorithm 3.

In Algorithm 1 we have the following.

(1) Line 1–Line 4. Construct the PGF for every node in
probabilistic networks 𝐺

1
and 𝐺

2
.
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Input: Probabilistic graph 𝐺
1
= (𝑉
1
, 𝐸
1
),

Probabilistic graph 𝐺
2
= (𝑉
2
, 𝐸
2
)

Output: 𝐸(𝐴)
// Construct PGF of 𝑉

1
𝑉
2

(1) for all 𝑢 ∈ 𝑉
1
, V ∈ 𝑉

2
do:

(2) construct PGF of 𝑢
(3) construct PGF of V
(4) end for
// Compute every entry in 𝐸(𝐴)
(5) for all 𝐸(𝐴[𝑖, 𝑗][𝑢, V]) ∈ 𝐸(𝐴) do:
// Compute 𝑃

0
using (10)

(6) 𝑃
01
= 1

(7) for all 𝑒 ∈ 𝜀
𝑢
do:

(8) 𝑃
01
× = (1 − 𝑝

𝑒
)

(9) end for
(10) 𝑃

02
= 1

(11) for all 𝑒 ∈ 𝜀
𝑣
do:

(12) 𝑃
02
× = (1 − 𝑝

𝑒
)

(13) end for
(14) 𝑃

0
= 𝑃
01
+ 𝑃
02

//Compute 𝑃
𝑘1𝑘2

using (12)
(15) 𝑆 = 0

(16) for all 𝑘
1
= 1 → 𝑑

max
𝑢
, 𝑘
2
= 1 → 𝑑

max
V do:

//Compute PGF of 𝑢 and V

(17) 𝑄
𝑖

𝐷𝑢
= 𝑄
𝐷𝑢
/(1 − 𝑃(𝑖, 𝑢) + 𝑃(𝑖, 𝑢)𝑧)

(18) 𝑄
𝑗

𝐷V
= 𝑄
𝐷V
/(1 − 𝑃(𝑗, V) + 𝑃(𝑗, V)𝑧)

//Use PGF of 𝑢 and V
//to get conditional Probabilistic distribution
//according toTheorem 3
(19) 𝑃

𝑘1𝑘2
= 𝑄
𝑖

𝐷𝑢
||
𝑘1−1

× 𝑄
𝑗

𝐷V
||
𝑘2−1

(20) 𝑆 + = 𝑃
𝑘1𝑘2
/𝑘
1
𝑘
2

(21) end for
(22) 𝐸[𝐴[𝑖, 𝑗][𝑢, V]] = 1/𝑚𝑛 × 𝑃

0
+ 𝑆

(23) end for

Algorithm 1: The algorithm of computing 𝐸(𝐴).

(2) Line 5–Line 14. Calculate the probability 𝑃
0
corre-

sponding to the values of 1/𝑚𝑛.

(3) Line 15–Line 21. Calculate the 1/𝑘
1
𝑘
2
of probability

𝑃
𝑘
1
𝑘
2

corresponding to𝑄𝑖
𝐷
𝑢

‖
𝑘−1

which represents 𝑘−1
coefficient of the probability generating function𝑄𝑖

𝐷
𝑢

.

After getting the desired 𝐸(𝐴), we use an iterative
approach to calculate the feature vector 𝑅. Set each of
values 𝑅

𝑖𝑗
in the eigenvalue 𝑅 equal to constant 1/𝑚𝑛, the

original variable 𝑅 called 𝑅
0
. 𝐸 indicates the normalized

vector of sequence homologies. The 𝛼 values have been
studied in the literature [5, 16], so we directly use the best
value 0.6. 𝜀 is a sufficiently small constant; iteration will
eventually converge to approximate similarity score vector 𝑅.
The process calculation of 𝑅 is shown in Algorithm 2.

In Algorithm 2 we have the following.

(1) Line 1–Line 4. Set the initial value of the feature vector
𝑅
0
.

