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Dynamic and longitudinal lung CT imaging produce 4D lung image data sets, enabling applications like radiation treatment
planning or assessment of response to treatment of lung diseases. In this paper, we present a 4D lung segmentation method that
mutually utilizes all individual CT volumes to derive segmentations for each CT data set. Our approach is based on a 3D robust
active shape model and extends it to fully utilize 4D lung image data sets. This yields an initial segmentation for the 4D volume,
which is then refined by using a 4D optimal surface finding algorithm.The approach was evaluated on a diverse set of 152 CT scans
of normal and diseased lungs, consisting of total lung capacity and functional residual capacity scan pairs. In addition, a comparison
to a 3D segmentation method and a registration based 4D lung segmentation approach was performed. The proposed 4D method
obtained an average Dice coefficient of 0.9773 ± 0.0254, which was statistically significantly better (𝑝 value≪ 0.001) than the 3D
method (0.9659 ± 0.0517). Compared to the registration based 4D method, our method obtained better or similar performance,
but was 58.6% faster. Also, the method can be easily expanded to process 4D CT data sets consisting of several volumes.

1. Introduction

Applications like lung cancer radiotherapy planning [1],
assessment of lung diseases like COPD [2], or dynamic lung
ventilation studies [3] require the acquisition and subsequent
analysis of 4D lung CT scans (e.g., two lung scans at different
respiratory states). Most quantitative analysis approaches uti-
lize image registrationmethods [4, 5] for 4D analysis. In order
to achieve accurate results and reduce computation time,
registration is typically only performed within a lung mask.
Thus, for such approaches, the segmentation of each lung CT
volume acquired is a prerequisite. This can be accomplished
by utilizing standard 3D lung segmentation methods like
the ones proposed in [6–10], which assume a large density
difference between air-filled lung parenchyma and surround-
ing objects/tissues. However, since 4D imaging is mainly
performed for the assessment and/or treatment of lung
diseases, such simplemethods frequently fail to performwell.
Recently, 3D segmentation methods have been developed to

deal with this issue, including approaches that utilize an atlas-
based segmentation-by-registration scheme [11], an error-
correcting hybrid system [12], a shape “break-and-repair”
strategy [13], and a 3D robust active shapemodel (RASM) [14,
15]. However, none of these approaches takes advantage of 4D
lung CT scans and thus requires lungs to be segmented indi-
vidually. This can be problematic, especially when segment-
ing pairs of total lung capacity (TLC) and functional residual
capacity (FRC) lung scans, because (diseased) lungs at FRC
are typically more difficult to segment than lungs imaged at
TLC. Consequently, algorithms that simultaneously segment
lungs in all available CT volumes are more promising.

Work on 4D lung segmentation techniques is scant.
Wilms et al. [16] adopted a 4D statistical shapemodel that was
originally developed by Perperidis et al. [17] for segmentation
of gated cardiac image sequences. A limitation of this
approach is that it is based on standard least squares active
shape model (ASM) matching, which is known to be affected
by outliers [14, 18]. Consequently, disease induced changes of
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Figure 1: RASM-based approaches for segmenting lungs in a 4D CT volume (represented by 3D volumes A and B). (a) 3D segmentation
method [14]. (b) Registration based 4D segmentationmethod [19]. (c) Proposed 4D segmentation approachwith new 4DRASM (Section 3.1).

lung tissue (e.g., density) or artifacts resulting from sorting
algorithm errors in case of free-breathing CT lung imaging
can adversely impact model matching.

In our previous work, Sun et al. [19] introduced a 4D lung
segmentation method based on 4D optimal surface finding
(OSF). The approach requires a rough initial lung segmenta-
tion, which was obtained by applying a 3D RASM [14] to a
TLC lung scan and transferring this segmentation by means
of a nonrigid image registration to the corresponding FRC
scan (Figure 1(b)). This approach has some potential short-
comings. First, the initial, rough segmentation step does not
take full advantage of the available 4DCTdata. Consequently,
if the initial lung segmentation is inaccurate, the error is
propagated to the other volume by the algorithm. Second,
formany applications (e.g., segmentation of longitudinal TLC
volumes), it is not obvious which volume should be utilized
for 3D RASM segmentation to achieve good segmentation
performance. Third, the registration step is quite time-
consuming.

