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This paper deals with a fourth order nonlinear neutral delay differential equation. By using the Banach fixed point theorem, we
establish the existence of uncountably many bounded positive solutions for the equation, construct several Mann iterative sequences
with mixed errors for approximating these positive solutions, and discuss some error estimates between the approximate solutions
and these positive solutions. Seven nontrivial examples are given.

1. Introduction and Preliminaries

The oscillation, nonoscillation, and existence of solutions for
various kinds of second order and third order neutral delay
differential equations have been extensively studied over the
last decades; for example, see [1-12]. Elbert [2] and Huang
[3] established a few oscillation and nonoscillation criteria for
the second order linear differential equation

O +qt)x(t)=0, t=0, 1)

where g € C([0,+00),R"). Tang and Liu [9] studied the
existence of bounded oscillation for the second order linear
delay differential equation of unstable type

) =p®)xt-1), t=ty 2

where 7 > 0, p € C([ty,+00),R"), and p(t) # 0
on any interval of length 7. Using the Banach fixed point
theorem, Kulenovi¢ and HadZiomerspahi¢ [4] deduced the
existence of a nonoscillatory solution for the second order

linear neutral delay differential equation with positive and
negative coeflicients

(x(®)+ex(t-1)"+Q, () x(t - 0y)
-Q,(x(t-0,) =0,

where ¢ € R\ {-1,1}, 7 > 0, 0y, 0, € [0,+00), Q,,
Q, € C([ty,+00),R"). Lin [5] suggested a few sufficient
conditions for oscillation and nonoscillation of the second
order nonlinear neutral differential equation

3)

t>t,,

(x®+p®xt-1)"+q@®) f(x(t-0) =0, t=t,
(4)
where T > 0,0 > 0, p € C([ty, +00),R"), g € C(R,R"),
f € C(R,R), f isnondecreasing, and xf(x) > 0,x #0. Qinet

al. [8] and Yang et al. [11] developed several oscillation criteria
for the second order differential equation

(roOx®+p®)xE-1))
Fq® flx(E-8) =0,

(5)

t >ty



where 7 and & are nonnegative constants, r,p,q €
C([ty, +00),R), and f € C(R, R). By utilizing Krasnoselskii’s
fixed point theorem, Zhou [12] discussed the existence
of nonoscillatory solutions of the second order nonlinear
neutral differential equation

(r®O®+p®xE-1))

m (6)
+YQM fi(x(t-0)) =0, t=t,
i=1

where m > 1 is an integer, T > 0, 0; > 0, 7,p,Q; €
C([ty, +00),R), and f; € C(R,R) fori € {1,2,...,m}. Yuand
Wang [10] studied the existence of a nonoscillatory solution
for the second order nonlinear neutral delay differential
equations with positive and negative coefficients

(rOEO+POxE-1)) +Q () f (x(t - 0,))
~Q)g(x(t-0y)) =0,

7)

t >t

where 7 > 0, 0,0, € [0,+00), P,Q,,Q,,r € C([ty,+00), R),
f-g € C(R,R). Liu and Kang [7] investigated the existence
of nonoscillatory solutions of the second order nonlinear
neutral delay differential equation

(a)(x®+b@)xt-1))
+(h(tx (B (), x () ..., x (e (1))
+f(Ex(fi®),x(H0),....x(fi 1)) =g®),

t >ty

(8)

where 7 > 0, a,b, g € C([ty, +00), R) with a(t) > 0 for ¢ > t,
h e C'([ty, +00) x RE,R), f € C([ty,+00) x RER), by €
C'([ty, +00), R), and f; € C([t,, +00), R) with

Jim B0 = m fi(#) =+00, I=1...k (9)

Kang et al. [13] discussed the existence of nonoscillatory solu-
tions of the third order nonlinear neutral delay differential
equation

(et (BO) (x®)+ p)x(t-1)))
+ f(tx(o,(0).x(0,®),....x(c, ) =0, 10

t>t,

where n > 1 is an integer, T > 0, , € C([t, +00), R* \ {0}),
p € C([ty,+00),R), and f € C([t,, +00) x R", R).
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Motivated by the papers mentioned above, in this paper,
we investigate the following fourth order nonlinear neutral
delay differential equation:

!

(a(t) (ﬁ OO EO+pB)x(t- T))’)l)’>

+(h(t,x(hy (®),....x(h 1))
X(fr @) =9@),

t >t

(11)

+f(tx(fi®)),x(H ). ..

where k € N, 7 > 0, a, B,y € C([ty, +00), R \ {0}), p, g €
C([ty, +00),R), h € C'([ty, +00) X R¥,R), f € C([ty, +00) X
R¥,R), hy € C'([t,, +00), R), and f; € C([t,, +00), R) with

tEI-Poohl ) = tEIPOOfl (t) =400, [1=1,2,...,k 12)

Utilizing the contraction mapping principle, we show the
existence of uncountably many bounded positive solutions
for (11), construct a few Mann type iterative schemes
with mixed errors for these positive solutions, and discuss
error estimates between the approximate solutions and the
bounded positive solutions. Seven nontrivial examples are
considered to illustrate our results.

Throughout this paper, we assume that R = (-00, +00),
N denotes the set of positive integers, N, = {0} UN, and

a =min{t, - 7,inf {h; (t), f; (t) : t € [ty +00),1 <[ < k}}.
(13)

By a solution of (11), we mean a function x €
C([a,+00),R) for some T > t, + |a| + 7, such that
!

a(®)(BE)(yE)(x(t) + p(t)x(t - T))’)’) is continuously differ-
entiable in [T, +00) and (11) is satisfied for t > T.

Let CB([a, +00), R) denote the Banach space of all con-
tinuous and bounded functions on [a, +00) with the norm
lxll = sup,s,|x(t)| for each x € CB([a, +00), R) and

A(N,M) ={x € CB([a,+0),R): N < x(t) < M,t > a}

for M > N > 0.
(14)

It is easy to see that A(N, M) is a bounded closed and convex
subset of CB([a, +00), R).
The following lemma plays an important role in this

paper.
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Lemma 1 (see [6]). Let {o,}uen,> {Batnen,> {Vubnen, and
{tutnen, be four nonnegative real sequences satisfying the
inequality

o < (1=t o, +t,8,+y,, neN, (15)

where {t,},en, € [0,1], ¥, 20t, = +00, lim, _, B8, = 0, and
Yoo Yu < +00. Then lim,,_, . e, = 0.

n—00""n

2. Uncountably Many Bounded Positive
Solutions and Iterative Approximations

Now we study the solvability of (11).

