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We consider a boundary value problem of fractional integrodifferential equations with new nonlocal integral boundary conditions
of the form: x(0) = Bx(9), x(§) = « _[’11 x(s)ds, and 0 < 6 < & < 7 < 1. According to these conditions, the value of the unknown

function at the left end point ¢ = 0 is proportional to its value at a nonlocal point 8 while the value at an arbitrary (local) point
& is proportional to the contribution due to a substrip of arbitrary length (1 — 7). These conditions appear in the mathematical
modelling of physical problems when different parts (nonlocal points and substrips of arbitrary length) of the domain are involved
in the input data for the process under consideration. We discuss the existence of solutions for the given problem by means of the
Sadovski fixed point theorem for condensing maps and a fixed point theorem due to O’'Regan. Some illustrative examples are also

presented.

1. Introduction

We consider a boundary value problem of fractional differ-
ential equations with nonlocal integral boundary conditions
given by

‘Dix(t)= Af (t,x(t))+ Bl g (t,x(t)), te€][0,1],

1
x () = ocJ x(s)ds, 1)

n

x(0) = Bx (0),

0<O<&<n<l,

where “D? denotes the Caputo fractional derivative of order g,
f:[0,1]xR — Risa given continuous function, 1 < g < 2,
0 <r<l,and e, 3, A, B are real constants.

Here we remark that the boundary conditions introduced
in the problem (1) are of nonlocal strip type and describe
the situation when the receptors at the end points of the
boundary are influenced by the nonlocal contributions due
to interior points and strips of the domain for the problem.

For practical examples, see [1, 2]. The problem (1) can also
be termed as a five-point nonlocal fractional boundary value
problem.

In recent years, several aspects of fractional boundary
value problems, ranging from theoretical analysis to numeri-
cal simulation, have been investigated. The nonlocal nature
of fractional order differential operators has significantly
contributed to the popularity and development of the subject.
As a matter of fact, this characteristic of such operators help
to understand the memory and hereditary properties of many
useful materials and processes. For details and applications
of fractional differential equations in physical and technical
sciences such as biology, physics, biophysics, chemistry,
statistics, economics, blood flow phenomena, control theory,
and signal and image processing, see [3-6]. For some recent
works on nonlocal fractional boundary value problems, we
refer the reader to the papers [7-11], while the results based
on monotone method for such problems can be found in
(12, 13]. In [14], the limit properties of positive solutions
of fractional boundary value problems have been discussed.
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Fractional differential inclusions supplemented with different
kinds of boundary conditions have also been studied by
several researchers, for instance, see [15-20].

The paper is organized as follows. In Section 2, we recall
some basic definitions from fractional calculus and establish
an auxiliary lemma which plays a pivotal role in the sequel.
Section 3.1 contains an existence result for the problem
(1) which is established by applying Sadovskii’s fixed point
theorem for condensing maps. In Section 3.2, we show the
existence of solutions for the problem (1) by means of a fixed
point theorem due to O’Regan.

2. Preliminaries

In this section, some basic definitions on fractional calculus
and an auxiliary lemma are presented [3, 4].

Definition 1. The Riemann-Liouville fractional integral of
order g for a continuous function g is defined as

t

1
t
Fg(®) = (@La

provided the integral exists.

g(s)

o ds, q>0, 2)

Definition 2. For at least n-times continuously differentiable
function g : [0,00) — R, the Caputo derivative of fractional
order ¢ is defined as

‘Dig(t) = Jt (t —5)"1" g™ (s)ds,

1
I'(n-q) Jo

n-1l<g<n, n=

(3)
[q] + 1,

where [g] denotes the integer part of the real number g.

