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In iterative methods for partitioning circuits, there is often a choice among several modules which will all produce the largest
available reduction in cut size if they are moved between subsets in the partition. This choice, which is usually made by popping
modules off a stack, has been shown to have a considerable impact on performance. By considering the most recent change in the
potential reduction in cut size associatedwithmoving eachmodule between subsets, the performance of this LIFO (last-in first-out)
approach can be significantly improved.

1. Introduction

Let 𝐶 = (𝑀,𝑁) be a circuit, where𝑀 is a set of modules and
𝑁 is a set of nets, each of which connects two or more mod-
ules. A balanced bipartition divides the circuit into two dis-
joint subsets, each containing the same number of modules.
Finding a balanced bipartition in which as many nets as pos-
sible connect modules in the same partition is an important
problem, with applications that include the design automated
of VLSI chips and multichip boards.

Many heuristics for circuit bipartitioning have been pro-
posed [1–4], among which iterative improvement algorithms
are perhaps the most successful. An iterative improvement
algorithm can be deployed as a freestanding heuristic, as a
framework for further refinement, or as a local optimizer
forming part of a hybrid with metaheuristic methods [5–7].
These techniques rely on the quality of the iterative improve-
ment algorithm. All such algorithmsmust start with an initial
partition and move successive modules between subsets,
using greedy decisions designed to reduce the number of nets
connecting the subsets. The Kernighan-Lin algorithm (KL)
[8, 9] is an example of a technique which swaps pairs of
modules, and the Fiduccia-Mattheyses algorithm (FM) [10]

is a faster version which moves one module at a time; there
are several variants [3, 4, 11, 12].

Hagen et al. [13] identified the way in which an iterative
improvement algorithm deals with the situation in which
several modules have an equal claim to be moved between
subsets as a significant denominator of its performance.Their
experiments suggested that stack-based (LIFO) manage-
ment of module moves reduced the number of connections
between subsets most rapidly. In this paper, we build on this
work by introducing an improved way of choosing candidate
moves into an implementation of the FM algorithm for bipar-
titioning. We show that the proposed strategy outperforms
existing strategies.

2. The Fiduccia-Mattheyses Iterative Method

The FM algorithm [10] starts with two randomly chosen
subsets. It moves a module at a time from one subset to the
other in an attempt to minimize the number of nets connect-
ing both subsets, which is the cut size. Each module 𝑚 is
associated with a gain𝑔(𝑚)which represents the reduction in
cut sizewhichwould result frommoving it to the other subset.
Thus, 𝑔(𝑚) = |{𝑛 ∈ 𝐼(𝑚)}| − |{𝑛󸀠 ∈ 𝐶(𝑚)}|, where 𝐶(𝑚) is
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for each module𝑚 ∈ 𝑀 −𝑀𝐿 adjacent to module𝑚
𝑖

adjust gain 𝑔(𝑚) if it is affected by moving module𝑚
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; // module update
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until there is no reduction in cut size;
return the partition {𝑀

1
,𝑀
2
};

Algorithm 1: Pseudocode of the Fiduccia-Mattheyses iterative method. Note that the details of the above module selection and module
update for each gain bucket management are given in Algorithms 2 and 3.

// LIFO management
for each module with maximum gain // module selection
it is removed from the top of the stack in the bucket w.r.t. maximum gain;

for each module of which the gain is updated // module update
it is added to the top of the stack in the bucket w.r.t. the new gain;

// FIFO management
for each module with maximum gain // module selection
it is removed from the tail of the queue in the bucket w.r.t. maximum gain;

for each module of which the gain is updated // module update
it is added to the head of the queue in the bucket w.r.t. the new gain;

Algorithm 2: Pseudocodes of LIFO and FIFO management of gain buckets.

the set of nets connecting 𝑚 to other modules exclusively in
the subset to which 𝑚 currently belongs and 𝐼(𝑚) is the set
of nets which connect 𝑚 exclusively to modules in the other
subset. The module to move must be chosen on the basis
of its gain and also the balance criterion between subsets;
otherwise, we are likely to obtain a trivial solution in which
the module with the fewest connections occupies one subset,
and all the othermodules occupy the other.TheFMalgorithm
operates in a series of passes. After amodule has beenmoved,
it is locked to prevent furthermovements, until the end of the
pass, which occurs when all modules have been locked. At
the end of the pass, the algorithm backtracks to the situation
obtained after the move that produced the fewest cut size. All
the modules are now unlocked again and another pass starts.
This process continues until a pass produces no reduction
in cut size. Algorithm 1 shows the pseudocode of the FM
algorithm.