Theorem 2. Assume that there exist constants M, N,c;,¢,,
and Ty > t, and functions Q,Q,,R;, and R, €
C([t,, +00), R") satisfying

|f (bupugs ) = f (K1, 0|
<Q (max{|u; -] : 1 <1<k},

|h(t,uy, vy, wy) = h (60, Uy, .. 1| (16)

<Q,(Hmax{|y; —u|:1 <1<k}

for t € [ty,+00), wupu € [N,M], 1<I<k;

|f (tuy, vy )| S R (2),
|h(t,uy, 1y, .. ou)| <R, (1),
(17)
for t € [ty,+00), u; € [N, M],
1<i<k
J+m J+OO J'+OO 1
v do b Ja@ By W)
x max {Q, (1), R, (u)} dudvdw < +oo,
(18)

J:O J:oo .[:OO .[:OO o (w) B (IV) y (w)|

x max {Q, (s), R, (s),]g (s)|} dsdudvdw < +co;

min{c,6} >0, ¢q+6<1l, 0<N<(l-¢-6)M;
(19)
- <pt)<¢c, t=T,. (20)

Then,

(a) forany L € (N + ¢ M, (1 — ¢,) M), there exist 0 €
(0,1) and T > ty + lal + 7 + |T,| such that for each

xg € A(N, M), the Mann iterative sequence {x,,}nen,
with mixed errors generated by the scheme
’(1 Gy _ﬁm)xm ) + Ay

x{L—p(t)xm(t—T)

ST s

xh (u, x, (hy (W), ..., X (hx (w))) dudvdw

S B o
X L[f (5% (f1 () 505 %0 (fi (5)))

-g@s)] dsdudvdw}

1BV (), =T, meN,,

X1 () =
(1 = %y ﬁm)xm (T) +a,
x{L—p(T)xm(T—T)
+00 p+00 +00 1
+J’T J-w J-v m
xh (4, x,, (hy (W), ...,
X, (hy (w))) dudvdw

B e o
XU oo U ) esor (6 )

-g(] dsdudvdw]»
¥ (T),

ast<T,meN,
(21)

converges to a bounded positive solution x € A(N, M)

of (11) and has the following error estimate:

"xm+1 _x” = (1_(1_0)“m)||xm_x“+2M/3m’ m € Ny,
(22)

where {y,,}nen, is an arbitrary sequence in A(N, M)
and {a,,} e, and B} men, are any sequences in [0, 1]

such that
(e8]
Z a,, = +00, (23)
m=0
[ee)
Z B,, < +00 or there exists a sequence
m=0

{Em}meNO € [0, +00) Satisfying (24)

ﬁm = Em‘xm) m € NO’ mlgnoofm = O’

(b) equation (11) possesses uncountably many bounded
positive solutions in A(N, M).



Proof. Firstly, we show that (a) holds. Let L € (N + ¢, M, (1 -
6, )M). It follows from (18) and (19) that there exist 0 € (0, 1)
and T > t, + |a| + T + |T;| satisfying

~ +00 [+00 (+00 QZ (1)
O=c +c+ L L Jv —lfx (u)ﬁ(v)y(w)|dudde

+ EOO L:roo J:OO J:oo " (u)(f;l(is))y @ dsdudvdw,

(25)

J'+OO J/-%-OO j+00 Rz—(Ll)dudde
r Ju b |a@) By w)|
Il A I STORS VIO
+JT Jw L ju l(x(u)ﬂ(v)y(w”deudvdw
<min{(1-¢)M-L,L-N-¢M}.
(26)

Define a mapping S; : A(N, M) — CB([a,+c0), R) by

(L-pt)x(t-1)

*J:mﬂ,mfoa(u)/ﬂlv)ww)

xh (u, x (hy; (W), ..., x (hy (w))) dudvdw

1L e

<[f(x(fi()sem o x (fi ()
- g(s)] dsdudvdw,
t>T, x e A(N,M),
(1S.x(T), a<t<T, xe€ A(N,M).

Spx(t) = 1

(27)

Obviously, S;x is continuous for each x € A(N,M).
Combining (16), (17), (19), (20), and (25)-(27), we derive that
forx,y € AIN,M)andt >T

S (£) = Spy (1)

<lp®||x@t-1) -yt -1)

! fm Lm Lm o (0) ﬁ(IV) y W)

x |h(u,x (hy W)),..., x (b (w)))
~h(u, y (hy (w)),..., y (hy ()))| dudvdw

" fm Ljoo J:OO L+OO |ex (u)ﬁ(IV) y ()]

x|f (sx(fi (), x(fi (5)))
5y (1)) sy (i (5))| dsdudvdw
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<(g+a)|x-y|+[x-y|

+00 +00 +00 Qz (u)
XL L J |oc(u)ﬂ(v)y(w)|dudde

* =l

X J:OO Ljoo Lwo Lwo W&kdadwﬂw

+00 +00 +00 QZ (u)
< [cl +c+ L L JV —l(x (u)ﬁ(v)y(w)|dudde

+ JTH)O J:OO J':oo L+oo stdwdvdw

x[x =yl
=0]x—yl
Spx (1)
=L-pt)x({t—-1)

AL swsenw

x h(u,x(hy (w),..., x (b (w))) dudvdw

- foo J:)O J:Oo Lm a(u) B (IV) Yy (w)

X [f (5x(f19))>-. > x(fi (8))) — g (s)] dsdudvdw
<L+eM

! fm L . Lm Jor () <1v> y (w)|

x |h(u, x (hy W), ..., x (h (w)))| dudvdw

i Lm J:)O J:Oo Lm |ov () B (11/) y ()|

X [1f (52 (f1(9))s-.x (fi ))] + |9 (9)]] dsdudvdw

<L+oM

+ L L j %dwvdw
+ JT L L L %dsdudvdw
<L+ecM+min{(l1-¢)M-L,L-N -¢M}
<M,
Spx (t)
>L-ogM
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- J.:OO J:OO Lm |ox (1) ,3(11/) y ()]

x |l (u, x (hy W)),..., x (b (w)))| dudvdw

- fm Lm Lm Lm ) ﬁ(IV) y ()]

<L (55 (9 oo (5 (90) — 9 9] s
>L-eM

- J:oo Ljoo J:oo %dudwﬂw

N o

>L-¢qM-min{(1-¢)M-L,L-N -¢,M}

>N,
(28)
which mean that
[Scx =Sy <O0|x-y|, xyeAN,M),
(29)

S, (A(N,M)) € A(N,M).

That is, S; is a contraction mapping in A(N, M) and has a
unique fixed point x € A(N, M), which is a bounded positive
solution of (11). By virtue of (21), (27), and (29), we get that
foranym € Nyandt > T

|xm+1 (H) —x (t)l
= |(1_(Xm_ﬁm)xm(t)+am

X{L_p(t)xm(t_T)

" Lm Lm Lm «x(u)/s(lvw(w)

x h(u, x,, (h; W), ...