Lemma 3. For any y € C([0, 1], R) the unique solution of the
linear fractional boundary value problem
‘Dix(t)=y(t),

€[0,1], 1<g<2,

1
x&) =« J x (s)ds, (4)

n

x(0) = px (0),

0<O0<&<ny<l,

t _ g1
x(t):J0 =9 y(s)ds

I'(q)
o) P,
CHtaayos- o)
[

Abstract and Applied Analysis

+—[ (1—/3)< ))y(s)ds

r(

[ tyron)

§(F_g)
-a-p | (Er(q)) 3 (s)ds

pa-at-n)[ ¢

-5
) ——y () ds] ,
(5)

I'(q

where
Q=(1=p)(8-5 (1-17)) + B (L-a(1=1) #0. ()

Proof. 1t is well known that the general solution of the frac-
tional differential equation in (4) can be written as

fe-s)T!

x(t)=¢+qt+ L Q) y(s)ds, (7)

where ¢, ¢; € R are arbitrary constants.
Applying the given boundary conditions, we obtain the
following system

!

b@-s
(1B~ foe = B[ ey s

(1—06(1—11))60+<€—%(1—f72))61

W ARCED 1 (n-s)
—04<J0 F(q+1)y(5)ds_Jo F(q+1)y(s)d5>

EE=-s)
_J (F(q))

from which we get

(8)

y(s)ds,

6 -s5)""
I'(q)

1 (n-s)
yods= | Ty

ﬁ(&—(am(l -1)) Je

(0

o
gl

y(s)ds

(1-s)1
rg+1)”

(s) ds)

F( ) y(s)ds,

(1- 9
(J rgrn)) 4

- r (}Zq_j)l)

¥ (s) ds)
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Er_ o\
~a-p | G (s

I (q)
b -s)1!
B-all —q))J O (9ds|.
o TI'(q)
9)

Substituting the values of ¢, ¢; in (7), we get (5). This com-
pletes the proof. O
3. Existence Results

We denote by € = C([0,1],R) the Banach space of all
continuous functions from [0,1] — R endowed with the
norm defined by |x|| = sup{|x(¢)| : t € [0,1]}. Also
by L'([0, 1], R) we denote the Banach space of measurable
functions x : [0,1] — R which are Lebesgue integrable and
normed by [lx[: = |, x(t)ldt.

In the following we will give two existence results for
the problem (1), one with the help of Sadovskii’s fixed point
theorem and the other based on a fixed point theorem due to
O’Regan in [21].

3.1. Existence Results via Sadovskii’s Fixed Point Theorem

Definition 4. Let M be a bounded set in metric space (X, d);
then Kuratowskii measure of noncompactness, a(M), is
defined as inf{e : M covered by finitely many sets such that
the diameter of each set < €}.

Definition 5 (see [22]). Let ® : D(®) ¢ X — X bea
bounded and continuous operator on Banach space X. Then
® is called a condensing map if a(P(B)) < «(B) for all
bounded sets B ¢ D(®), where « denotes the Kuratowski
measure of noncompactness.

Lemma 6 (see [23, Example 11.7]). The map K + C is a k-set
contraction with 0 < k < 1 and is thus condensing, if

(i) K,C: D ¢ X — X are operators on the Banach space
X;

(ii) K is k-contractive; that is,
|Kx - Ky|| < kfx - y] (10)
forall x,y € D and fixed k € [0, 1);
(iii) C is compact.

Theorem 7 (see [24]). Let B be a convex, bounded, and closed
subset of a Banach space X and let ® : B — B be a condensing
map. Then @ has a fixed point.

In view of Lemma 3, we define an operator ## : € — €
by

(Px) () = (P,x) (1) + (Pox) (), te[0,1], (1)

where

(21x) (1)

t EAY !
=A L (tr(sé) f(s,x(s))ds

LB (E-(/2)(1-7%)) Je (6 - 5)1!
Q o T(q)

f(s,x(s))ds

L (1-9)1
Jo e 1)f(s,x(s))ds

1 (n-s)!
_ L tae l)f(S,x(s))ds>

- S (E-9)1
AQL I'(q)

Al o[ (=91
v le-n ([ g eree

el

f(s,x(s))ds

_I” (n-9)

o T(a+ 1)f(s,x(s))ds)

SE-9)
_(l—ﬁ)L @ f(s,x(s)ds

0 (9 _ S)q—l

~p-a(-n) [ oI o).
(12)

('@29‘) (®)

A N
:B.[o (tr(sc;) L (Sr(l:,)) g (u,x (u)) duds

BE- @2 (1))
Q

CO-5"" [ (s-w!