Input: 𝐸(𝐴), 𝜀
Output: 𝑅
//initialize 𝑅

0
of 𝑉
1
𝑉
2

(1) for all 𝑖 ∈ 𝑉
1
, 𝑗 ∈ 𝑉

2
do:

(2) 𝑆
𝑖𝑗
= 1/𝑚𝑛

(3) end for
(4) 𝑅
0
= 𝑆

//Power Iteration Method Computation of 𝑅
(5) 𝑘 = 0

(6) loop do:
(7) 𝑅

𝑘+1
← 𝛼𝐸(𝐴)𝑅

𝑘
+ (1 − 𝛼)𝐸

(8) 𝛿 = ‖𝑅
𝑘+1
− 𝑅
𝑘
‖

(9) while 𝛿 > 𝜀

Algorithm 2: Computing 𝑅 algorithm.

Table 3: Experimental environment.

Experimental environment
Programming
environment QT, C++

Library function QT and OGDF library function
Hardware
environment

CPU clock speed of 3.3 GHz,
memory of 4G

(2) Line 5–Line 9. There is iterative calculation until the
two values of feature vector difference are less than the
set value of 𝜀.

After getting the feature vector 𝑅, the last step of the
C PBNA algorithm is extracted by final comparison results
from 𝑅 as shown in Algorithm 3. C PBNA adopted the
method mentioned in Section 2.4; this method is to find
perfect matching𝑀.

In Algorithm 3 we have the following.

(1) Line 1–Line 3. Build bipartite graph 𝐺
12
and compute

the weight matrix by the feature vector 𝑅.
(2) Line 3–Line 5. Set the initial value of the 𝑦, 𝐸

12
,𝑀.

(3) Line 7–Line 11. Find an optimal augmenting path
cover (V

𝑢
, VV) by the max-flow min-cut theorem and

then update the feasible labeling 𝑦.
(4) Line 12–Line 14. Update 𝐸

12
, 𝑀 until 𝑀 is perfect

matching.

3. Experiments and Results

The experiments in this research include two main parts.
The first part shows that C PBNA algorithm can obtain the
results which are neglected by PBNA. Further, the second
part of the experiments proves that results of C PBNA are
more biologically significant using GOC and GNAS (global
network alignment score) as evaluation standards.

Experimental environment described in Table 3 indicates
the conditions of conducting the experiment designed in
this study. Besides, we make use of QT (a cross-platform
application framework) library function directly to deal



BioMed Research International 7

Input: 𝑅 Probabilistic graph 𝐺
1
= (𝑉
1
, 𝐸
1
), Probabilistic graph 𝐺

2
= (𝑉
2
, 𝐸
2
)

Output: MaximumWeight Bipartite Matching𝑀
//initialize Matrix𝑊,𝐺

12

(1) 𝐺
12
= Build𝐵𝐺(𝐺

1
, 𝐺
2
)

(2)𝑊= matrix (𝑊
𝑖𝑗
) of weights on the edges of 1 − 𝑅 with partite sets 𝑉

1
and 𝑉

2
.

(3) 𝑦 ← 0
(4) 𝐸 ← set of tight edges
(5)𝑀←max cardinality matching for graph 𝐺

12
= (𝑉
12
, 𝐸
12
)

//repeat find a perfect matching𝑀
(6) while𝑀 is not a perfect matching do
(7) let 𝐺 = (𝑉

12
, 𝐸)

(8) let 𝑆 ⊆ 𝐴 be such that |𝑆| > |𝑁(𝑆)|
(9) let 𝜀 = min

𝑎∈𝑆,𝑏∈𝐵\𝑁(𝑆)
{𝑤(𝑎, 𝑏) − 𝑦(𝑎) − 𝑦(𝑏)}

(10) ∀𝑎 ∈ 𝑆 𝑦(𝑎) = 𝑦(𝑎) + 𝜀

(11) ∀𝑏 ∈ 𝑁(𝑆) 𝑦(𝑏) = 𝑦(𝑏) − 𝜀

(12) update 𝐸
12
,𝑀

(13) end while
(14) return𝑀

Algorithm 3: Extracting alignment results.

with problems associated with array, matrix, and sorting
in PBNA and C PBNA algorithm. The QT library function
is available at http://qt-project.org/. In addition, the OGDF
library function which can be obtained at http://ogdf.net/ is
used to read and query biological network data.

