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We present a new comparison principle by introducing a notion of upper quasi-monotone nondecreasing and obtain the practical
stability criteria for set valued differential equations in terms of twomeasures on time scales by using the vector Lyapunov function
together with the new comparison principle.

1. Introduction

Stability theory in the sense of Lyapunov is now well known.
Its basic theory and applications can be found in the mono-
graphs of Lasalle and Lefschetz [1] and Rouche et al. [2]. To
unify a variety of stability concepts and to offer a general
framework for the investigation of the stability theory, the
notion of stability in terms of two measures has been proved
to be very powerful (see the monograph [3] and the papers
[4–6]).

The practical stability is a very important problem in the
field of application, which deals with the question of whether
the system state evolves within certain subsets of the state-
space. It is very useful in estimating the worst-case transient
and steady-state responses and in verifying pointwise in time
constraints imposed on the state trajectories. Thus practical
stability is concerned with quantitative analysis as opposed
to Lyapunov analysis which is qualitative in nature. There
are some relative results for practical stability of various
dynamic systems. We can refer to the monograph of Lak-
shmikantham et al. [7] and the papers of Zhang and Sun
[8], Wang and Liu [9], Wang et al. [10], Sun et al. [11], and
Hristova and Georgieva [12] and the references cited therein.

Recently, the study of set differential equations in a semi-
linear metric space has gained much attention due to its
applicability to multivalued differential inclusions and fuzzy
differential equations and its inclusion of ordinary differential

systems as a special case [13], and somebasic results of interest
are obtained in [14–21].However, we notice that there are very
few results for set valued differential equation on time scales.
For example, Girton [22] gave the results of the existence
and uniqueness of the solution of an initial value problem
that involve set valued differential equations on time scales.
Ahmad and Sivasundaram [23] and Hong [24, 25] discussed
some basic problems of set valued differential equation on
time scales and obtained some stability criteria, respectively.
In this paper, we present a new comparison principle by
introducing a notion of upper quasi-monotone nondecreas-
ing and obtain the practical stability criteria for set valued
differential equations in terms of twomeasures on time scales
by using the vector Lyapunov function together with the new
comparison principle. Consequently, this paper is organized
as follows. In Section 2, we introduce the concepts of the
time scales and the set valued differential equations, the
propositions of the set valued differential equations on time
scales. In Section 3, the relatively new comparison principle
and conditions of stability are given.

2. Preliminaries

Let T be a time scale with 𝑡
0
≥ 0 as minimal element and no

maximal element. Firstly, we give some relative definitions,
which can be found in [1–3].
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Definition 1. Themappings 𝜎, 𝜌: T → T defined as

𝜎 (𝑡) = inf (𝑠 ∈ T ; 𝑠 > 𝑡) , 𝜌 (𝑡) = sup (𝑠 ∈ T ; 𝑠 < 𝑡) (1)

are called jump operators.

Definition 2. A nonmaximal element 𝑡 ∈ T is said to be right-
scattered (rs) if 𝜎(𝑡) > 𝑡 and right-dense (rd) if 𝜎(𝑡) = 𝑡. A
nonminimal element 𝑡 ∈ T is called left-scattered (ls) if 𝜌(𝑡) <
𝑡 and left-dense (ld) if 𝜌(𝑡) = 𝑡.

Definition 3. Let

T
𝑘
= {

T \ (𝜌 (sup T) , sup T) if sup T < ∞,

T if sup T = ∞.
(2)

Definition 4. Themapping𝑔 is called regulated, if in each left-
dense 𝑡 ∈ T the left sided and in each right-dense 𝑡 ∈ T the
right sided limit exist.

Definition 5. Themapping 𝑔 : T → R𝑛 is called rd continu-
ous if

(i) it is continuous at each right-dense 𝑡 ∈ T ;
(ii) at each left-dense point the left-sided limit 𝑔(𝑡

−
)

exists.

Let 𝐶rd[T ,R
𝑛
] denote the set of rd-continuous mappings

from T to R𝑛.

Definition 6. The mapping 𝑓 : T × R𝑛 → R𝑛 is said to be
right-dense (rd) continuous and is denoted by 𝑓 ∈ 𝐶rd[T ×

R𝑛,R𝑛] if

(i) it is continuous at each (𝑡, 𝑥)with right-dense ormax-
imal 𝑡;

(ii) the limits𝑓(𝑡−, 𝑥) = lim
(𝑠,𝑦)→ (𝑡

−

,𝑥)
𝑓(𝑠, 𝑦) and lim

𝑦→𝑥

𝑓(𝑡, 𝑦) exist at each (𝑡, 𝑥) with left-dense 𝑡.

Let 𝐾(R𝑛) denote the collection of all nonempty, com-
pact, and convex subsets of R𝑛. Define the Hausdorff metric

𝐷 [𝐴, 𝐵] = max[sup
𝑥∈𝐵

𝑑 (𝑥, 𝐴) , sup
𝑦∈𝐴

𝑑 (𝑦, 𝐵)] , (3)

where 𝑑[𝑥, 𝐴] = inf[𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝐴], 𝐴, 𝐵 are bounded sets
in R𝑛. We note that 𝐾(R𝑛) with this metric is a complete
metric space.