In this paper, we address these limitations by proposing a
new 4D RASM model matching step that replaces the com-
bination of single 3D RASM segmentation and subsequent
registration to other volumes as proposed by Sun et al. [19].
In addition, we provide an extensive study, comparing the
3D base method published by Sun et al. [14] applied to each
CT scan independently (Figure 1(a)), the registration based
4D version [19] (Figure 1(b)), and the proposed approach
(Figure 1(c)) on a diverse set of 4DCTdata, consisting of TLC
and FRC scan pairs of normal and diseased lungs.

2. Prior Work

The proposed method extends our 3D RASMmethod [14] to
mutual segmentation of lungs in 4DCT data.Thus, we briefly
outline the RASM fitting process for a single 3D volume.

The RASM consists of a point distribution model (PDM)
that captures the variation in lung shapes and a robust
matching approach that iteratively fits themodel to a lung CT
scan to perform a segmentation.ThePDM is constructed sep-
arately for left and right lungs from 𝑁 lung volume training
data sets that have𝑚 corresponding points (landmarks) [14].
An instance of a left or right lung shape is generated from the
corresponding PDM by the linear model

x = x +Pb, (1)

where x is the mean lung shape vector, P denotes the shape
eigenvector matrix, and b represents the shape coefficients.

The matching process begins with automatically placing
themean lung shape x in the target CT volume based on a ribs
detection step [14]. The model shape points are then updated
to y based on a gradient based cost function. For this purpose,
a robust matching step is utilized to prevent that outliers
are used during the model matching process. It is based on
a robust PCA coefficient estimation method, which utilizes
subsets of landmark points𝜔

𝑖,𝑗
and a voting scheme [14].Dur-

ing matching, for each of these subsets a reconstruction error
𝑒
𝜔𝑖,𝑗

is calculated, which is then being used to determine the
inliers update points ỹ of y (note the notation for specifying
inliers using ;̃ e.g., ỹ corresponds to the set y

{𝑝𝑖=1}
in [14] and
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Figure 2: Illustration of intermediate and final results of the proposed 4D lung segmentation approach. (a) 4D CT data consisting of a TLC
and FRC lung scan pair to be segmented. (b)Model initialization. (c-d) 4D RASM segmentation with (c) mutual segmentations and (d) result
after the constrained adaptation step. (e) 4D OSF segmentation result.

is used here instead for the sake of clarity). Subsequently, ỹ is
utilized to update the shape coefficients by calculating

b = P̃𝑇 (Tỹ − x̃) , (2)

where T is the pose transformation matrix for mapping
points from target image coordinate frame to model coordi-
nate frame and x̃ denotes the points corresponding to inliers
in the mean lung shape x. P̃ refers to the columns corre-
sponding to inliers in the shape eigenvector matrix P. A
new instance of the model is calculated using (1), which is
transformed to the image space by T−1. The model shape
points are then iteratively updated until convergence.

Once the robust matching process is finished, the result-
ing RASM segmentation is used as an initial shape for
a graph-based optimal surface finding (OSF) algorithm to
further refine the segmentation [14] (Figure 1(a)).

3. Methods

Our method for generating a 4D lung segmentation
(Figure 1(c)) is based on fitting a 3D RASM mutually to 4D
volumedata (Section 3.1), followed by a 4DOSF segmentation
step (Section 3.2). The results of all the different processing
stages are depicted in Figure 2. Below, we describe the seg-
mentation process in detail for a TLC and FRC lung scan
pair, but the approach would also work for other respiratory
states or longitudinal scans and can be expanded to more
than two lung volumes.

In addition to the main processing steps described in
Sections 3.1 and 3.2, the following two preprocessing steps
are performed. First, a modified system of the airway tree
segmentation method [20] is utilized to extract the trachea
and main bronchi, which are then dilated using a radius of 2
voxels.These locations are assigned a value of 50HU in order
to make them unattractive for RASM and OSF segmentation.
Second, an overlap between left and right lung segmentations

is avoided by detecting the thin tissue layer between the lungs,
as described by Gill et al. [21].

3.1. 4D RASM Segmentation. For model-based segmenta-
tion, a lung PDM is constructed from 75 TLC and 75 FRC
normal lung CT scan pairs, which are not part of the image
data utilized for method evaluation (Section 4.1). Note that
model building is done separately for right and left lungs.
Utilizing the right or left PDM, 4D RASM segmentation
consists of the following main processing steps (Figure 3).