- fm L . Lm Lm a(u)p (lv) y (w)

X [f (8% (L (9)) 5> % (fi (9)))
~ g (9)] dsdudvdw} + B,,y,, (t) - x (¢)|
<(1-a, =B %, @) —x ()]
+ 0, |1, (1) = Spx ()] + B [y (8) = x ()]
< (1= 0, = Ba) | (6) = x (2)]

+a,,0 |xm (t)—x (t)| +2M}p,,

, X, (hy (w))) dudvdw

5
<(1-(1-0)a,)]|x,, () - x ()| + 2MB,,
<(1-Q1-0)a,)|x, - x| +2MB,,

(30)
which yielded that
s =51 < (1= (1~ 0) ) sy - x| + 205,
(31)

m € N,.

That is, (22) holds. Thus Lemma 1, (23), and (24) ensure that
lim,, , x,, = x.

Next we show that (b) holds. Let L;, L, € (N + ¢ M, (1 -
¢, )M) with L, # L,. As in the proof of (a), we conclude that
for each j € {1,2} there exist Gj € (0,1), T; >ty + lal + T +
|T,l, and SL]- : A(N,M) — A(N, M) satistying (25)-(27),
where 6, T, S, are replaced by 0;, T}, and § L respectively, and

the contraction mapping S, has a unique fixed point z; €

A(N, M), which is also a bounded positive solution of (11).
In order to prove (b), we need only to show that z, # z,. Put
T* = max{T}, T,}. Note that for t > T* and j € {1,2}

Zj (t)

=8,z (t)

:Lj—p(t)zj(t—r)

S e

x h (u, zj(hy W), ....z; (I (u))) dudvdw

- fm ono Lm Lm o (u) (1v> y (W)

X [f (s, z; (fi(9))5- .z (fi (s))) - g(s)] dsdudvdw,
(32)

which together with (16) and (25) implies that for t > T*

|Zl (t) -z, (t)|

=L, -Ly-p@®) (2, (t—7) — 2, (t - 7))

! Lwo L . Lm a()p (1v) y W)

x [h (w2, (b W)),.... 2, (Il (W)))
~h(u,z, (hy (W)),...,z, (h (w)))] dudvdw

- Lm Lm Lm Lm a(u) B (lv) Y (w)



6
x[f sz (f1 ()5 r2 (fi (5)))
—f (52, (f1(9)5-- 25 (fic (5)))] dsdudvdw|
> Ly = Lo| = (o + &) |z — 2] = |21 - 2
+00 +00 +00 Q2 (u)
8 JT* L j o) B () p ()] 44V
=~z -z
+00 +00 +00 +00 Ql (s)
8 JT* L I j o) B () y (w)] v
> |L, - Ly| - ||z, - 2,|| max {6,,6,},
(33)
which yields that
_ L1 - Ly
||Z1 22" > m{el’ez} > 0. (34)
That is, z, # z,. This completes the proof. O

Theorem 3. Assume that there exist constants M, N, ¢}, ¢,
and Ty, > t, and functions Q,,Q,,R,, and R, €
C([ty, +00), R") satisfying (16)-(18) and
0<(l-¢)N<(l-¢)M,
(35)

0<g<spt)<g<l, t2T,.

Then
(a) for any L € (N + ¢M,M + ¢,N), there exist
0 € (0,1) and T > ty + |al + T + |T,| such that,
for each x, € A(N, M), the Mann iterative sequence
{xm}meN0 generated by the scheme (21) with (23) and

(24) converges to a bounded positive solution x €
A(N, M) of (11) and has the error estimate (22);

(b) equation (11) has uncountably many bounded
positive solutions in A(N, M).

Proof. Let L € (N + ¢,M, M + ¢,N). It follows from (18) and
(35) that there exist 0 € (0,1) and T > t, + |a| + 7 + |T|
satisfying

~ +00 400 [+00 Q, (u)
9"C1+JT L J o) B )y (w)] AV

+ Lmo J:OO J:OO Lwo WMdsdudvdw,

(36)

J: . .EOO J:oo |<x (u)l;;(if)l)y (w)| dudvdw

t00 ro0 0 rre0 R (5)+ [g (s)]
Ri@+lge)l
N JT J’w L L 260 F ) 7 @) sdudvdw
<min{M +N - L,L - N - M}.
(37)
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Define a mapping S; : A(N, M) — CB([a, +00),R) by (27).
Clearly S; x is continuous for each x € A(N, M). On account
of (16), (17), (27), (35), (36), and (37), we infer that for x, y €
AN,M)andt >T

|SLx () =Sy (f)|

<lp@||xt-7)-y@-1)

i fm Lm J:OO o () ﬁ(IV) y W)|

x |h(u, x (hy W) ..., x (h (w)))
~h(u, y (hy W),...,y (h w)))| dudvdw

" fm Lm J:m Lm lac(w) B <1v> y )|

X|f(sx(f1(9))s.x(fi ()
(s y(f15)s. sy (fi (5)))] dsdudvdw
<qllx=yl+]x-yl

X j:oo L:roo J:OO %dwﬁzdw

+x -y
+00 (400 [+00 [+00 Q, (s)
XL L J J o) B () y ()] v
+00 [+00 [+00 Qz(u)
S(C1+JT L L —|oc(u)[3’(v)y(w)|dudde
+00 [+00 [+00 [+00 Q, (s)
+L L J J |a(u>ﬁ(v)y(w)|d5d”dm>
x[lx = |
=0[x-y|,
Spx (1)

=L-pt)x(t-1)

AL s

x h(u,x (hy (W), ...,x (h (w)) dudvdw

- fm LOO Jvm Lm a(u) B <1v) y (w)

X [f(sx(f1(9),--,x(fi (5)) = g (5)] dsdudvdw
<L-gN

" fm Lm J:OO o () ﬁ(IV) y W)|

x |l (u, x (hy (w)),..., x (b (w)))| dudvdw
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’ Lm Loo J:OO Lm lor () (lv) Y @)

<1 (5% () erx (fe 9)] + 9 (9)] dsdludvduo
<L-gN

+00 [+00 [+00 R, (1)
+JT L L |oc(u)ﬁ(v)y(w)|dudde

+00 400 400 (400
+IT L JV L %dsducﬁdw
<L-6N+min{M+¢N-LL-N-¢M)}
<M,
Spx (1)
>L-gM

- L“’O L“’O J:OO lov () B (IV) y ()|

x|k (u,x (hy W)),...,x (h (w)))| dudvdw

- Lm L . Lm Lm |oc () B (1v> y ()]

< |[f (s:x (f1 ()50 x (£ () = g (5)]| dsdudvdw
>L-eM

- j;oo L:roo J:OO W(vu))y(wﬂdudij

- o

>L-¢M-min{M+¢N-LL-N-¢M}

>N,
(38)

which imply that (29) holds. The rest of the proof is similar to

that of Theorem 2 and is omitted. This completes the proof.
O

Theorem 4. Assume that there exist constants M, N, ¢;, ¢, and
Ty > t, and functions Q;,Q,, R, and R, € C([t,,+00),R")
satisfying (17), (18), and

0<(1-¢)N<(1-¢)M;
(39)
1< <pt)<—<0, t=T,

Then

(a) for any L € ((1 — ¢,)N,(1 — ¢;)M), there exist
0 € (0,1) and T > t, + |al + T + |T,| such that,
for each x, € A(N, M), the Mann iterative sequence
{Xm}men, generated by the scheme (21) with (23) and
(24) converges to a bounded positive solution x €
A(N, M) of (11) and has the error estimate (22);

(b) equation (11) has uncountably many bounded
positive solutions in A(N, M).