3. The Significance of Ties between Modules

Heuristics such as KL and FM involve a chain of moves, for
each of which the module with the highest gain is selected.

A tie occurs if more than one module has the same highest
gain. Hagen et al. [13] observed several ties while running
FM for circuit partitioning; and Kim andMoon [11] and Yoon
and Kim [14] also noticed ties occurring while running KL
for graph bipartitioning. We found ties occurring regularly
when running FM for circuit partitioning, and their number
is tabulated, for several test circuits, in the second column of
Table 2.This suggests that the way in which ties are dealt with
is not a detail of the implementation but can drive the search
along different paths.

There have been a number of studies on the handling of
ties in the circuit partitioning problem. Krishnamurthy [12]
pointed out that the arbitrary handling of ties can cause the
FM [10] algorithm to perform poorly. He introduced a gain
vector, which is effectively a formof look-ahead, and observed
an improvement in performance. However, the gain vector
requires a lot of memory [3], and ties may still occur. Hagen
et al. [13] observed that stacking sets of modules with the
same gain yield considerably better solutions than queueing
or random ordering, in both the FM and Krishnamurthy
algorithms.These authors suggest that a stack allowsmodules
with the same gain to move one after another. Thus, they
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// VLIFO management
for each module with maximum gain //module selection
it is removed from the top of the stack in the bucket w.r.t. maximum gain;

for each module of which the gain is updated, // module update
if the gain is increased then
it is added to the top of the stack in the bucket w.r.t. the new gain;

if the gain is reduced then
it is added to the bottom of the stack in the bucket w.r.t. the new gain;

// VFIFO management
for each module with maximum gain //module selection
it is removed from the tail of the queue in the bucket w.r.t. maximum gain;

for each module of which the gain is updated, // module update
if the gain is increased then
it is added to the head of the queue in the bucket w.r.t. the new gain;

if the gain is reduced then
it is added to the tail of the queue in the bucket w.r.t. the new gain;

Algorithm 3: Pseudocodes of VLIFO and VFIFO management of gain buckets.

proposed a variant on Krishnamurthy’s gain vector which
includes locality information and found that this improves
performance. We also note that there have been some studies
of mechanisms in algorithms for other graph partitioning
problems [11, 14].

4. Favoring the Movement of Modules
Related to Recently Moved Modules

A typical iterative improvement algorithm uses the gain
bucket structure illustrated in Figure 1 and Algorithm 2, in
which modules with the same gain are placed in the same
bucket. If more than onemodule is in the bucket correspond-
ing to the maximum gain, a tie occurs.

After a module has been moved, the iterative improve-
ment algorithmupdates the gains of themodules towhich it is
connected.Their gainsmay increase, reduce, or stay the same,
as shown in Figure 2. We can use these updates to influence
the order in which we deal with the modules which all have
the maximum gain. Existing strategies simply consider the
modules to be stacked or queued within a bucket. Motivated
by the conjecture that it should be advantageous to move
modules related to other modules that have recently been
moved, we modify the corresponding LIFO (last-in first-
out) and FIFO (first-in first-out) paradigms by considering
changes in gain. We call these variants, explained in Figure 3
and Algorithm 3, VLIFO and VFIFO.The difference between
LIFO (or FIFO) and VLIFO (or VFIFO) lies in the way in
which updatedmodules are added to the stack (or queue) that
constitutes a bucket: modules with increased gain are pushed
onto the top of the stack (or the head of the queue), modules
with reduced gain are inserted at the bottom of the stack
(or the tail of the queue), and modules with unchanged gain
remain in the same places.

5. Experiments

We tested the proposed algorithm on 10 benchmark circuit
graphs, including seven ACM/SIGDA benchmarks. Table 1

Table 1: Specification of tested circuits.