It is known that if the space 𝐾(R𝑛) is equipped with the
natural algebraic operations of addition and nonnegative
scalar multiplication, then𝐾(R𝑛) becomes a semilinear met-
ric space which can be embedded as a complete cone into a
corresponding Banach space.

The Hausdorff metric (3) satisfies the following proper-
ties:

𝐷 [𝐴 + 𝐶, 𝐵 + 𝐶] = 𝐷 [𝐴, 𝐵] , 𝐷 [𝐴, 𝐵] = 𝐷 [𝐵, 𝐴] ,

𝐷 [𝜆𝐴, 𝜆𝐵] = 𝜆𝐷 [𝐴, 𝐵] ,

𝐷 [𝐴, 𝐵] ≤ 𝐷 [𝐴, 𝐶] + 𝐷 [𝐶, 𝐵] ,

(4)

for all 𝐴, 𝐵, 𝐶 ∈ 𝐾(R𝑛) and 𝜆 ∈ R
+
.

Definition 7. Let 𝐴, 𝐵 ∈ 𝐾(R𝑛). The set 𝐶 ∈ 𝐾(R𝑛) satisfying
𝐴 = 𝐵 + 𝐶 is known as the Hukuhara difference of the sets 𝐴
and 𝐵 and is denoted by the symbol 𝐴 − 𝐵.

Definition 8. The forward derivative of 𝐹: T → 𝐾(R𝑛), de-
noted by Δ𝐹, is defined by

Δ𝐹 (𝑡) =
𝐹 (𝜎 (𝑡)) − 𝐹 (𝑡)

𝜎 (𝑡) − 𝑡
, if 𝑡 is right-scattered,

Δ𝐹 (𝑡) = lim
𝑠→ 𝑡
+

𝐹 (𝑠) − 𝐹 (𝑡)

𝑠 − 𝑡
, if 𝑡 is right-dense.

(5)

Analogously, the backward derivative ∇𝐹 is defined as

∇𝐹 (𝑡) =
𝐹 (𝑡) − 𝐹 (𝜌 (𝑡))

𝑡 − 𝜌 (𝑡)
, if 𝑡 is left-scattered,

∇𝐹 (𝑡) = lim
𝑠→ 𝑡
−

𝐹 (𝑡) − 𝐹 (𝑠)

𝑡 − 𝑠
, if 𝑡 is left-dense.

(6)

Remark 9. The usual scalar subtraction occurs in the scalar
coefficient at the beginning of the above expressions and the
Hukuhara set difference occurs inside the brackets. Clearly,
the existence of Hukuhara difference ensures the existence of
the derivative in Definition 8; in the forthcoming analysis,
we will be considering the forward derivative as the result
for backward derivative followed immediately with suitable
changes. The backward derivative has the following proper-
ties:

(i) let𝐹, 𝐺 : T → 𝐾(R𝑛) be differentiable at 𝑡; thenΔ(𝐹+
𝐺)(𝑡) = Δ𝐹(𝑡) + Δ𝐺(𝑡);

(ii) Δ(𝛼𝐹)(𝑡) = 𝛼(Δ𝐹(𝑡)), 𝛼 ∈ R
+
.

Remark 10. If the sets in𝐾(R𝑛) are singletons only, then there
is only one selector possible, namely, 𝐹 itself. In this case, the
integral reduces to the generalized integral from time scales
into (R𝑛). The assumption 𝑛 = 1 generalizes into the integral
for time scales. When T is everywhere right-dense, then we
have Δ𝑡 = 𝑑𝑡, which results in the conventional formulation
for integration of set valued functions. Moreover, for 𝑎, 𝑏, 𝑐 ∈
T , we have

(i) ∫𝑐
𝑎
𝐹(𝑡)Δ𝑡 = ∫

𝑏

𝑎
𝐹(𝑡)Δ𝑡 + ∫

𝑐

𝑏
𝐹(𝑡)Δ𝑡;

(ii) ∫𝑏
𝑎
𝐹(𝑡)Δ𝑡 is closed and convex but need not be

necessarily compact.

Definition 11. Let 𝐹, 𝐺: T → 𝐾(R𝑛). Then the Hausdorff dis-
tance between 𝐹 and 𝐺, 𝐷[𝐹(⋅), 𝐺(⋅)]: T → R

+
, is Δ-

integrable and

𝐷[∫

𝑡

𝑡
0

𝐹 (𝑠) Δ𝑠, ∫

𝑡

𝑡
0

𝐺 (𝑠) Δ𝑠] ≤ ∫

𝑡

𝑡
0

𝐷 [𝐹 (𝑠) , 𝐺 (𝑠)] Δ𝑠. (7)

Definition 12. Assume 𝐹: T → 𝐾(R𝑛) is set valued function
and 𝑡 ∈ T𝑘. Let Δ

𝐻
𝐹(𝑡) be an element of 𝐾(R𝑛) (provided

it exists) with the property that given any 𝜖 > 0, there exists
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a neighborhood 𝑈
𝑡
of 𝑡 (i.e., 𝑈