Proof. Let L € ((1 —¢,)N, (1 —¢;)M). Equations (18) and (39)

guarantee that there exist 0 € (0,1) and T > ¢, + |a| + 7 + | T,
satisfying (36) and

J; . Em Lm B (u)%((;;)y w)| dudyw

+00 +00 +00 +00 M
+ JT Ju) Jv J;, |“ (U) ﬁ (V) Y (w)| deudde

<min{(1-¢)M-L,(c,-1)N +L}.
(40)

Let the mapping S; : A(N,M) — CB([a,+00),R) be
defined by (27). Using (17), (27), (39), and (40), we deduce
that for any x € A(N,M) andt>T

Spx (1)
=L-pt)x(t-1)

' Lm L . Lm o () B <1v> y (W)

xh(u,x(hy (w),....x(h (w)) dudvdw

1L e

X[f(sx(f1(9),..,x (£ (5)) — g (s)] dsdudvdw
<L+gM

! Lm Lm Lm o (u) B (1v> y W)

x |k (u,x (hy ()),..., x (h (w)))| dudvdw

i J:oo J:)O J:OO Lmo |ov (u) B (11') y ()|

< [1f (52 (f1 ()55 x (fe (9))]
+1g (s)|] dsdudvdw
<L+gM

+00 (400 [+00 R2 (u)
+jT Jw L |oc(u)ﬁ(v)y(w)|dudde

I A e STORS VIO
+ JT Jw Jv Ju l(X (u) ﬁ W)y (w)| dsdudvdw



<L+M+min{(1-¢)M-L,(c,—1)N +L}
<M,

Spx (1)

>L+cN

- JT+ . J:)O J:OO | (u)l/z;(ﬁf;)y (w)| ducdviw

- JTJrOO J:OO J:OO Lmo %dsdudvdw

>L+gN-min{(1-¢)M-L,(c,—1)N +L}

>N,
(41)

which mean that (29) holds. That is, S; is a contraction
mapping and possesses a unique fixed point x € A(N, M),
which is a bounded positive solution of (11). The rest of the
proof is similar to that of Theorem 2 and is omitted. This
completes the proof. O

Theorem 5. Assume that there exist constants M, N, and
Ty > t, and functions Q;,Q,, R;, and R, € C([t,, +00),R")
satisfying (16)-(18) and

0<N<M, pt)=1, t>T, (42)
Then
(a) for any L € (N, M), there exist 0 € (0,1) and T >
ty + lal + T + |Ty| such that, for each x, € A(N, M),
the Mann iterative sequence {x,,} ., generated by the
scheme
'(1_“m_ﬁm)xm(t)+‘xm
00 ~t+2iT 00 (+00 1
) “J H(ZFDTJ v J v @@ By W)
xh (u, x,, (hy (W), ..., X, (i (w))) dudvdw
OO (t+2iT +00 +00 (+00 1
_ZIJ H(z,-_l)J w J y J v a@) )y w)
XL (5% (1 (9)) 5000 %0 (fi (9)))
-g (] dsdudvdw]»
Xpi1 (t) — +Bm¥m (), t=T, meN,,

(1 %y _ﬁm)xm (T) + oy

00 ~T+2iT +00 [+00
X{“erlnjw |, cwsorw

xh (u, x,, (hy (W), ..., X (i (w))) dudvdw

00 T+2it +00 +00 [+00 1
_;JT+(2i—1)TJw -[v J‘u a(u) )y (w)
X[f (5% (f1 (9) 5+ 5 % (f ()

-g9)] dsdudvdw}

+Bn¥m (T,

ast<T, meN,

(43)

converges to a bounded positive solution x € A(N, M)
of (11) and has the error estimate (22), where {ym}me,\,0
is an arbitrary sequence in A(N, M) and {a,,} ey, and
{Bm}men, are any sequences in [0, 1] satisfying (23) and
(24);
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(b) equation (11) possesses uncountably many bounded
positive solutions in A(N, M).

Proof. First of all, we show that (a) holds. Let L € (N, M). It
follows from (18) that there exist 6 € (0,1) and T > ¢, + |a| +
T + |T;| satisfying

B +00 (+00 [+00 Qg (1)
o= JT L J |oc(u)ﬁ(v)y(w)|dudde

+ Lwo L:roo J':oo L+oo %dsdudvdw,

(44)

400 [+00 [+00 +00 R1(5)+|g(s)|
+JT L, J J o (1) B () (w)] AV

<min{M - L,L - N}.
(45)
Define a mapping S; : A(N, M) — CB([a, +00), R) by

O ~t+2iT

( +00 400 1
b ,.:ZIL(HJ.U J, @Oy W)
xh (u, x (hy (W)),..., x (hy (w))) dudvdw

0 t42ir +00 (+00 (400
_;JZ+(2i—l)er Jv Ju m

x[f(&x(f1()s- 0 x(fi ()
-g(s) ] dsdudvdw,
t>T, x € AN, M),
(Spx (1),

Spx(t) = A

a<t<T, xe A(N,M).
(46)

Clearly, S, x is continuous for each x € A(N, M). Notice that
(16), (17), (42), and (44)-(46) ensure that for x, y € A(N, M)
andt>T

S, (£) = Sy (1)]

00 ~t42iT
S J

+00 [+00 1
i Jt+@i-1)r L -[/ |0€ (u) ,3 Wy (w)|
x |h (u, x (hy (W) ,..., x (h (w)))

~h(u,y (hy W),...,y (h (w)))| dudvdw

00 ~t+2iT
+ j

3 I I B =y e
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<|f (52 (f1 ()5 x (£ ()

(5 y(fi(9))s- 0y (fi (5))| dsdudvdw? < |x - y|

O ~t+2iT +00 400 Qz—(u)
X ; ~|-t+(2i—1)T J-w jv |(X (u) ﬁ (V) y (w)l dudvdw

+x =yl

IS I ey

+00 +00 +00 Q2 (u)
< <JT L JV —la (u)ﬁ(v)y(w)|dudde

dsdudvdw

¥ L : Loo J:OO Lm o (u)(/gsl(f))y (w)lde”dde)

x[x =]
=0]x- ],
Spx (1)