(a)Model Initialization.Themean lungmodel x is placed inde-
pendently in the target TLC and FRC volumes (Figure 2(b)).
For this purpose, a ribs detection method [14] is applied on
the respective volumes.

(b) Iterative Model Fitting.Thematching steps (i) to (v) given
below are repeated for 90 iterations, which are sufficient
to achieve model convergence (Figure 2(c)). Alternatively, a
convergence criterion could be used.

(i) Updating Shape Points.Utilizing a gray-value gradient
based cost function [14] of TLC and FRC volumes,
the model shape points are independently updated in
the TLC and FRC volumes, resulting in ytlc and yfrc,
respectively.

(ii) Robustly Estimating Mutual Inlier Update Points.
Update point sets ytlc and yfrc are used to calculate
𝑒
tlc
𝜔𝑖,𝑗

and 𝑒frc
𝜔𝑖,𝑗

, respectively, which is similar to that
described in [14]. However, after this step, a mutual
reconstruction error is calculated with

𝑒
mutual
𝜔𝑖,𝑗
=

𝑒
tlc
𝜔𝑖,𝑗
+ 𝑒

frc
𝜔𝑖,𝑗

2

(3)

to enable mutual inlier estimation. Thus, 𝑒mutual
𝜔𝑖,𝑗

is
used in the voting scheme described in [14] instead
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Figure 3: Flowchart showing the steps involved in fitting the model to 4D CT data. The independent and mutual steps are identified in the
iterative model fitting process.

of individual reconstruction errors 𝑒tlc
𝜔𝑖,𝑗

or 𝑒frc
𝜔𝑖,𝑗

. The
outcomes of the voting process are inlier update point
sets ỹtlc and ỹfrc. Note that, while ỹtl𝑐 and ỹfrc are dif-
ferent, they have the same cardinality and correspond
to the same landmark points of the lung PDM.

(iii) ComputingMutual Shape Coefficients.The inlier point
sets ỹtlc and ỹfrc are independently transformed to the
model coordinate frame by using pose transformation
matrices Ttlc and Tfrc, respectively. Each transfor-
mation is derived from a Procrustes analysis between
inlier sets (ỹtlc and ỹfrc) and corresponding mean
model (x̃) in model coordinate space. The shape
coefficients bmutual are computed using the average of
the transformed inliers

bmutual
= P̃
𝑇
(
Ttlcỹtlc +Tfrcỹfrc

2
− x̃) . (4)

(iv) Generating a New Model Instance. A new instance of
the model, which is used to represent the lung in TLC
and FRC scans, is calculated using (1) and bmutual.

(v) Transforming the Model. The model is transformed
back to TLC and FRC volumes using T−1tlc and T−1frc,
respectively.

(c) ConstrainedModel Adaptation.After the 4Dfitting process
converges, a single lung shapewith individual transformation
matrices Ttlc and Tfrc results, which matches the lungs
in TLC and FRC scans. However, the transformations only
account for isotropic scaling. Thus, the fitted models will
not be perfectly aligned with the image data, because the
difference in TLC and FRC lung shapes cannot be explained
by an isotropic scale factor. To obtain a better alignment,
we subsequently allow the shape coefficients to individually
adapt to the target images by continuing the RASM fitting
process independently in both volumes for ten iterations
(Figure 2(d)). Note that this adaptation is done in a con-
strained manner, only allowing a subset of model coefficients
to change within certain limits to avoid major divergence
of TLC and FRC models. The subset of model coefficients
(sorted in decreasing order of their eigenvalues) is defined by
the coefficients whose eigenvalues account for 80% of shape

variation. In our case, this resulted in a set of 22 coefficients
out of 150, whichwere allowed to change by amaximumof 0.5
times the standard deviation 𝜎 in the respective eigenvalues.
Thus, the final shape coefficients badapted after the individual
adaptation step for the TLC or FRC volume are limited to

bmutual
(𝑙) ± 0.5𝜎 (𝑙) if 𝑙 ≤ 22

bmutual
(𝑙) otherwise.

(5)

The parameters constraining themodel were selected conser-
vatively, and we found that small parameter variations have
little impact on the overall lung segmentation.