𝑡
= (𝑡 − 𝛿, 𝑡 + 𝛿)⋂ T for some

𝛿 > 0) such that

𝐷[𝐹 (𝑡 + ℎ) − 𝑓 (𝜎 (𝑡)) , Δ
𝐻
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

≤ 𝜖 (ℎ − 𝜇 (𝑡)) ,

𝐷 [𝑓 (𝜎 (𝑡)) − 𝐹 (𝑡 − ℎ) , Δ𝐻𝐹 (𝑡) (𝜇 (𝑡) + ℎ)]

≤ 𝜖 (𝜇 (𝑡) + ℎ)

(8)

for all (𝑡 − ℎ, 𝑡 + ℎ) ∈ 𝑈
𝑡
with 0 ≤ ℎ < 𝛿, where 𝜇(𝑡) =

𝜎(𝑡) − 𝑡. We call Δ
𝐻
𝐹(𝑡) the Δ

𝐻
-derivative of 𝐹 at 𝑡. We say

that 𝐹 is Δ
𝐻
-differentiable at 𝑡 if its Δ

𝐻
-derivative exists at

𝑡. Moreover, we say 𝐹 is Δ
𝐻
-differentiable on T𝑘 if its Δ

𝐻
-

derivative exists at each 𝑡 ∈ T𝑘. The multivalued function
Δ
𝐻
𝐹(𝑡): T𝑘 → 𝐾(R𝑛) is then called the Δ

𝐻
-derivative of

𝐹 on T𝑘.

Proposition 13. Let 𝐹: T → 𝐾(R𝑛), Δ
𝐻
𝐹(𝑡) ∈ 𝐾(R𝑛)

(provided it exists). Then some easy and useful relationships
concerning the Δ

𝐻
-derivative hold.

(i) If the Δ
𝐻
-derivative of 𝐹 at 𝑡 exists, then it is unique.

Hence, the Δ
𝐻
-derivative is well defined.

(ii) Assume 𝐹: T → 𝐾(R𝑛) is a multivalued function and
let 𝑡 ∈ T𝑘. Then one has the following.

(1) If 𝐹 isΔ
𝐻
-differentiable at 𝑡, then 𝐹 is continuous

at 𝑡.
(2) If𝐹 is continuous at 𝑡 and 𝑡 is right-scattered, then

𝐹 is Δ
𝐻
-differentiable at 𝑡 with

Δ
𝐻
𝐹 (𝑡) =

𝐹 (𝜎 (𝑡)) − 𝐹 (𝑡)

𝜇 (𝑡)
. (9)

(3) If 𝑡 is right-dense, then 𝐹 is Δ
𝐻
-differentiable at 𝑡

if the limits

lim
ℎ→0

+

𝐹 (𝑡 + ℎ) − 𝐹 (𝑡)

ℎ
, lim

ℎ→0
+

𝐹 (𝑡) − 𝐹 (𝑡 − ℎ)

ℎ
(10)

exist and satisfy the equations

lim
ℎ→0

+

𝐹 (𝑡 + ℎ) − 𝐹 (𝑡)

ℎ
= lim
ℎ→0

+

𝐹 (𝑡) − 𝐹 (𝑡 − ℎ)

ℎ
= Δ
𝐻
𝐹 (𝑡) .

(11)

(4) If 𝐹 is differentiable at 𝑡, then

𝐹 (𝜎 (𝑡)) = 𝐹 (𝑡) + 𝜇 (𝑡) Δ
𝐻
𝐹 (𝑡) . (12)

Remark 14. Let 𝐹: T → 𝐾(R𝑛), Δ
𝐻
𝐹(𝑡) ∈ 𝐾(R𝑛) (provided

it exists). We consider the two cases T = R and T = Z, where
Z stands for the set consisting of all integers.

(1) If T = R, then 𝐹:R → 𝐾(R𝑛) is Δ
𝐻
-differentiable at

𝑡 ∈ R if and only if

𝐷
𝐻
𝐹 (𝑡) = lim

ℎ→0
+

𝐹 (𝑡 + ℎ) − 𝐹 (𝑡)

ℎ
= lim
ℎ→0

+

𝐹 (𝑡) − 𝐹 (𝑡 − ℎ)

ℎ

(13)

exists, that is, if and only if 𝐹 is differentiable in the Hukuhara
sense at 𝑡. In this case, we have

𝐷
𝐻
𝐹 (𝑡) = Δ

𝐻
𝐹 (𝑡) . (14)

(2) If T = Z, then 𝐹: Z → 𝐾(R𝑛) is Δ
𝐻
-differentiable at

𝑡 ∈ Z with

Δ
𝐻
𝐹 (𝑡) =

𝐹 (𝜎 (𝑡)) − 𝐹 (𝑡)

𝜇 (𝑡)
= 𝐹 (𝑡 + 1) − 𝐹 (𝑡) = Δ𝐹 (𝑡) ,

(15)

whereΔ is the usual forwardmultivalued difference operator.