3L st

xh(u,x(hy (w),..., x (hy (w))) dudvdw

OO0 ~t+2iT +00 (+00 (+00
2wk 1L g

x[f(s,x(f,9),..., x (fx (5))) = g (s)] dsdudvdw

+00 400 [+00 R, (1)
S“L L J o) B )y (@) 44

+00 400 [+00 400 Rl(s)+|g(s)|
+L L J L o) B ) y (w)] v
<L+min{M-L,L - N}
<M,
Spx (t)

B +00 +00 +00 R2 (u)
>L L L L —|oc(u)/3(v)y(w)|dudde

P e
t w v u |“ (Ll) ﬁ (V) V (UJ)|
>L-min{M - L,L - N}

ZN’

which imply that (29) holds. That is, S; is a contraction
mapping and has a unique fixed point x € A(N, M). It follows

that
x (t)

S N B v

xh(u,x (h; (w),..., x (hy (w))) dudvdw

M8

1

x[f(sx(f1 ()5 x (i (9)))
- g (s)] dsdudvdw,

t>T,
x(t-1)

00 ~t+(2i-1)T +00 [+00 1
=1L - -
i ; Jt+(2i—2)‘r Jw Jv (%9 (u) B (V) Y (w)
xh(u,x (h; (w),..., x (hy (w))) dudvdw
0 ~t+(2i-1)T 400 [+00 [+00 1
- ; jt+(2i—2)r L Jv L o (u) ﬁ (v) Y (w)
< [f(sx(f1 (), x (fi (9))

- g(s)]dsdudvdw, t>T+1.
Adding (48) and (49), we infer that
x(t)+x(t-1)
00 t+2iT t+(2i—-1)T
=2L+ Z “ + J ]
=1 t+(2i-1)T t+(2i-2)T
J~+00 J+w 1
>< _—
w by a@ By w)

x h(u, x (h; (W)),..., x (h (w))) dudvdw
(S} t+2iT t+(2i-1)T

D[S
5 [ Jeei-ne Jecicoe

L1 swsenw

o 1L m

(48)

(49)

X [f(sx(fi(5)s....x(fi () = g (5)] dsdudvdw

xh(u,x(hy (w),..., x (b (w))) dudvdw
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- J:oo L . Lm Lm a(u)p (lv) Y (w)

x[f (52 (1)) x(fx ()

- g(s)]dsdudvdw, t>T+7,

(50)

which yields that x is a bounded positive solution of (11). By
means of (29), (43), and (46), we know that for any ¢ > T and
m € N,

|xm+1 (t) - X (t)|

(1 _“m_ﬁm)xm (t)+“m

Ae 3 LT s

x h(u,x,, (h; (W)),...

D B I I o

X [f (5% (f1 (8)) -5 % (fic (9))) (51)

, X, (hy (w))) dudvdw

-g(9] dsdudvdw]» + BV () — x (t)

< (1= 0ty = Bn) 2 (6) = (2)]

+ 0[Sy, (8) = Spx ()| + By [y () = x ()]
< (1= = B) [ (8) = (2)]

+a,0 |x,, (t) — x ()| + 2MB,,
<(1-(1-0)a,) |x, () = x(£)] + 2MB,,

which gives (22). Thus Lemma 1, (23), and (24) ensure that
lim X, = X.

m— 0o0"'m

Now we show that (b) holds. Let L, L, € (N, M) with
L, #L,. Asin the proof of (a), for each € {1, 2}, we infer that
there exists Gj € (0,1), T; > ty + lal + 7 + [Tp), and SLJ_ :
A(N,M) — A(N,M) satisfying (44)-(46), where 0,T,S;
are replaced by 6, T}, S,» respectively, and the contraction
mapping SLj possesses a unique fixed point z; € A(N, M),
and z jisa bounded positive solution of (11); that is,

Zj (t)

= 8,2, (£)

R W N o

x h (u, zj(hy W), ....z; (I (u))) dudvdw

Abstract and Applied Analysis

o 1L m

1

8

<[f (2, (i) 2 (fc ()

-9 (s)] dsdudvdw, t > T;.

(52)

Put T* = max{T;, T,}. Using (16), (44), and (52), we conclude
that fort > T*

|zl (t) -z, (t)l

= |L1 -L,

S I

x [h(u,z, (b (W), ...,z (hy (W)))

~h(u,zy (hy (W), ...,z, (h ()))] dudvdw

00 ,~t+2iT +00 (+00 (+00
2wk 1L cammrm

X [f (520 (fi () sz (fi (9))
—f (2, (f1(9)5-- 52, (fi (5)))] dsdudvdw|

2Ly = Lo| - |21 - 2|

00 ,~t+2iT +00 400 Qz—(u)
X Z Jt+(2i—1)r Jw JV |0£ (1) ﬁ ) y (w)l dudvdw

i=1

-z - 2|

L B B T

> |Ly = Ly| = |z - 2

+00 (+00 [+00 Qz (1)
X (JT Jw L —|oc @By (w)| dudvdw

i JTHX) J:OO L“’O L“X’ Ioc(u)%(i;)y ()| Sdudmw)

> |L, - L,| - ||z, - z,|| max {6,,6,},

(53)
which yields that
L1~ L]
_ > > 05 54
21 -z 1+ max{6,,6,} (54)
that is, z, # z,. This completes the proof. O
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Theorem 6. Assume that there exist constants M, N and
Ty > t, and functions Q,,Q,, R, and R, € C([t,,+00),R")
satisfying (16), (17), and

0<N<M, pt)y=-1, t=T, (55)

dudvdw < +00;

00 J+oo J+oo J+OO max {Qz (u) ’RZ (I/l)}
&l v e By W)

oHiT Jw

j+00 J'+oo J+m JHX)maX{Ql (5):R1 (S),|g (5)”, e
: v Jov (1) B () y ()|
(56)

Then

(a) for any L € (N, M), there exist 0 € (0,1) and T >
ty + lal + T + |Ty| such that, for each x, € A(N, M),
the Mann iterative sequence {x,,} .\, generated by the
scheme

(1 — O _ﬁm)xm (t) + oy

AT s

xh (u, x,, (hy (W), ..., x,,, (hy (w))) dudvdw

S v

X [f (52 (f1 ()55 X (fic (9)))

-g()] dsdudvdw} +B¥m )

t>T, me N,
(1_0‘m_/3m)xm(T)+‘xm

A e

xh (u, x,, (hy (W), ..., X (M (w))) dudvdw

DI I S e o

X [f (8% (f1 (9) 5+ % (f (5)))

xm+1 (t) =9

-g9)] dsdudvdw} + BYm (1) 5

a<t<T, meN,

(57)

converges to a bounded positive solution x € A(N, M)
of (11) and has the error estimate (22), where {)/m}me,\,0
is an arbitrary sequence in AN, M), and{a,,},,,en, and
{ﬁm}meNo are any sequences in [0, 1] satisfying (23) and
(24);

(b) equation (11) possesses uncountably many bounded
positive solutions in A(N, M).