XL r(9) L ()

apf ([ (=97 [(s-w)!
+BE<J'0 F(q+1) JO F(r) g(u,X(u))duds

_J” (- s)" r s-w"!
0 1“(q+1) o TI(r)

B (FE-9 [ smw
BQL I'(q) L I (r)

g W, x (u))duds

g (u,x (u))du ds)

g, x (u))duds
2 lat-p

L (1-s)01 S(s—u)r‘l
X(JO F(q+1) JO T (r) g (W, x (u))duds




_J” (n-5)" J (s—w)™"
0o T(g+1)Jo T(r)
X g(u,x(u))duds)

~a-p[ e

x g (u, x (u)) duds

~B(1-a(l-n)
CO-9T" (FG-w
“, T e

Theorem 8. Let f, g : [0,1]xR — R be continuous functions
satisfying the following conditions.

g, x(u)duds | .

(13)

(H,) f satisfies the Lipschitz condition:

[f 6x) - f(6y)| < Llx-yl,
Y (tx),(ty)€[0,1] xR,

(14)
L>0,

(H,) there exist a function m € C([0,1],R") and a nonde-
creasing functiony : RY — RY such that

lgt 0] <m@®wxl), V(tx)e[0,1]xR (15)

Then the boundary value problem (1) has at least one solution
provided that

- 1 |BE-@2) (1)) ¢
V'_'A'L{F(qﬂf QIT(g+1)

|al3|9< 1 it )

"Ql \T(g+2) "T(q+2)
_|plegT 1
AT+

[|oc(1 /S)I( rq+2) " (Z;jz)>

L L-plE pl-a l—n))leq”
(q+1) T(g+1)
(16)

< 1.

Proof. Let B, = {x € € : | x|l < v} be a closed bounded and
convex subset of € := C([0, 1], R), where v will be fixed later.
We defineamap % : B, — € as

(Px)(t) = (P1x) () + (P,x) (1), tel0,1],  (17)
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where &, and P, are defined by (12) and (13), respectively.
Notice that the problem (1) is equivalent to a fixed point
problem P (x) =

Step1 ((9x)(B,) c B,).For that, weset M =
and select v > w/(1 — y), where

SUPye(o,1] | f(2,0)]

_ 1
F(q + 1)
B(&-(@/2)(1-7))|6"
.
IQIT(g+1)

|“ﬁ|9< 1 7t )
TQl \T(q+2) " T(g+2)
. Iplest 1
IQIT(q+1)

x{|a ﬁ)l( T(q+2) r(IZ;:Z))

|1—ﬁ|€q+l 1—041—17))|9‘1H
T(q+1) T(q+1)
+ | Bl [|m| y (r)

1 B(&-(a/2) (1-12))|6*"  (18)
+
F(q+r+1) |Q|F(q+r+1)

IOCﬁ|9 1 rlq+r+1
+ +
Q| I‘(q+r+2) F(q+r+2)

w=|A|M[

N S
IQIT(g+r+1) Q|
X{Ia(l—/s)l

1 qtr+l
X I
(F(q+r+2) F(q+r+2))
-
T(g+r+1)

|[3 1-a(l-7) |0q+r}]
T(g+r+1) '

Using | f(t, x(1))| < | f(t,x(@®)) — f(£,0)| + | f(£,0)| < Lv +

M, for x € B, t € [0, 1], we get
|(9’1x) (t)|
<Al (Lv + M)
{ 1 B (&= (a/2) (1-17))| 6
X +
[(g+1) lQIT(q+1)

|| 6 1 7!
MTe] (r(q+2)+r(q+2))
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lges

QT+ " 1Ql
1’]q+1
Xh““ mmrm+n m+n>
-l
I(g+1)
L, B-a(i-n )qu”
F(q+ 1) ’
|(9’2x) (t)|
< 1Bl |m]l y ()