3. Main Results

Consider the space

𝐾(R
𝑛
)
𝑁
= 𝐾 (R

𝑛
) × 𝐾 (R

𝑛
) × 𝐾 (R

𝑛
) , . . . , 𝐾 (R

𝑛
) ,

𝑁 times, 𝑁 ∈ 𝑍,

(16)

together with either of the following metrics on the space
𝐾(R𝑛)

𝑁:

𝐷 [𝑋, 𝑌] = (𝐷 [𝑋
1
, 𝑌
1
] , 𝐷 [𝑋

2
, 𝑌
2
] , . . . , 𝐷 [𝑋

𝑁
, 𝑌
𝑁
]) ,

(17)

where𝑋,𝑌 ∈ 𝐾
𝑐
(𝑅
𝑛
)
𝑁
, 𝑋
𝑖
, 𝑌
𝑖
∈ 𝐾
𝑐
(𝑅
𝑛
), 𝑖 = 1, 2, . . . , 𝑁.

Consider the initial value problem

Δ
𝐻
𝑋 = 𝐹 (𝑡, 𝑋) , 𝑋 (𝑡

0
) = 𝑋

0
, (18)

where 𝐹 ∈ 𝐶rd[T × 𝐾(R𝑛)
𝑁
, 𝐾(R𝑛)

𝑁
], 𝑋 ∈ 𝐾(R𝑛)

𝑁, 𝑋 =

(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
) such that for each 𝑖, 𝑖 = 1, 2, . . . , 𝑁, 𝑋

𝑖
∈

𝐾(R𝑛).
First of all, we define the following classes of function:

K = {𝛼 : R
+
→ R

+
,

𝛼 is strictly increasing and 𝛼 (0) = 0} ,

CK = {𝜙 : T ×R
+
→ R

+
, 𝜙 (𝑡, 𝑠) ∈ K for each 𝑡} ,

Γ ={ℎ : T × 𝐾(R
𝑛
)
𝑁
→ R

+
, inf
𝑋∈𝐾(R𝑛)

𝑁

ℎ (𝑡, 𝑋) = 0} ,

Σ = {𝑄 : R
+
→ R

+
, 𝑄 (0) = 0 and 𝑄 is increasing} ,

𝑆 (ℎ, 𝛾) = {(𝑡, 𝑋) ∈ T × 𝐾(R
𝑛
)
𝑁
,

ℎ ∈ Γ and ℎ (𝑡, 𝑋) < 𝛾, 𝛾 > 0} .

(19)

In order to discuss the stability of the solution of set val-
ued differential systems (18), we state some notions and
definitions.
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On the vector Lyapunov function on time scales, we
defined the Dini derivative of the function 𝑉 ∈ 𝐶rd[T ×

𝐾(R𝑛)
𝑁
,R𝑁] along with the solutions of (18) by

𝐷
−

Δ
𝑉 (𝑡, 𝑋)

= lim inf
𝜇(𝑡)→0

−

𝑉 (𝑡, 𝑋) − 𝑉 (𝑡 − 𝜇 (𝑡) , 𝑋 (𝑡) − 𝜇 (𝑡) 𝐹 (𝑡, 𝑋))

𝜇 (𝑡)
,

𝐷
+

Δ
𝑉 (𝑡, 𝑋)

= lim sup
𝜇(𝑡)→0

+

𝑉 (𝑡 + 𝜇 (𝑡) , 𝑋 (𝑡) + 𝜇 (𝑡) 𝐹 (𝑡, 𝑋)) − 𝑉 (𝑡, 𝑋)

𝜇 (𝑡)
.

(20)

Definition 15. A function𝐺: T×R𝑁
+

→ R𝑁 (𝑁 ≥ 1) is said to
be upper quasi-monotone nondecreasing in 𝑈, if 𝑈,𝑊 ∈ R𝑁

+

and ‖𝑈‖
𝑀

≤ ‖𝑊‖
𝑀

imply ‖𝐺(𝑡, 𝑈)‖
𝑀

≤ ‖𝐺(𝑡,𝑊)‖
𝑀
, where

‖ ⋅ ‖
𝑀

= max
1≤𝑖≤𝑁

𝑈
𝑖
.

In the following, we will prove the comparison result in
terms of vector Lyapunov functions relative to the set differ-
ential system on time scales.