3.2. 4DOSF Segmentation. After the initialmodel-based seg-
mentations are created for TLC and FRC volumes, they are
refined using the 4D OSF method [19], resulting in the final
4D lung segmentation (Figure 2(e)). For this purpose, the
same parameter settings as proposed by Sun et al. [19] were
utilized.

4. Evaluation

4.1. Image Data. For evaluation, 152multidetector computed
tomography (MDCT) thorax scans of lungs from 4 different
sets 𝑆normal, 𝑆asthma, 𝑆COPD, and 𝑆mix with no significant
abnormalities (normal), asthma (both severe and nonsevere),
chronic obstructive pulmonary disease (COPD, GOLD 1 to
4), and a mixture of different lung diseases, respectively, were
utilized. The total number of scans in sets 𝑆normal, 𝑆asthma,
𝑆COPD, and 𝑆mix were 40, 36, 36, and 40, respectively. All
the four sets contained pairs of TLC (volume A) and FRC
(volume B) images. The image sizes varied from 512 × 512 ×
351 to 512 × 512 × 781 voxels with a mean size of 512 × 512 ×
580 voxels. The slice thickness of images ranged from 0.5 to
0.63mm (mean: 0.52mm) and the in-plane resolution from
0.49 × 0.49 to 0.91 × 0.91mm (mean: 0.64 × 0.64mm).

4.2. Experimental Setup. For all test data sets, an independent
reference standard was generated. Manual segmentation of a
whole lung is time-consuming, and due to the large number
of 152 test CT scans, we utilize a sampling approach, which is
similar to that utilized in [6, 11, 12], to reduce the substantial
effort required for manual inspection and segmentation.
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Figure 4: Example showing the location and density of axial
reference segmentations in relation to lung anatomy.

Thus, for every tenth axial slice, a trained expert generated a
reference segmentation under the supervision of a pulmonol-
ogist, resulting in a dense sampling of the lung volume with
between 41 and 64 labeled slices for each data set (Figure 4).
The same sampling approachwas applied to the segmentation
result to be evaluated. Based on the sampled volumes, the
Dice coefficient𝐷 [22] was calculated. In addition, the mean
unsigned distance error 𝑑 [22] was computed with respect
to the reference in all axial slices where a reference standard
and segmentation result were both available. Subsequently,
the average of all these locations was calculated per data set
and reported.

In the following sections, the proposed method
(Figure 1(c)) will be denoted by 𝑀

4D. In addition, two
other methods will be utilized for comparison. 𝑀

3D will be
utilized to denote the 3D approach proposed by Sun et al. [14]
(Figure 1(a)). The 4D method of Sun et al. [19] (Figure 1(b))
was used in two variants; the variant where volume A (TLC)
is registered to volume B (FRC) will be denoted by𝑀

4DregAB,
and the variant where volume B (FRC) is registered to volume
A (TLC) will be denoted by 𝑀

4DregBA. Investigating these
two variants allows us to assess and compare performance in
situations with different but unknown respiratory state (e.g.,
longitudinal lung image data). For all methods utilized, the
standard parameter setting as described in respective papers
was used. Unless otherwise mentioned, all reported results
refer to the final (OSF) segmentation.

A paired permutation test [23] was utilized for determin-
ing statistical significance, because it does not make assump-
tions about the distribution of the underlying data and a
paired 𝑡-test or paired signed rank test was not applicable to
our data.

5. Results

5.1. Segmentation Performance. Our novel 4D RASMmatch-
ing approach (without final OSF segmentation step) showed
an average Dice coefficient of 0.9468 ± 0.0318. In contrast,
the standard 3D RASM approach resulted in an average

Table 1: Dice coefficient 𝐷 for methods𝑀
3D and𝑀

4D. Statistically
significant 𝑝 values are marked with ∗.

Set 𝑀
3D 𝑀

4D 𝑝 value
𝑆normal 0.9822 ± 0.0129 0.9850 ± 0.0058 ≪0.001∗

𝑆asthma 0.9667 ± 0.0437 0.9789 ± 0.0108 ≪0.001∗

𝑆COPD 0.9685 ± 0.0514 0.9839 ± 0.0068 ≪0.001∗

𝑆mix 0.9467 ± 0.0732 0.9623 ± 0.0444 0.012∗

TLC 0.9808 ± 0.0142 0.9846 ± 0.0103 ≪0.001∗

FRC 0.9510 ± 0.0687 0.9700 ± 0.0329 ≪0.001∗

ALL 0.9659 ± 0.0517 0.9773 ± 0.0254 ≪0.001∗

Table 2:Mean unsigned distance error 𝑑 inmillimeters formethods
𝑀
3D and𝑀

4D. Statistically significant 𝑝 values are marked with ∗.