1

Proof. Firstly, we show that (a) holds. Let L € (N,M). It
follows from (56) that there exist 0 € (0,1) and T > ¢, +
lal + 7 + |T,| satistying

B [oe] +00 (+00 400 QZ—(u)
0= ; ,[T+ir J;u ,[, |0€ (u) ﬁ (V) y (w)l dudvdw

Q (s)

+ z J-:; J:OO j:oo J:OO Wv)y(wﬂdmudw{w’

(58)

8

+00 [+00 +00 R, (1)
.ILHT L J o) B ) y ()] et

+§J+°° J*OO r” J*w R, (s) +]g (9)]

i=1 JT+it Jw v u |tx(u)ﬂ(v)y(w)|

dsdudvdw

<min{M - L,L — N}.
(59)

Define a mapping S; : A(N, M) — CB([a, +00), R) by

ST s

i=1

xh (u, x (hy (), ..., x (h (w))) dudvdw

2L

X[f (52 (f1 ()50 x (S (5)))
- g(s)] dsdudvdw,
t>T, x € A(N,M),

[ S.x(T), a<t<T, xe€AN,M).

Spx(t) = A (60)

Clearly, S; x is continuous for each x € A(N, M). In light of
(16), (17), and (58)-(60), we conclude that for x, y € A(N, M)
andt>T

[Spx (1) = Spy (1)]

2] wwsv

X |h(u,x (hy w)),...,x (h (w)))
—h(u,y(hy W)),...,y (h w))|dudvdw

UL wasren

X|f (5% (f1 ()55 x(fi (5)))
—f(sy (1)) ¥ (fi ()| dsdudvdw
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< Jx=»l

0 ~+00 [+00 [+00 Qz—(u)
X ; J;+h- J;u J'V |OC (u) /3 (V) y (w)ldudvdw

=yl

g1 I Wy o

i=1

00 400 [+00 [+00 Qz—(u)
< <; ,[T+i‘r Jw J-v l“ (1) ﬁ ) y (w)l dudvdw

S L1 w i)

xJlx =]
=6y,
Spx (t)

=3 L s

x h(u,x (h; (w),..., x (h ())) dudvdw

) I B A

X [f(s,x(f1(5)5--» x (f (5))) — g (s)] dsdudvdw

(o) +00 (+00 p+00 R2 (u)
<L+ Z LHT L L —|“ WBMY (w)|dudvdw

i=1

S R + g 6)]
+ ; Jt+iT Jw Jv .L, stciudvdw

<L+min{M - L,L - N}
<M,

Spx (1)
~ o +00 (400 +00 R2 (u)
>L ; Lm L L —|oc WBMY (w)|dudvdw

D10 70 70 1Ry (5)+]g (9)
) e
ZJ L Ll a0 By
> L-min{M - L,L- N}

> N,
(61)

Abstract and Applied Analysis

which yield that (29) holds. That is, S; is a contraction
mapping in A(N, M) and has a unique fixed point x €
A(N, M); that is,

x (t)

Y

xh(u,x (h; (W),..., x (hy (w))) dudvdw

2 L s

x[f (5x(f1))5 5 x(fx ()))

- g(s)]dsdudvdw, t>T,

(62)
x(t-1)

Y W S o

xh(u,x (h; (w),..., x (hy (w))) dudvdw

) N N o

x[f (5x(f1))5 5 x(fi ()
- g(s)] dsdudvdw,

(63)

t>T+T.

By virtue of (62) and (63), we get that
x(t)—x({t-1)

- Lm Lm fm a(u)ﬂ(lv)y(w)

xh(u, x (h; (w),..., x (h (w))) dudvdw

S R R

x[f (5x(f1))5 5 x(fi ()
-9 (s)] dsdudvdw,

(64)

t>T+1,
which yields that
(x(t) = x(t = 7))

+00 [+00 1
L cwsore
xh(u,x (hy (w),..., x (b (w))) dudv

AL s e

X [f (2 (f,5))s- 0 x (fi (9)))
- g(s)]dsdudv, t>T+1,
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(y®) (x®) - x(t -1)")

_j+m 1
S aw B
x h(u, x (hy (w),...

- Lm Lm a (u)lﬁ (t)

< [f(sx(f1(9)).. 0 x (fi (5))
- g (s)] dsdu,

,x (hy (w)) du

t>T+T,
(65)

which ensures that

[BOGOEO-xE-1))]

1
- _mh (u,x (hy W), ..., x (h (w)))

n J:oo L [f (5% (f1(9)5- s x(fi () = g ()] ds,

a(t)
t>T+T,
[«0[80 (O O -xt-))]]
= —[h(t,x (hy ()., x (B (1))]'
~[ftx(fi®), o x(fie ) =g ®)],
t>T+T,
(66)

which gives that x is a bounded positive solution of (11). By
means of (29), (57), (58), and (60), we deduce that, for any
meNyandt >T,

|% i1 (8) = x ()

(1 Q& _ﬁm)xm (t)+‘xm

ST ot

x h(u, x,, (h; W), ..., x,, (h (w))) dudvdw

X I I S

X Lf (8% (f1 ()55 % (fic (5)))

-g(s)] dsdudvdw]» + B¥m () — x ()

< (1 %y ﬁm) |xm (t) - x(t)l

+a, |SLxm () - S;x (t)| + B |ym (t) - x(t)|

13
< (1 %y :Bm) |xm (t) - X (t)l
+a,,0 |xm t)—x (t)| +2M§p,,
<(1-(1-0)a,)|x, &) - x )| +2MB,,
(67)
which implies (22). Thus Lemma 1, (23), and (24) ensure that
lim,, _, x,, = x.