Theorem 16. Assume that

(𝐻
1
) 𝑉 ∈ 𝐶rd[T × 𝐾(R𝑛)

𝑁
,R𝑁], 𝑉 is locally Lipschitzian

in 𝑋; that is, for 𝑋,𝑌 ∈ 𝐾(R𝑛)
𝑁, one has |𝑉(𝑡, 𝑋)−

𝑉(𝑡, 𝑌)| ≤ 𝐴𝐷[𝑋, 𝑌], where 𝐴 is an 𝑁 × 𝑁 matrix of
nonnegative elements, |𝑉(𝑡, 𝑋)−𝑉(𝑡, 𝑌)| = (|𝑉

1
(𝑡, 𝑋)−

𝑉
1
(𝑡, 𝑌)|, |𝑉

2
(𝑡, 𝑋) − 𝑉

2
(𝑡, 𝑌)|, . . . , |𝑉

𝑁
(𝑡, 𝑋) − 𝑉

𝑁

(𝑡, 𝑌)|). Here, by |𝑉(𝑡, 𝑋)| one means the vector
(|𝑉
1
(𝑡, 𝑋)|, |𝑉

2
(𝑡, 𝑋)|, . . . , |𝑉

𝑁
(𝑡, 𝑋)|), where 𝑉

𝑖
are the

components of 𝑉, 𝑖 = 1, 2, . . . , 𝑁;
(𝐻
2
) 𝑉 satisfies

𝐷
+

Δ
𝑉 (𝑡, 𝑋) ≤ 𝐺 (𝑡, 𝑉 (𝑡, 𝑋)) , (21)

where 𝐺 ∈ 𝐶rd[T × R𝑁,R𝑁] is upper quasi-monotone nonde-
creasing in 𝑈 for each 𝑡 ∈ T ;

(𝐻
3
) 𝑈 ∈ R𝑁, 𝑈(𝑡) = 𝑈(𝑡, 𝑡

0
, 𝑈
0
) is the solution of

𝑈
Δ
= 𝐺 (𝑡, 𝑈) , 𝑈 (𝑡

0
) = 𝑈
0
. (22)

Then for any solution𝑋(𝑡) of (18), one has

‖𝑉 (𝑡, 𝑋)‖𝑀 ≤ ‖𝑈 (𝑡)‖𝑀, 𝑡 ∈ T , (23)

provided ‖𝑉(𝑡
0
, 𝑋
0
)‖
𝑀

≤ ‖𝑈
0
‖
𝑀
.

Proof. Let 𝑈(𝑡) be the solution of (22) for 𝑡 ≥ 𝑡
0
, 𝑡 ∈ T .

Set 𝑚(𝑡) = 𝑉(𝑡, 𝑋(𝑡)) as an application of the properties of
Hausdorff metric; we obtain the estimation

𝑚(𝜎 (𝑡)) − 𝑚 (𝑡)

= 𝑉 (𝜎 (𝑡) , 𝑋 (𝜎 (𝑡))) − 𝑉 (𝑡, 𝑋 (𝑡))

= 𝑉 (𝜎 (𝑡) , 𝑋 (𝜎 (𝑡)))

− 𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡)))

+ 𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡)))

− 𝑉 (𝑡, 𝑋 (𝑡))

≤ 𝐴𝐷 [𝑋 (𝜎 (𝑡)) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡))]

+ 𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡)))

− 𝑉 (𝑡, 𝑋 (𝑡)) .

(24)

Letting𝑋(𝜎(𝑡)) = 𝑋(𝑡)+𝑌(𝑡), where𝑌(𝑡) is theHukuhara dif-
ference of𝑋(𝜎(𝑡)) and𝑋(𝑡) for small ℎ > 0 and is assumed to
exist, hence,

𝑚(𝜎 (𝑡)) − 𝑚 (𝑡)

≤ 𝐴𝐷 [𝑋 (𝑡) + 𝑌 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡))]

+ 𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡)))

− 𝑉 (𝑡, 𝑋 (𝑡))

= 𝐴𝐷 [𝑌 (𝑡) , (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡))]

+ 𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡)))

− 𝑉 (𝑡, 𝑋 (𝑡))

= 𝐴𝐷 [𝑋 (𝜎 (𝑡)) − 𝑋 (𝑡) , (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡))]

+ 𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡)))

− 𝑉 (𝑡, 𝑋 (𝑡)) .

(25)

Consequently, we find that

𝐷
+

Δ
𝑚(𝑡)

= lim sup
𝜎(𝑡)−𝑡→0

+

𝑚(𝜎 (𝑡)) − 𝑚 (𝑡)

𝜎 (𝑡) − 𝑡

= lim sup
𝜎(𝑡)−𝑡→0

+

1

𝜎 (𝑡) − 𝑡
𝐴𝐷 [𝑋 (𝜎 (𝑡)) − 𝑋 (𝑡) ,

(𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡))]

+
𝑉 (𝜎 (𝑡) , 𝑋 (𝑡) + (𝜎 (𝑡) − 𝑡) 𝐹 (𝑡, 𝑋 (𝑡))) − 𝑉 (𝑡, 𝑋 (𝑡))

𝜎 (𝑡) − 𝑡

≤ 𝐴𝐷[
𝑋 (𝜎 (𝑡)) − 𝑋 (𝑡)

𝜎 (𝑡) − 𝑡
, 𝐹 (𝑡, 𝑋 (𝑡))] + 𝐷

+

Δ
𝑉 (𝑡, 𝑋)
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= 𝐴𝐷 [Δ
𝐻
𝑋 (𝑡) , 𝐹 (𝑡, 𝑋 (𝑡))] + 𝐷

+

Δ
𝑉 (𝑡, 𝑋)