S

R GRCEIC) G
QIT(q+r+1)

. |(Xﬁ|0< 1 . rlq+r+1 )
QI \T(g+r+2) T(q+r+2)

L lpeer 1
QIT(g+r+1) Q|

['“(1 ﬁ”( q+r+2) r((f:z))

L L= BlEm
F(q+r+1)

NUEELAN

F(g+r+1)

(19)
where we have used the following relations:

FE=s)" (Ps—w
Jo T'(q) jo I'(r) duds

_J't =97 (s
)0 T(g) T@+1) *

- tq+r el
= —F(q)F(r+1)J 1-wT"Vvdy (20)

tq+r
- T(q+r+1)
1 o F()T(B+1)
- VBgy =2\ 7/
Jo(l u)”  udu Tatpr1)
Consequently
|(Zx) (t)]
< [(21x) O] + |(2,x) (1)

< |A|(Ly + M)

x{ L,
T(g+1)

oBl6 (1 it
' m|(rw+n+r@+n)

|B| 687 1

QT

1 nq+1
XD““‘ﬁ”<r@+z)+rm+a>)

L -AlE 1B 1—06(1—17))|94”
[(q+1)

T(g+1)
+ | Bl |lm| v (v)

|B (&~ (a/2) (1-1%))] 05"
Q|T(q+r+1)

1B (&= (@/2)(1-7))|6°
QIT(q+1)

1
><{l"(q+r+1)+

. Iocﬁ|9 ( 1 N nq+r+1 )
QI \T'(q+r+2) T(q+r+2)
|B|65q+r+r . L
QIT(q+r+1)

1 qq+r+1
X ['a(l_ﬁ)|<l“(q+r+2) " F(q+r+2))

( Depier pspler)
F(q+r+1) T(g+r+1)

<Yr+w<,
(21)

which implies that (%*x)(B,) C B,

Step 2 (9, is continuous and y-contractive). To show the
continuity of P, for t € [0, 1], let us consider a sequence x,,
converging to x. Then, by the assumption (H,), we have

|(2x,) () - (2

1%) ()]
SIAIL{ 1 [BE-e2(1-7))"
Fg+1) IQIT (g +1)

|06B|9( 1 7t )

TQl \T(q+2) " T(g+2)
Blegt 1

Qrgen




1 ﬂq+1
" ['“(1_’3)l<r(q+2) \ r<q+z>>

L -plE [p(i-a 1_,7))|9q”
T(q+1) T(g+1)
(22)

x||x, — x| -

Next, we show that &, is y-contractive. For x, y € B, we get

I(gjl") )= (£1y) (t)|

s|A|L{ 1 |B (&= (@/2)(1-7))| 67

IQIT(q+1)

I(g+1)

Bl (1 .
" Ql <r<q+z> +r(q+2)>
QIT(g+1) Q|

[|a(1 ﬁ)l( T(q+2) (’Z;jz)>

L L-AlE B -a(l-n )IOqH
F(q+1) F(q+1)
(23)

x|l = 1.

By the given assumption

RAGRCRICUD)I
IQIT (q+1)

|| 6 1 nt!

" al <r<q+z)+r<q+z>)
Blog" 1

IQIF(q+1) QI

X |l (1 — ! + nq+1

[' g ’3)'<r<q+z) r<q+z>)

L L-BlE B -a(1-n)|0
F(q+1) F(q+1)

i

(24)
it follows that &, is y-contractive.