Next we show that (b) holds. Let L,,L, € (N, M) with
L, #L,. As in the proof of (a), for each j € {1,2}, we infer
that there exists 6]- € (0, 1),T]- >ty + lal + 7+ |T;l, and SL]_ :
A(N,M) — A(N,M) satisfying (58)-(60), where 0,T,S;
are replaced by 6, T}, SL].) respectively, and the contraction
;€ A(N, M),

and z jisa bounded positive solution of (11); that is,

Zj (1)

5 swre

i=1

mapping SL]- possesses a unique fixed point z

x h (u, zj(hy W),....z; (I (u))) dudvdw

N I B

i=1

(68)

x [f(s’zj (f1 () j(fk (5)))
-g (s)] dsdudvdw, t> T;.
Put T* = max{T;, T,}. Using (16), (58), and (68), we conclude
that for t > T*
ERORENO]
= |L1 -L,

X (+o0 p+oo too 1
2l Lz @
x[h (w2, (h W)),..., z, (b (w)))
~h(u,z, (h, W)),..., z, (h (w)))] dudvdw
X (+00 [+00 t00 [+00 1
+i§1 jt+i1 J‘w -[v Iu o (u) ﬁ (V) y (LU)
<[f (2 (fi (). 7 (£ (5)))
—f(s,2, (£, (9),-.-, z, (fx (5)))] dsdudvduw|
2|Ly = Ly| - [z - 2

X 100 +00 +00Q27(u)
e L B Y@

- ||Z1 - Zz”

dudvdw

X 400 (00 [+00 [+00 QI (S)
Xl;l .[t+i1 jw .[v ju |(x (u) ’g (V) y (w)| dsdudvdw

> |L, - L[ - & - |

S e Q)
X <l§1 ImaX{Tl-Tz}+iT fw Iv |(X (u) ﬁ (V) y (w)| dudvdw
Q (oo +00 400 400 Ql (5)
_'—1; .[maX{T1,T2}HT .[w Iv Ju 106 (M) ,B(V) y (w)| Sdudde)
2 |Ly = Ly| - |lz, - 2, max {6,,6,},
(69)



14
which yields that
L - Ly
- > — >0 70
Iz -z 1 + max{6,,6,} 70)
that is, z; # z,. This completes the proof. O

Theorem 7. Assume that there exist constants M, N, ¢;, ¢, and
Ty, = t, and functions Q,,Q,, R, and R, € C([t,, +00),R")
satisfying (16)-(18) and

2
Sl
S

o <p(t) <c,

1<oz<c1<czz, 0<

2 —
N<Z2Z9 (1)
G

t>T,. 72)

Then

(a) forany L € ((¢;/¢,)M +¢,N, (6,/¢;)N +¢c,M), there
exist 0 € (0,1) and T > ty + |a| + T + |T,| such that,
for each x, € A(N, M), the Mann iterative sequence
{Xm}men, With mixed errors generated by the scheme

'(1_0‘m_ﬁm)xm(t)+‘xm
L X, (t+7) 1

X - +
pt+1) pt+1) pt+1)
+00 +00 +00 1

.01, ) f()y ()
xh (u, x,,, (hy (1)), ..., X, (i (w))) dudvdw
1

TP+
+00 [+00 (+00 [+00 1
XJHTJW J J () B)y (w)
X[f (5% (f1 ()55 % (fi (9)))
-g9)] dsdudvdw]» + Bo¥m (£) 5
X1 (£) = 4 t>T, meN,,

(1 % _ﬁm)xm (T) + oy,
L X, (T + 1) 1

X - +
p(T+1) p(T+71) p(T+71)
+00 p+00 +00 1

<L L (W) )y W)
xh (u, x,,, (hy (1)), ..., X, (Mg (w))) dudvdw

1 +00 400 [+00 1
_p(T+T)JT+TJw Jv Ju a () f)yw)
X [f (5’ Xm (fl (5)) """ Xm (fk (S)))

-g)] dsdudvdw} + Bym (1),

a<t<T, meN,

(73)

with (23) and (24) converges to a bounded positive
solution x € A(N, M) of (11) and has the error estimate
(22);

(b) equation (11) possesses uncountably many bounded
positive solutions in A(N, M).

Abstract and Applied Analysis

Proof. In the first place, we prove that (a) holds. Let L €
(( /)M +¢, N, (¢,/¢;)N +¢,M). It follows from (18) and (71)
that there exist 0 € (0,1) and T > t, + |a| + T + | T} satistying

A

1+J'+oo on J-+oo Qz—(u)dudvdu}
T w v |0‘ (u)ﬁ(V)Y(w)l

+JT+OO J:)O J':OO J:OO " (u)([gjl(f;?y (w)|dsdudvdw) ,

(74)

JTwo .[:OO Lmo |ox (u)Rﬂz(i/L)l)y ()] dudvdw

+00 [+00 +00 [+00 R1(5)+|!](5)l
+L L J J o (1) B )y (w)] v

<min{czM—L+2N,—ozN+9L—M}.
C

1 G
(75)

Define a mapping S; : A(N, M) — CB([a, +0c0), R) by

L _x(t+r)+ 1
pt+t) plt+7) pt+71)

+00 400 [+00 1
1.1 1 swrove
xh (u,x (hy W)),...,x (h (w))) dudvdw
1

Sx(t)=14  pt+1) (76)

J S L s

A6 (o)
- g(s)] dsdudvdw,

t>T, xe€ A(N,M),

(S,x(T), a<t<T, xeAN,M).

Obviously, S; x is continuous for each x € A(N, M). In view
of (16), (17), (71), (72), and (74)-(76), we conclude that for
x,y € AIN,M)andt >T

|SLx (t) =Sy (t)l

1 1
< —|p(t+1)| lx(t+r)—y(t+r)|+—Ip(t+T)|

8 Jm Lm Lm () B (lv) yW)]

x |h(u,x (hy (W), ..., x (h (w)))
—h(u, y (hy W)),..., y (h ()))| dudvdw

1 +00 [+00 [+00 [+00 1
parahe L L L masere
1 2 O ()

(s y(f15)ssy (fi (9)))] dsdudvdw
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1
< —|x -
=l

+00 +00 +00 Q2 (u)
X(“L L j o) B ) y )] P
+00 +00 +00 +00 Q] (S)
*L L J J |a(u>ﬁ(v)y(w)|d5d”dm>
=0[x-y|.
S x (t)

B L _x(t+r)
Cpt+T) p(t+1)

T (t1+ 7) J:O J:O J:OO m

x h(u,x (hy (W), ...,x (h (w)) dudvdw

pzo) W o

< [f (5x(fi ()5 x (£ (9)))

- g(s)] dsdudvdw

+00 +00 +00 R2 (u)
XL L J o) B )y (w)] 4V

+00 +00 +00 +00 R
+ 1 J J J J A A () + |g (S)| dsdudvdw
(&) w

T v e Jaw) By (w)
L N 1
<2 -+ =
o a o
xmin{czM—L+3N,—ozN+9L—M}
G a
<M,
Spx (t)
L M 1
2 _____
a o o

y J " J © L*‘” lw(y)};((:;)y_(w)'dudvdw

1 JH}O LTOO J:OO J:OO %dsdudvdw

15
L M 1
> _____
a o 9
xmin{czM—L+2N,—c2N+2L—M}
G G
> N,
(77)

which imply that (29) holds. That is, S; is a contraction
mapping in A(N, M) and has a unique fixed point x €
A(N, M), which is a bounded positive solution of (11). By
means of (29), (73), and (76), we obtain that for any m € N,
andt > T

|xm+1 (£) —x (t)|

=|(1_“m_ﬁm)‘xm(t) R

{ L x(t+71) 1
X - +
pit+1) pt+71) pt+71)