= 𝐷
+

Δ
𝑉 (𝑡, 𝑋) ,

(26)

where𝐷+
Δ
𝑚(𝑡) is the right-derivative of𝑚(𝑡). Hence, we have

𝐷
+

Δ
𝑚(𝑡) ≤ 𝐺 (𝑡, 𝑚 (𝑡)) . (27)

It is said that

𝐷
+

Δ
𝑚(𝑡)

𝑀
≤ ‖𝐺 (𝑡, 𝑚 (𝑡))‖𝑀. (28)

Because ‖𝑉(𝑡
0
, 𝑋
0
)‖
𝑀

≤ ‖𝑈
0
‖
𝑀
, we can obtain that

‖𝑉 (𝑡, 𝑋)‖𝑀 ≤ ‖𝑈 (𝑡)‖𝑀, 𝑡 ∈ T . (29)

The proof is complete.

Now, we list some definitions about stability which will be
used in the following discussion.

Definition 17. Let ℎ
0
, ℎ ∈ Γ, 𝑡 ∈ T . Then one says that

(i) ℎ
0
is finer than ℎ if there exists a 𝜌 > 0 and a function

𝜙 ∈ CK such that

ℎ
0
(𝑡, 𝑥) < 𝜌 implies ℎ (𝑡, 𝑥) ≤ 𝜙 (𝑡, ℎ

0
(𝑡, 𝑥)) ; (30)

(ii) ℎ
0
is uniformly finer than ℎ if in (i) 𝜙 is independent

of 𝑡.

Definition 18. Let 𝜆, 𝐴, 𝐵 be positive constants (𝜆 < 𝐴, 𝐵 <

𝐴). The system (18) is said to be

(i) practically stable if for any 0 < 𝜆 < 𝐴, the condition
‖𝑋
0
‖
𝑀

< 𝜆 implies ‖𝑋(𝑡)‖
𝑀

< 𝐴, 𝑡 ≥ 𝑡
0
for 𝑡
0
, 𝑡 ∈ T ,

where𝑋(𝑡) = 𝑋(𝑡, 𝑡
0
, 𝑋
0
) is any solution of (18);

(ii) practically quasi-stable if for any 𝜆, 𝐵, 𝑇 > 0 and some
𝑡
0
∈ T with 𝑡

0
+ 𝑇 ∈ T , the condition ‖𝑋

0
‖
𝑀

< 𝜆

implies ‖𝑋(𝑡)‖
𝑀

< 𝐵, 𝑡 ≥ 𝑡
0
+ 𝑇, 𝑡 ∈ T ;

(iii) strongly practically stable if (i) and (ii) hold simulta-
neously;

(iv) practically asymptotically stable if (i) holds and for
any 𝜖 > 0 there exists 𝑇

0
> 0 such that 𝑡

0
+ 𝑇
0
∈ T

and ‖𝑋
0
‖ < 𝜆 implies ‖𝑋(𝑡)‖ < 𝜖, 𝑡 ≥ 𝑡

0
+ 𝑇
0
.

Definition 19. Let 𝜆, 𝐴, 𝐵 be positive constants (𝜆 < 𝐴, 𝐵 <

𝐴), ℎ, ℎ
0
∈ Γ. The system (18) is said to be

(PS1) (ℎ
0
, ℎ)-practically stable if for any 0 < 𝜆 < 𝐴, the

condition ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆 implies ℎ(𝑡, 𝑋(𝑡)) < 𝐴, 𝑡 ≥

𝑡
0
, for some 𝑡

0
, 𝑡 ∈ T , where𝑋(𝑡) = 𝑋(𝑡, 𝑡

0
, 𝑋
0
) is any

solution of (18);
(PS2) (ℎ

0
, ℎ)-practically quasi-stable if for any 𝜆, 𝐵, 𝑇 > 0

and some 𝑡
0

∈ T with 𝑡
0
+ 𝑇 ∈ T , the condition

ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆 implies ℎ(𝑡, 𝑋(𝑡)) < 𝐵, 𝑡 ≥ 𝑡

0
+ 𝑇,

𝑡 ∈ T ;
(PS3) (ℎ

0
, ℎ)-strongly practically stable if (PS1) and (PS2)

hold simultaneously;

(PS4) (ℎ
0
, ℎ)-practically asymptotically stable if (PS1) holds

and for any 𝜖 > 0 there exists𝑇
0
> 0 such that 𝑡

0
+𝑇
0
∈

T and ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆 implies ℎ(𝑡, 𝑋(𝑡)) < 𝜖, 𝑡 ≥ 𝑡

0
+𝑇
0
.

One can similarly define corresponding notion for the
system (22).

Definition 20. Let 𝜆, 𝐴, 𝐵 be positive constants (𝜆 < 𝐴, 𝐵 <

𝐴), 𝑄
0
, 𝑄 ∈ Σ. Then we say that the system (22) is (𝑄

0
, 𝑄)-

practically stable if for any 0 < 𝜆 < 𝐴, the condition 𝑄
0

(‖𝑈
0
‖
𝑀
) < 𝜆 implies 𝑄(‖𝑈(𝑡)‖

𝑀
) < 𝐴, 𝑡 ≥ 𝑡

0
, 𝑡 ∈ T , where

𝑈(𝑡) = 𝑈(𝑡, 𝑡
0
, 𝑈
0
) is any solution of (22).