Step 3 (P, is compact). In Step 1, it has been shown that 2,
is uniformly bounded. Now we show that 9, maps bounded
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sets into equicontinuous sets of C([0, 1], R). Let t;,t, € [0, 1]
with t, < t, and x € B,. Then we obtain

[(2,%) (t,) = (2,x) (t,)]
IBly (v)
T TI(gt+r+1)

« L: (6= )" = (t, - ™ | m(s) ds

Bly () (%, 1
F(g+r+1) L (tz= 5] m(s)ds (25)
N |Bly (v) |mll |t, — t,]

QI
ﬂq+r+1

[|oc1—,8)|( q+r+2) F(q+r+2))

L =pET B -a(1-n)| 6t

F(q+r+1) I‘(q+r+1) ’

Obviously the right hand side of the above inequality tends
to zero independently of x € B, ast, —t; — 0. There-
fore it follows by the Arzela-Ascoli theorem that &, : C({0,
1,R) — C([0,1],R) is completely continuous. Thus &, is
compact on [0, 1].

Step 4 (< is condensing). Since &, is continuous, y-contract-
ive and &, is compact, by Lemma 6, & : B, — B, with

P =P, + P, is a condensing map on B,.
Consequently, by Theorem 7, the map & has a fixed point
which, in turn, implies that the problem (1) has a solution.
O

Example 9. Consider a nonlocal integral boundary value
problem of fractional integrodifferential equations given by

DPx(t) = f(t,x () + g (t,x (1), tel0,1],

0=(2). (D)= o

where g = 3/2,A = B = 1,r = 3/4,0 = 1/4,§ = 1/3, =
2/3,0 = 1, =1/2, f(t,x) = (1/2 +t)*)tan"'x + t + 1, and
g(t,x) = /(1 + )1 + (IxI/(1 + |x]))).

Clearly L = 1/8 as |f(t.x) - f(t.y)] < (1/8)lx - yl,
and |g(t, x)| < m@®)y(l x |) with m(t) = 2/(1 + %) and
y(llxll) = 2. Furthermore |Q| = 1/9, and the condition
(16) yields y = 0.522371 < 1. Thus all the conditions of
Theorem 8 are satisfied and consequently the problem (26)
has a solution.

(26)

3.2. Existence Results via O’Regan’s Fixed Point Theorem. Our
next existence result relies on a fixed point theorem due to
O’Regan in [21].
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Lemma 10. Denote by U an open set in a closed, convex set C
of a Banach space E. Assume 0 € U. Also assume that F )
is bounded and that F : U — C is given by F = F, + E,, in
which F, : U — E is continuous and completely continuous
and F, : U — E is a nonlinear contraction (i.e., there exists
a nonnegative nondecreasing function ¢ : [0,00) — [0, 00)
satisfying ¢(z) < z for z > 0, such that |F,(x) — E,(WI <
dlx — yl) forall x, y € U). Then, either

(CI) F has a fixed point u € U, or

(C2) there exist a point u € 0U and A € (0,1) with
u = AF(u), where U and 0U, respectively, represent the
closure and boundary of U.

For convenience we set

) L BE-@ (1-7))|e
P"_'A'{r(qﬂ) QT (g +1)

|“ﬁ|9< 1 7! )
e \r(g+2) " T(g+2)
L Iesr 1
QT(g+1) " 1Q

1 77q+1
" ['“(l_ﬁ)|<r(q+2) \ r<q+z>)
) Il—ﬂlfq+Iﬁ(l—cx(l—n))leq”)

F(q+1) F(q+1)

1B (&~ (@/2) (1= 1%))| 67
IQIT(q+r+1)

1
k, = |B
0= l{r(q+r+l)+

|(Xﬁ|0 1 rlq+r+1
+ +
QI \T'(q+r+2) T(q+r+2)
e 1
lQIT(g+r+1) Q|

| r]q+r+1
X [|o¢(l—ﬁ)|<r(q+r+2) * r(q+r+2))

, - +|/3(1—a(1—rl))|9q“”_

I(g+r+1) F(g+r+1)
(27)

Let
Q, ={x € C([0,1],R) : [Ix|| < o} (28)
and denote the maximum number by

M, =max{|f (t,x)| : (t,x) € [0,1] x [-0,0]}.  (29)

Theorem 11. Let f,g : [0,1] x R — R be continuous func-
tions. Assume that

(A,) there exist a nonnegative function p € C([0, 1], R) and
a nondecreasing function ¢ : [0,00) — (0,00) such
that

If w|<p@CUul)  for any (t,u) € [0,1] x R; (30)

(A,) there exist a positive constant £ < k" and a continuous
function ¢ : [0,00) — (0, 00) such that ¢(z) < €z and
lg(t,u) — gt, V)| < ¢l u—v |) forallt € [0,1] and
u,veR;

(A3) SUP,¢(0.00) (1] (koK + poC (Ml pl)) > (1/(1-ky€)), where
K = sup;¢(,1)1g(t 0)l.