Set 𝑀
3D 𝑀

4D 𝑝 value
𝑆normal 1.20 ± 0.77 0.89 ± 0.44 ≪0.001∗

𝑆asthma 1.68 ± 1.25 1.14 ± 0.50 ≪0.001∗

𝑆COPD 1.66 ± 1.90 1.00 ± 0.56 ≪0.001∗

𝑆mix 2.77 ± 4.42 1.81 ± 1.45 ≪0.001∗

TLC 1.16 ± 0.68 0.88 ± 0.53 ≪0.001∗

FRC 2.52 ± 3.50 1.56 ± 1.11 ≪0.001∗

ALL 1.84 ± 2.61 1.22 ± 0.93 ≪0.001∗

Table 3: Dice coefficient 𝐷 for methods 𝑀
4DregAB and 𝑀

4D.
Statistically significant 𝑝 values are marked with ∗.

Set 𝑀
4DRegAB 𝑀

4D 𝑝 value
TLC 0.9834 ± 0.0127 0.9846 ± 0.0103 8.92𝑒 − 03

∗

FRC 0.9718 ± 0.0233 0.9700 ± 0.0329 2.07𝑒 − 01

ALL 0.9776 ± 0.0196 0.9773 ± 0.0254 7.97𝑒 − 01

Table 4: Dice coefficient 𝐷 for methods 𝑀
4DregBA and 𝑀

4D.
Statistically significant 𝑝 values are marked with ∗.

Set 𝑀
4DregBA 𝑀

4D 𝑝 value
TLC 0.9687 ± 0.0579 0.9846 ± 0.0103 ≪0.001∗

FRC 0.9539 ± 0.0711 0.9700 ± 0.0329 ≪0.001∗

ALL 0.9613 ± 0.0651 0.9773 ± 0.0254 ≪0.001∗

Dice coefficient of 0.9391 ± 0.0525. The 4D RASM showed
a statistically significant improvement (𝑝 value ≪ 0.001)
compared against 3D RASM.

Tables 1 and 2 summarize the resulting final (OSF)
segmentation performance with corresponding 𝑝 values,
comparing results of 𝑀

3D and 𝑀
4D. In both tables, 𝑀

4D
shows statistically significant improvement in each data set
and for TLC and FRC scans. Figure 5 depicts some examples
of segmentations (one from each test data set) obtained by
methods𝑀

3D and𝑀
4D.

Tables 3 and 4 compare the final lung segmentation Dice
coefficient of 𝑀

4D to 𝑀
4DregAB and 𝑀

4DregBA, respectively.
Overall,𝑀

4D and𝑀
4DregAB were found to be equivalent (no

statistically significant difference), but𝑀
4D was found to be

significantly better compared to𝑀
4DregBA. Figure 6 provides

a comparison of final Dice coefficients in formof box plots for
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Figure 5: Comparison of segmentation results generated with methods 𝑀
3D and 𝑀

4D. Coronal CT cross sections with marked lung
boundaries in combination with corresponding 3D lung mesh models are shown to enable locating and assessing segmentation errors as
well as differences between results.

all methods and separated by respiratory state. A comparison
of results generated with 𝑀

4D, 𝑀4DregAB, and 𝑀4DregBA is
shown in Figure 7.

5.2. Computing Time. Segmentation with 𝑀
3D took 13.21

minutes on average for TLC and FRC data sets combined
(TLC: 6.73 minutes, FRC: 6.48 minutes). Method 𝑀

4D
required 12.22 minutes per 4D case, on average. Compared
to 𝑀
3D, the reduction in computing time was primarily

achieved due to synergies of 4D processing. Approaches
𝑀
4DregAB and 𝑀

4DregAB took 29.49 minutes per 4D case,
on average, where the registration procedure contributed to
about 20 minutes of computing time.

6. Discussion

Themain advantage of our 4D approach𝑀
4D is that it utilizes

both lung volumes acquired at different respirator states for
segmentation during all main processing stages, which is
in contrast to the standard 𝑀

3D method and 4D variants
𝑀
4DregAB and 𝑀

4DregBA. The results presented in Section 5
clearly demonstrate this advantage.