The uncertain dataset used in the experiment obtained
from the MINT database is network data of protein-protein
interactions preprocessed by Todor et al. [9, 10]. As a
result, providing that MINT network is of enough biological
importance, the network information offered by KEGG
database is divided into several smaller networks. Then, only
the network with more than 10 nodes remains. Finally, we
obtain 198 protein-protein interaction networks coming from
10 organisms. Table 4 shows statistical information of this
network.

There are 198 networks comparing with each other, which
will result in 𝐶2

198
= 19503 groups of experiments. However

the networks through KEGG are divided into a set of vertices
function associated with proteins, and KEGG used a label to
mark the set of proteins.Theproteins fromdifferent sets share
less similarity, which makes little sense to do the network
comparison. Therefore we can get 122 groups of comparison
experiments from the KEGG database.

3.1. Coherence Comparison of C PBNA and PBNA. In order
to prove that C PBNA can discover the results neglected by
PBNA, agreement evaluation criterion [9] is introduced in
this research.

The definition of agreement is based on the same dataset.
Hence, the proportion of common results discovered by both
C PBNA and PBNA in all alignments is shown as

Alignments in common
All alignments

. (13)

The score of this evaluation criterion is between 0 and 1.
The larger the score is, the more common results these two
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Figure 3: Agreement.

algorithms have. Particularly, it shows that the results of both
methods agree perfectly if the evaluation criterion equals 1
while it means that the results of these two algorithms are
completely different if the evaluation criterion equals 0.

In this research, 122 groups of experiments are conducted
and the result agreements of C PBNA and PBNA algorithms
are figured out in each group of experiment. Finally, we get
122 agreements plotted by the number of experiments on the
horizontal axis and agreements on the vertical axis as shown
in Figure 3.

The ordinate values are the 122 agreement values after
sorting, and the abscissa values are the serial number of the
experiment.

Table 5 shows the detailed agreement statistics of 122
groups of experimentation. In particular, the left Pie Chart
is divided into 4 parts corresponding to the percentage of
each category andCategory 1 is not described in the Pie Chart
due to its percentage of 0. For instance, Category 5 in Table 5
indicates that there are 30 experiments with the agreement
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Table 4: Experimental data.

Organism Number of
networks

Number of proteins Number of interactions
Average Max Average Max

Cel 7 14.00 22 9.57 21
Dme 7 17.14 28 12.42 26
Eco 6 16.83 27 21.16 26
Hpy 1 11.00 11 7.00 7
Has 83 36.50 96 46.55 168
Mmu 43 16.23 40 11.16 33
Rno 13 14.69 30 11.00 22
Sce 34 32.91 106 80.32 313
Spo 3 11.00 11 10.00 10
Tpa 1 20.00 20 21.00 21

Table 5: Agreement statistics.

Category Agreement Quantity Percentage
1 0–0.2 0 0%
2 0.2–0.4 16 13.1%
3 0.4–0.6 33 27.0%
4 0.6–0.8 43 35.2%
5 0.8–1 30 24.6%
Total 0–1 122 100%

2

3
4

5

between 0.8 and 1, which accounts for 24.6% of the total
experiments.

The general distribution of the agreements is shown
intuitively in Figure 4. We can see that the Agreement values
are distributedwithin the range from0.2 to 0.95. From the Pie
Chart, we can further see that agreement scores less than 0.8
experiments accounted for 75% of the experiments, among
which only 14% of the total experiment is less than 0.4 points.
It indicates that both the C PBNA results and PBNA results
have many overlapping parts but have noticeable difference
at the same time. The reason is that one of the most basic
differences is that C PBNA concludes all of the uncertain
information while the PBNA method only utilizes half the
uncertain information.