Other practical stability notions can be defined similarly.

Theorem 21. Assume that

(𝐴
1
) 𝜆, 𝐴 are positive constants and 0 < 𝜆 < 𝐴;

(𝐴
2
) ℎ
0
, ℎ ∈ Γ, 𝑡 ∈ T , ℎ

0
is nondecreasing in 𝑡, and ℎ

0
is

uniformly finer than ℎ, ℎ(𝑡, 𝑋) ≤ 𝜙(ℎ
0
(𝑡, 𝑋)), 𝜙 ∈ K,

where ℎ
0
(𝑡, 𝑋) < 𝜆;

(𝐴
3
) there exists 𝑉 ∈ 𝐶rd[T × 𝐾(R𝑛)

𝑁
,R𝑁], such that

𝑉(𝑡, 𝑋) is locally Lipschitzian in𝑋 for each right-dense
𝑡 ∈ T and for 𝑎, 𝑏 ∈ K. It holds that

𝑏 (ℎ (𝑡, 𝑋)) ≤ ‖𝑉 (𝑡, 𝑋)‖𝑀 ≤ 𝑎 (ℎ
0
(𝑡, 𝑋)) ; (31)

(𝐴
4
) for (𝑡, 𝑋) ∈ 𝑆(ℎ, 𝐴),

𝐷
+

Δ
𝑉 (𝑡, 𝑋) ≤ 𝐺 (𝑡, 𝑉 (𝑡, 𝑋)) , (32)

where 𝐺 ∈ 𝐶rd[T × R𝑁,R𝑁] is upper quasi-monotone nonde-
creasing in 𝑈 for each 𝑡 ∈ T and 𝑈(𝑡) is the solution of (22);

(𝐴
5
) 𝜙(𝜆) < 𝐴, 𝑎(𝜆) < 𝑏(𝐴).

Then practical stability properties of system (22) imply
the corresponding (ℎ

0
, ℎ)-practical stability properties of

(18).

Proof. Assume that (22) is practically stable; then for given
(𝑎(𝜆), 𝑏(𝐴)), we have


𝑈
0

𝑀
< 𝑎 (𝜆) implying ‖𝑈 (𝑡)‖𝑀 < 𝑏 (𝐴) , 𝑡 ≥ 𝑡

0
. (33)

Then by (𝐴
2
) and (𝐴

5
), it follows that ℎ(𝑡

0
, 𝑋
0
) ≤ 𝜙(ℎ

0
(𝑡
0
,

𝑋
0
)) < 𝜙(𝜆) < 𝐴. We claim that ℎ(𝑡, 𝑋) < 𝐴.
Indeed, if this were not true, there would exist a solution

𝑋(𝑡) of (18) with ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆 and 𝑡

1
> 𝑡
0
, 𝑡
1
∈ T , such that

ℎ(𝑡
1
, 𝑋(𝑡
1
)) ≥ 𝐴, ℎ(𝑡, 𝑋(𝑡)) < 𝐴, 𝑡

0
≤ 𝑡 < 𝑡

1
. As ℎ

0
(𝑡
0
, 𝑋
0
) <

𝜆, Theorem 16 together with (𝐴
2
), (𝐴
3
) implies that

‖𝑉 (𝑡, 𝑋)‖𝑀 < ‖𝑈 (𝑡)‖𝑀, 𝑡
0
≤ 𝑡 < 𝑡

1
,


𝑉 (𝑡
0
, 𝑋
0
)
𝑀

≤ 𝑎 (ℎ
0
(𝑡
0
, 𝑋
0
)) < 𝑎 (𝜆) ,

𝑏 (𝐴) ≤ 𝑏 (ℎ (𝑡
1
, 𝑋 (𝑡
1
, 𝑋 (𝑡
1
))))

≤

𝑉 (𝑡
1
, 𝑋
1
)
𝑀

≤

𝑈 (𝑡
1
)
𝑀

≤ 𝑏 (𝐴) .

(34)

This contradiction proves that ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆 implies ℎ(𝑡, 𝑋)

< 𝐴, 𝑡 ≥ 𝑡
0
.
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Next we prove that system (18) is (ℎ
0
, ℎ)-strongly prac-

tically stable. For given positive numbers 𝜆, 𝐴, 𝐵, and 𝑇,
suppose that (22) is strongly practically stable for positive
numbers 𝑎(𝜆), 𝑏(𝐴), 𝑏(𝐵), and 𝑇; this means we only need to
prove (ℎ

0
, ℎ)-practical quasi-stability of system (18). Practical

quasi-stability of (22) means that ‖𝑈
0
‖
𝑀

< 𝑎(𝜆) implies
‖𝑈(𝑡)‖

𝑀
< 𝑏(𝐵), 𝑡 ≥ 𝑡

0
+ 𝑇 with 𝑡

0
+ 𝑇 ∈ T .