Then the boundary value problem (1) has at least one solution
on [0, 1].

Proof. By the assumption (A;), there exists a number r; > 0
such that

70 1

> .
koK + poC (ro) [P = 1= kot

(31)

We will show that the operators &, and &, defined by (12)
and (13), respectively, satisfy all the conditions of Lemma 10.
The proof consists of a series of steps.

Step 1(the operator &, is continuous and completely continu-
ous). We first show that 2, (Qro) is bounded. For any x € Q.
we have

(%)
< |AIM,

IB(&-(@/2)(1-17))|6
IQIT(g+1)

x{ L,
I(g+1)

oBl6 (1 T
"al (r(q+2)+r(q+2))

LE

QIT(g+1) IQl

1 71q+1
~ ['““—/3)'(r<q+2) ' r<q+z>)

N |1—ﬁ|€q+|l3(1—oc(1—11))|9‘1”
I(g+1) I(g+1) '

(32)




Thus the operator 9’1(5,0) is uniformly bounded. For any
t,t, € [0,1], t; < t,, we have

|(@1x) (t;) = (P1x) (tl)l

< AIM, [ Lt (6= 5" — (1~ )] ds

6
+ J (t, - )" ds]
f

|A| M, |t, - t,| (33)
Q|
1 71q+1
s ['“(1 _/3)|<F(q+2) " F(q+2))
L -pE [p-a 1-11))|9q]
I‘(q+l) T(g+1) ’

which is independent of x and tends to zero as t, — f; —
0. Thus, &, is equicontinuous. Hence, by the Arzeld-Ascoli
theorem, 931(5,0) is a relatively compact set. Now, let x,, €
5,0 with [|x,, — x| — 0. Then the limit |x,,(t) — x(t)| — 0
is uniformly valid on [0, 1]. From the uniform continuity of
f(t,x) on the compact set [0,1] x [-ry,1y], it follows that
£t x,() — f(t,x(t))| — 0 is uniformly valid on [0, 1].
Hence |2,x, — Px| — 0asn — oo. This shows the
continuity of &;.

Step 2 (the operator 2, : 5,0 — C([0,1],R) is contractive).
Consider

|(P,x) (1) = (P,y) ()]

1
<|B|{——m—
<l l{r(q+r+1)

1B (&~ (a/2) (1 =) 67
.
IQIT(g+7+1)

l“ﬁle 1 ”q+r+1 )
+ +
QI \T'(q+r+2) T(q+r+2)
L, lgjegr 1
IQIT(g+r+1) Q|

« [p(l—ﬁ)l(r(q:”z) " r(:T:z))

L LA B -a(l-n) |9q+r”
(q+r+1) I(g+r+1)

x¢(lx=1)- .

This, together with (A,), implies that
[(22%) = (223 < ¢ (lx = 51D (35)

s0 P, : ﬁro — C([0, 1], R) is a nonlinear contraction.
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Step 3 (the set 9’(5,0) is bounded). Using the inequality

lg (tx)| < |g(tx) - g(t,0)] +|g(50)]
<o (Ixl)+K < bry + K,

(36)

we have

|9“‘2 (x)|

< |B| (éry + K)

S

L BE- @ (1-m))e
|Q|T(q+r+1)

|0€ﬁ|0 1 nq+r+1
+ +
QI \I'(q+r+2) T(q+r+2)
plosT 1
QIT(g+r+1) Q|

1 nq+r+1

X [la(l—ﬂ)|<r(q+r+2) + I‘(q+7’+2)>
 l-pE |ﬁ(1-a(1—n))|9‘f””
r(q+r+1) T(g+r+1) (37,)

for any x € ﬁro. This, with the boundedness of the set
P, (ﬁrﬂ), implies that the set 95(5,0) is bounded.