Circuit Modules Nets Pins
19ks 2,844 3,282 10,547
bm1 882 903 2,910
industry2 12,637 13,419 48,158
prim1 833 902 2,908
prim2 3,014 3,029 11,219
test02 1,663 1,720 6,134
test03 1,607 1,618 5,807
test04 1,515 1,658 5,975
test05 2,595 2,750 10,076
test06 1,752 1,641 6,638

shows the numbers of nodes, nets, and pins (connections
to modules) in each circuit. In all of our experiments, we
assume that the modules have unit area and constrain the
partition sizes to differ by atmost onemodule. Although a less
accurate balance is usually acceptable in practical circuit par-
titioning, a tight constraint facilitates comparison with other
partitioning techniques.

Table 2 shows the performance of five ways of dealing
with ties: VFIFO, FIFO, Random, LIFO, and VLIFO. All
the methods apart from Random took similar times to run;
Random was slower. In line with results reported previously
[13], LIFO significantly outperformed FIFO and Random on
all the circuits; and Random performed better than FIFO.
VLIFO gave the best results, and VFIFO gave the worst.

These results suggest that links between consecutively
moved modules affect performance. We investigated this
further by measuring the proportion of modules selected for
moving which have just had their gain values reduced or
increased (see Table 3 and Figure 4). The results, tabulated
in Table 3, confirm that performance is strongly linked to the
proportion ofmodules selectedwhich have just had their gain
increased.
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Figure 1: LIFO and FIFO management of gain buckets. In our implementation, circular doubly linked lists are used for efficient bucket
management.
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Figure 3: VLIFO and VFIFO management of gain buckets.

6. Concluding Remarks

Wehave described an improvedway of dealingwith ties when
modules are moved within a circuit partitioning algorithm
based on iterative improvement algorithm. We modified the
LIFO strategy, usually considered to be the best, by consid-
ering the most recent change in gain for each module. The
application of this technique tomultiway partitioning [15] is a
promising avenue for future study.
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Figure 4: Proportion of modules selected for moving with gain reduced, unaffected, or increased by the previous move, for five circuits
(a)–(e) (data from Table 3).
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Table 2: Comparison of bipartition cut sizes (averaged over 1,000 runs).

Circuit Ties/choices (proportion) VFIFO FIFO Random LIFO VLIFO
19ks 384.5/712.0 (54.0%) 375.3 372.2 334.3 198.0 195.6
bm1 118.3/221.5 (53.4%) 126.3 124.8 108.9 80.7 79.9
industry2 2978.9/3160.3 (94.3%) 1801.2 1750.1 1601.5 837.3 797.5
prim1 80.0/209.3 (38.2%) 127.0 126.0 110.9 83.7 82.9
prim2 623.9/754.5 (82.7%) 515.9 507.1 454.6 303.5 300.7
test02 211.6/416.8 (50.8%) 252.5 250.6 241.7 180.2 178.7
test03 191.4/402.8 (47.5%) 207.7 207.0 184.5 124.5 123.2
test04 132.7/379.8 (34.9%) 225.0 221.6 207.0 144.6 142.6
test05 290.4/649.8 (44.7%) 353.1 351.0 336.4 189.8 189.7
test06 172.7/439.0 (39.3%) 210.1 209.6 198.8 94.7 95.2

Table 3: Proportion ofmodules selected which have just had their gain reduced, or increased, for the five choice strategies and five test circuits
(average of 1,000 runs).

Circuit Most recent change of gain VFIFO FIFO Random LIFO VLIFO

19ks
− 0.012 0.011 0.010 0.009 0.007
0 0.133 0.121 0.102 0.072 0.072
+ 0.855 0.868 0.888 0.919 0.921

bm1
− 0.017 0.015 0.014 0.012 0.011
0 0.149 0.135 0.111 0.081 0.081
+ 0.834 0.850 0.875 0.907 0.908

industry2
− 0.012 0.011 0.011 0.011 0.009
0 0.153 0.138 0.112 0.069 0.069
+ 0.835 0.851 0.877 0.920 0.922

prim1
− 0.018 0.015 0.014 0.012 0.010
0 0.127 0.117 0.097 0.074 0.074
+ 0.855 0.868 0.889 0.914 0.916

test02
− 0.021 0.019 0.018 0.016 0.014
0 0.168 0.155 0.132 0.105 0.106
+ 0.811 0.826 0.850 0.879 0.880
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