Therefore, we may draw a conclusion that neglecting
uncertain information could lead to deviation. In addition,
all the above shows that much more innovative result can
be obtained through C PBNA algorithm.The corresponding
biological significance will be demonstrated by the following
experiments.

3.2. Gene Ontology Consistency Comparisons of C PBNA
and PBNA. Gene ontology consistency (GOC) has been

Table 6: GOC statistical data.

Category Diversity Quantity Percentage
1 <−10% 0 0%
2 −10%–0% 26 21.3%
3 0%–10% 79 64.8%
4 >10% 17 13.9%
Total −∞–+∞ 122 100%

generally used to measure the biological significance of
alignment results andwe use it to evaluate biologicalmeaning
of alignment result by

GOC = ∑

⟨𝑢,V⟩∈𝑉
12

|GO (𝑢) ∩ GO (V)|
|GO (𝑢) ∪ GO (V)|

, (14)

where GO(𝑢) denotes the set of GO terms which label a pro-
tein 𝑢 in gene ontology database.

Then, the GOC of each pair of proteins in alignment
results is calculated, respectively. The bigger the GOC is,
the more similar function these proteins have; especially, the
maximum of GOC is 1 which means that these proteins have
totally the same function. All GO data in this study comes
from GO Consortium [19] and literature [14].

Similarly, in order to get alignment results of C PBNA
and PBNA, respectively, the GOC (the value of GOC is
between 0 and 1) is calculated for each pair of proteins in
122 groups of experiments. Finally, we get 122 groups of
results, among which there are 2 GOCs in each group. The
distribution of the GOC is shown in Figure 4 and Table 6.

In Figure 4, 𝑥-coordinate denotes GOC value of C PBNA
algorithm and 𝑦-coordinate denotes GOC value of PBNA
algorithm. Table 6 shows 122 groups of GOC value and the
diversity of every two GOC values in each group.

As we can see in Table 6, for most of the results the value
of 𝑥-coordinate is larger than 𝑦-coordinate. For instance,
it includes 96 groups of experiments, 78.7% of the total
experiments, in Category 3 and Category 4. Furthermore,
the 𝑥-coordinate is higher than the 𝑦-coordinate more than
10% in 17 groups of experiment. These all indicate that in
most of experiments C PBNA algorithm may discover more
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Figure 4: GOC statistics of PBNA and C PBNA.

biologically significant results based on the same evaluation
standard GOC.

In conclusion, C PBNA and PBNA can obtain diverse
results for biological networks alignment which is proved
through the first experiment. Moreover, C PBNA is
demonstrated in the second experiment to be superior
to PBNA in discovering biologically significant results
since it uses all uncertain information while the PBNA
algorithm neglects some uncertain information in biological
networks.

3.3. Functional Coherence of the Alignments. The functional
coherence of the alignments is motivated by the lack of
automated and direct measures of ortholog-list quality. Com-
paring withGOC, the functional coherence of the alignments
reports the average of the medians instead of the sum. And it
maps each GO term to one or more of a standardized set of
GO terms.

We can see in Figure 5 that PBNA and C PBNA have
very similar functional coherence values with only a few
minor differences. One of the reasons is that the functional
coherence function computes the similarity of a standardized
set of GO terms instead of the aligned proteins directly. The
other reason is that it reports the average of the medians, so it
cannot tell whether a mapping has many highly similar terms
or not. Since the median of a distribution is not an accurate
representation of the entire distribution, the result it returns
is not sensitive enough to tell the difference between different
alignments.