Step 4 (finally, it will be shown that the case (C2) in Lemma 10
does not hold). On the contrary, we suppose that (C2) holds.
Then, we have that there exist A € (0,1) and x € aQ,O such
that x = A%x. So, we have | x| = r, and

t -1
x(t):AAJ. E=9T (6 x(s))ds
0

I'(q)
L BE- (=)
Q
©-9)""
XJ Q) ——f (s, x(s))ds

a0
+ AA—— 0 <J Ner )f(s ,x(s))ds

1 (n-s)!
_L r(q+1)f(5,x(s))ds)
Bo * € -9 AAt
—)LAQJ ) f(s,x(s))ds+—Q
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[ (1—/3)<j o )f(sx(s))ds

J Ul )f(s x(s))ds)

I(g+1)
_( _ﬁ)J-O ()
CEDN

—/3(1_“(1_’1))_[0 r(q)

x f(s,x(s)) ds]

t (t — 5)‘1*1 s (S _ u)r—l
A ‘L F(q) Jo I'(r) g (u, x () duds

ABﬁ(E ~(@/2)(1-1))
Q

O-9"" F(s-w!
<, S b T

o360 —s)1 ((s—u)!
+AB= S Q <J I(g+1) Jo I'(r)

x g (u, x (u)) duds

g (u,x (u))duds

) J" (7-5)" J (s—w'™"

T(g+1)Jo T(r)

x g (u,x (u)) du ds)

ﬁer(f—sﬂj r()”

QT ) (u,x (u))duds

1 (l_s)q S(S_u)r—l
X(L I(g+1) L L(r)
x g (u,x (u)) duds
_J” (-5)" J (s—uw)"
o T(g+1)Jo T(r)
X g(u,x(u))duds)

CE-9 [ cmw
_(l_ﬁ)Jo F(q) Jo I'(r)

x g (u, x (u)) duds
~B(1-a(l-1n)

9
y J~9 (0_ S)q—l J»s (S— u)r—l
o I'(g Jo T(n
x g(u,x (u))duds|.
(38)
Using the assumptions (A;) and (A,), we get
< koK + po¢ (ro) | o]l + Kkolro, (39)
which leads to a contradiction:
1
£ (40)

koK + po¢ (7o) "P” 1-kyt

Thus the operators &, and %, satisfy all the conditions of
Lemma 10. Hence, the operator 2 has at least one fixed point
x € Qr , which is the solution of the problem (1). This
completes the proof. O

Example 12. Consider a nonlocal integral boundary value
problem of fractional integrodifferential equations given by

Dx(t) = f(t,x (1) + " g (t,x (1)), te[0,1],

1 /1 1 !
x(0) = 5x<4_1>’ x(§>—J2/3x(s)ds,
where g = 3/2,A = B = 1,r = 3/4,0 = 1/4,§ = 1/3, =

2/3,a=1,B=1/2, f(t,x) = (1/27)(2+/(1 + t) — 1) sin x, and
gt x) = (1/2+ )3 + (IxI/(1 + |x]))).

Observe that | f(t, x)| < (1/27)(2/(1 +t) — 1)x, |g(t, x) —
g(t, »)| < (1/8)|x - yl, and supte[o,llg(t, 0) = 3/8. Further, we

set p(t) = (1/3)(2V(1 +1) = 1),{(x) = x/9,£ =1/8,and K =

(41)

3/8. With the given data, it is found that k, = 1.495606, p, =
4.178968,1Q| = 1/9, || pll = (22 - 1)/3, and
sup {; ~ 3.533597
re(0.00) [ koK + po¢ () T ’
€(0,00) [ Kol + Py 2l (42)
L . 1229953,
1— kot

Clearly, all the conditions of Theorem 11 are satisfied and
hence there exists a solution for the problem (41).
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