From the foregoing argument, since ‖𝑉(𝑡, 𝑋(𝑡))‖
𝑀

<

𝑎(𝜆), if ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆, we have 𝑏(ℎ(𝑡, 𝑈)) ≤ ‖𝑉(𝑡, 𝑋)‖

𝑀
≤

‖𝑈(𝑡)‖
𝑀

< 𝑏(𝐵) for all 𝑡 ≥ 𝑡
0
+ 𝑇 if ℎ

0
(𝑡
0
, 𝑋
0
) < 𝜆; thus we

have ℎ(𝑡, 𝑋(𝑡)) < 𝐵, 𝑡 ≥ 𝑡
0
+𝑇 provided ℎ

0
(𝑡
0
, 𝑋
0
) < 𝜆. Hence

system (18) is (ℎ
0
, ℎ)-strongly practically stable.

Finally, we show that system (18) is (ℎ
0
, ℎ)-practically

asymptotically stable. Now, let us suppose that (22) is practi-
cally asymptotically stable.This implies we only need to prove
that for any given 𝜖 > 0, there exists 𝑇

0
> 0 with 𝑡

0
+ 𝑇
0
∈ T

such that 𝑡
0
+𝑇
0
≥ 𝑇 and ℎ

0
(𝑡
0
, 𝑋
0
) < 𝜆 implies ℎ(𝑡, 𝑋(𝑡)) < 𝐵,

𝑡 ≥ 𝑡
0
+ 𝑇
0
for system (18). Practical asymptotic stability of

(22) means that


𝑈
0

𝑀
< 𝑎 (𝜆) implies 𝑈 (𝑡, 𝑡

0
, 𝑈
0
)
𝑀

< 𝑏 (𝐵) ,

𝑡 ≥ 𝑡
0
+ 𝑇
0
.

(35)

From the argument above, since ‖𝑉(𝑡
0
, 𝑋
0
)‖
𝑀

< 𝑎(𝜆) when-
ever ℎ

0
(𝑡
0
, 𝑋
0
) < 𝜆, we obtain

𝑏 (ℎ (𝑡, 𝑋)) ≤ ‖𝑉 (𝑡, 𝑋)‖𝑀 ≤ ‖𝑈 (𝑡, 𝑈)‖𝑀 < 𝑏 (𝐵) (36)

for all 𝑡 ≥ 𝑡
0
+ 𝑇
0
, if ℎ
0
(𝑡
0
, 𝑋
0
) < 𝜆. Thus we have ℎ(𝑡, 𝑋) < 𝐵,

𝑡 ≥ 𝑡
0
+ 𝑇
0
, provided ℎ

0
(𝑡
0
, 𝑋
0
) < 𝜆. Hence system (18) is

(ℎ
0
, ℎ)-strongly practically stable.
The proof is complete.

Theorem 22. Suppose that the conditions of Theorem 21 are
satisfied except that condition (𝐴

3
) is replaced by

(𝐴
6
) 𝑄
0
, 𝑄 ∈ Σ and for 𝑎, 𝑏 ∈ K

𝑄 (‖𝑉 (𝑡, 𝑋)‖𝑀) ≥ 𝑏 (ℎ (𝑡, 𝑋)) ,

𝑄
0
(‖𝑉 (𝑡, 𝑋)‖𝑀) ≤ 𝑎 (ℎ

0 (𝑡, 𝑋)) .

(37)

Then (𝑄
0
, 𝑄)-practical stability properties of system (22) imply

the corresponding (ℎ
0
, ℎ)-practical stability properties of the

system (18).

Proof. Assume that (22) is (𝑄
0
, 𝑄)-practically stable.Thenwe

have (𝑎(𝜆), 𝑏(𝐴)), such that

𝑄
0
(

𝑈
0

𝑀
) < 𝑎 (𝜆) implies 𝑄 (


𝑈 (𝑡, 𝑡

0
, 𝑈
0
)
𝑀

) < 𝑏 (𝐴) ,

𝑡 ≥ 𝑡
0
.

(38)

Suppose that the (ℎ
0
, ℎ)-practical stability of (18) does not

hold; then, arguing as in Theorem 16, by (𝐴
2
), (𝐴
6
), we can

show that

𝑄
0
(

𝑉 (𝑡, 𝑋 (𝑡, 𝑡

0
, 𝑋
0
))
𝑀

)

≤ 𝑎 (ℎ
0
(𝑡, 𝑋 (𝑡, 𝑡

0
, 𝑋
0
)))

≤ 𝑎 (ℎ
0
(𝑡
1
, 𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
))) ≤ 𝑎 (𝜆) .

(39)

Then using (𝐴
6
), we have

𝑏 (𝐴) ≤ 𝑏 (ℎ (𝑡
1
, 𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
)))

≤ 𝑄 (

𝑉 (𝑡
1
, 𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
))
𝑀

)

≤ 𝑄 (

𝑈 (𝑡
1
, 𝑈 (𝑡
1
, 𝑡
0
, 𝑈
0
))
𝑀

)

< 𝑏 (𝐴) ,

(40)

which is a contradiction. The proof is complete.
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