3.4. GNAS Valuation Comparison of C PBNA and PBNA.
As one of the biological networks alignment algorithms,
GNAS (global network alignment score) [20] is adopted as
evaluation criterion in this paper defined in (15). Specifically
the larger value of GNAS indicates more conserved interac-
tions and higher sequence similarity:

GNAS = 𝛼 × |𝐸| + (1 − 𝛼) ×∑ seq (𝑢, V) . (15)
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Figure 5: Functional coherence of alignments using PBNA and our
method C PBNA.

GNAS

C_PBNA 5.03 3.34

PBNA 4.87 3.26
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Figure 6: Comparison of |𝐸| and GNAS from C PBNA and PBNA.

In this formula, seq(𝑢, V) denotes sequence similarity values
of the two nodes; |𝐸| denotes the number of edges of 𝐺

12
(for

the definition of𝐺
12
, please refer to Section 2.4). Based on the

commondataset, two groups of GNASwith 122 values in each
group are obtained throughC PBNAandPBNA, respectively.
The average values of GNAS and |𝐸| are showed in Figure 6.

As we can see in Figure 6, the values of |𝐸| and GNAS
obtained from C PBNA are superior to those from PBNA
since C PBNA adopts full uncertain information which
increases the amount of conserved interactions.

3.5. Time Analysis. The running time of PBNA and C PBNA
is evaluated in this experiment. The most time-consuming
step for both algorithms is constructing similarity matrix,
which takes about 90% of the entire running time.Therefore,
it is reasonable that we measure only this step’s running time
in order to evaluate the entire algorithm time efficiency. The
results are shown in Table 7.

Table 7 indicates that the time spent in constructing
similarity in C PBNA is longer than its counterpart in PBNA,
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Table 7: PBNA and C PBNA algorithm time statistics.

Method Average (second) Max (second)
PBNA 125.4 545.5
C PBNA 490.1 9014.6

because C PBNA deals with both probabilistic networks,
which takes more information into consideration. Network
comparisonwith two uncertain networks is muchmore com-
plex as we can see in Sections 2.1 and 2.2. When computing
𝐸(𝐴), in fact, the complexity of C PBNA is 𝑂((𝑑max

V 𝑑
max
𝑢
)
2
)

while the complexity of PBNA is 𝑂((𝑑max
V )
2
) by PGF method

mentioned above in Section 2.3. Although C PBNA spends
more time dealing with both probabilistic networks, its
time performance is still acceptable. Furthermore, the results
which we get have more biological significance, and C PBNA
candealwith the probabilistic networks directly instead of the
preprocessing and transforming of the data into deterministic
network.

4. Conclusions

Biological networks alignment is an important topic in
bioinformatics. However, the network data has its inherent
complexity of and the combine optimizes features of biolog-
ical networks alignment are not clear, which make relevant
algorithm study extremely challenging. A majority of the
classic biological networks alignment algorithms are based
on deterministic network while the alignment method for
probabilistic networks is still under discussion.

In this paper, we propose a complete probabilistic model
and a complete probabilistic biological algorithm for network
comparison. Our approach has several advantages. First, our
approach is based on complete probabilistic network, which
takes the uncertainties of both networks instead of the single
one into consideration. Consequently, our approach can take
full advantage of the uncertainties properties of network
comparison. Second, we model the network alignment using
two probability matrices. Therefore, the uncertainties can
be quantified by the probabilities of connections in the
networks. As a result, our approach is capable of comparing
two networks which both have uncertain properties. Third,
we use a unified probabilistic model for different types of
network alignment (deterministic, part probabilistic, and
complete probabilistic), unlike other alignments which use
different methods for different types of networks. Finally, the
evaluation criteria including GOC and GNAS are used in
the experiments to demonstrate that the results of C PBNA
and PBNA are different and that the results of the former
algorithm are more biologically significant.

Usually, affinity propagation in probabilistic networks is
random and probability factors have not been taken into
consideration in this paper, and the effect of these factors on
results will remain an open problem for the future research.
The computational time increases as a result of using more
probability information, which is a subject we will study in
the next step.
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