6.1. Comparison of 𝑀
4𝐷

with 𝑀
3𝐷
. When compared to

the 3D variant, statistically significant lung segmentation
performance improvements, independent of test set, res-
piratory state, and performance metric, were observed
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Figure 6: Box plots of Dice coefficients for methods𝑀
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Figure 7: Examples of segmentation results generated with methods𝑀
4D,𝑀4DregAB, and𝑀4DregBA.

(Tables 1 and 2). This is also clearly demonstrated by the
examples shown in Figure 5. As shown in Tables 1 and
2, the observed gain in segmentation accuracy with 𝑀

4D
was larger for cases with lung disease (test sets 𝑆asthma,
𝑆COPD, and 𝑆mix) compared to normal cases (test set 𝑆normal).
The better segmentation performance of 𝑀

4D is expected,
because it addresses several weaknesses of𝑀

3D like problems
with model initialization, which can cause the model to
converge locally to other structures than lung boundaries.
As Figure 6 as well as Tables 1 and 2 show, gains achieved
with 𝑀

4D are higher for lungs imaged at FRC, which are
generally more difficult to segment. Also, 4D processing

reduces the computing time by 7.5% compared to sequential
3D processing.

6.2. Comparison of 𝑀
4𝐷

with 𝑀
4𝐷𝑟𝑒𝑔𝐴𝐵

and 𝑀
4𝐷𝑟𝑒𝑔𝐵𝐴

.
Overall, segmentation performance of 𝑀

4D and 𝑀
4DregAB

was found to be equivalent (Table 3), while the comparison
between 𝑀

4D and 𝑀
4DregBA (Table 4) showed a statistically

significant improvement for our proposed 𝑀
4D approach.

Also, compared to𝑀
4DregAB and𝑀4DregBA, our𝑀4D method

showed a reduction in computing time by 58.6%. Thus, it
is preferable to𝑀

4DregAB and𝑀
4DregBA, especially when the

exact respiratory states are unknown and picking a lung
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Figure 8: Comparison of results of methods𝑀
4D,𝑀3D,𝑀4DregAB,

and𝑀
4DregBA on a longitudinal CT volume pair. The time between

scans A and B was 19 months, and the imaging protocol was quite
different.

scan with lower lung volume (exhale) as starting point
(Volume A in Figure 1(b)) could potentially adversely impact
segmentation performance. Figure 7 depicts examples where
either 𝑀

4DregAB or 𝑀
4DregBA produces a local segmentation

error, but𝑀
4D avoids such problems.

6.3. Possible Improvements and Extensions. As can be seen
in Figure 6, the proposed approach reduces the number
and/or severity of outlier cases. However, some room for
improvement still exists, which we will address in future
work. For example, a better FRC model initialization would
help in further improving overall segmentation performance
of 3D and 4D methods, but we expect that 𝑀

4D would
still perform better, because it utilizes both scans for model
matching, which offers increased robustness.

Our method can be expanded to handle processing of
more than two lungs scans at the same time. This can
be done by extending (3) and (4) accordingly. Another
advantage is that𝑀

4D does not require any prior knowledge
of the breathing state of the lungs in individual CT scans,
because it does not make any assumptions about respiratory
state (e.g., breathing sequence). An example for processing
longitudinal lung CT scans in the context of cancer treatment
planning/assessment is provided in Figure 8. Note that, due
to lung disease (cancer), patient compliance with the uti-
lized imaging protocol (e.g., acquisition at TLC) cannot be
assumed.

7. Conclusions

In this paper, we have presented a 4D lung segmentation
approach that utilizes a new 4D robust active shape model
matching method and provided an evaluation of this method
on a diverse set of 76 TLC and FRC lung scan pairs. In addi-
tion, a detailed comparison with its 3D lung segmentation
counterpart as well as two variants of 4D registration based
lung segmentation methods was performed, demonstrating
the advantages of our approach in terms of segmenta-
tion performance and/or computing time. By avoiding any
assumptions about the respiratory state of the imaged lungs,
our approach provides flexibility and is applicable to pairs of
TLC and FRC scans, other dynamic 4D lung CT scans, and

longitudinal CT studies.Thus, the developedmethod is suited
for applications like cancer treatment planning or assessment
of other lung diseases like emphysema.
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