8 Im Lm fm o) (lv) y W)

x h(u, x,, (h; W)),...,x,, (h (w))) dudvdw

- p(t1+ 7) J:o ij I:OO Lm m

X Lf (8% (1)) % (fic (5)))

-g(s)] dsdudvdw} + BV ) — x (t)’

< (1= 0, = Bo) [, () = x (1)

+ 0ty S, (£) = Spx (O] + By [V (£) = x (1)]
<(1-a, = B,) %, ) = x ()

+ 0,0 |x,, (£) = x ()] + 2Mp,,
<(1-(1-0)a,) |x, (£) - x (t)| + 2MB,,

<(1-Q1-0)a,)|x, - x| +2MB,,
(78)

which gives (22). Thus Lemma 1, (23), and (24) mean that
lim,, , . x,, = x.

Next we show that (b) holds. Let L,,L, € ((¢;/¢,)M +
N, (6/¢;)N + ;M) with L, # L,. As in the proof of (a), we
conclude that, for each € {1, 2}, there exist Gj € (0,1),T; >
to + lal + 7 + |T,| and SLj : AN,M) — A(N,M)

satisfying (74)-(76), where 6,T,S, are replaced by 6;,T),
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and S L respectively, and the contraction mapping S L has a

unique fixed point z; € A(N, M), which is also a bounded
positive solution of (11). In order to prove (b), we need only to
show that z, # z,. Put T* = max{T}, T,}. Note that for t > T*

and j € {1,2}

Zj (¥)

L; Zj(t+T) 1

T o+ plin  pltro)

N

x h (u, zj(hy W), ....z; (I (u))) dudvdw

(79)
1

pt+1)

8 JOO L . fm Lm o (u) B <1v> y (W)

< [f (525 (1 )02 (fe )
-9 (s)] dsdudvdw,

which together with (16) and (74) implies that for t > T*

|Zl (t) -z, (t)l

_‘Ll—Lz_zl(t+r)—zz(t+1) 1
Clpt+T) pt+1) p(t+1)

* J::O E . L*“ a(u)p (IV) y (W)

x [h(u,z, (b W)),....2; (Il (W)))
—h(u,z, (hy (W),...,2z, (h (w)))] dudvdw

3 1
pt+1)

8 JOO L . Lm Lm o (u) B (1v) )

x[f (52 (fi(8)s 2 (fi (9)))

—f (52, (f, (9)) -2, (f ()] dsdudvdw

Ly - Ly B 21 - 2| B A
S| Q )

+00 +00 +00 Q2 (u)
XJT* L j o) B )y (w)] 44V

vV

|z - 2|
)
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X on on J-+oo J-+oo Ql—(s)dsdudvdw

v bl a@ By W)
L,-L
> |1C—2| - ”Z1 - Zz" max {91) 92} >
1

(80)

which yields that

|Li - Ly|

- > 0; 81
o1 - 22| = ¢ (1+max{6,,6,}) g (81
that is, z; # z,. This completes the proof. O

Theorem 8. Assume that there exist constants M, N, ¢;, ¢, and
Ty, > t, and functions Q,,Q,, R, and R, € C([t,,+00),R")
satisfying (16)-(18) and

Then

0<(q-1)N<(g-1)M;
(82)
—00<— <pt)s—<-1, t=>T,

(a) for any L € ((¢; — 1)N, (¢, — 1)M), there exist 0 €
(0,1) and T > ty + |al + T + |T,| such that, for each
xg € AN, M), the Mann iterative sequence {x,,}uen,
with mixed errors generated by the scheme

r(1_o‘m_:Bm)xm(t)"")‘m
-L _xm(t+-r) 1

X +
pt+1) pt+1) pt+1)
+ 1

Ry e

y (w)
xh (u, x,,, (hy W), ..., X (M (w))) dudvdw

1 +00 (400 [+00 +00 1
ST I P R ey e
RS Bt Pk

-g(9)] dsdudvdw} + BV @),

t>T, meN,,

(1 —Qy _ﬁm)xm (T)+“m

X (£) = 9 L x,(T+7) 1

X +
p(T+7) p(T+1) p(T+1)
+00 1

1L o) B y )
xh (u, x,,, (hy (W)),..., X, (Mg (w))) dudvdw
1

_p(T+T)

o B o
G @ S

-g9)] dsdudvdw} + BV (1),

L a<t<T, meN,

(83)

with (23) and (24) converges to a bounded positive
solution x € A(N, M) of (11) and has the error estimate
(22);

(b) equation (11) possesses uncountably many bounded
positive solutions in A(N, M).
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Proof. First of all, we prove that (a) holds. Let L € ((¢; -
1)N, (¢, — 1)M). It follows from (18) and (82) that there exist
0 €(0,1)and T > t, + |a| + T + |T;| satisfying (74) and

Lmo Lroo J:OO %dudw{w

+00 [+00 [+00 [+00 R1(5)+|g(s)|
+JT L J J o () B () (w)] AV

<mm{@—1ﬂW—L<2—q)N+gL}
a G

(84)
Define a mapping S; : A(N, M) — CB([a,+00),R) by

([ -L _x(t+r) 1

pt+1) pltn)  plt+n)
+00 (400 [+00 1

XJML J x@w) B(V)y W)
xh (u, x (hy (W), ..., x (h (w))) dudvdw
1

pt+1)

S s

X[f(sx(f15))s. s x(fi (5)))
- g(s)] dsdudvdw,
t>T, xe A(N,M),
(S.x(T), a<t<T, xe A(N,M).

Spx(t) = 1

(85)

Obviously S;x is continuous for each x € A(N,M). On
account of (17), (82), (84), and (85), we get that for any x €
AN,M)andt >T

Syx (1)

. -L _x(t+r)+ 1
S pt+T) pt+1) pt+1)

8 JOO Lm Lm oc(u)/s(lwww)

xh(u,x (hy (w)),...,x(h (w)) dudvdw

1
pt+1)

8 Joo L . Lm Lm o (u) B (lv) y (W)

17
X[f(sx(f1(5),. 0, x(fi (5)) — g (s)] dsdudvdw
L M 1
<=+ 24z
Q 6 G
+00 +00 +00 R2 (u)
8 JT L J o) B () (w)] AV
1
+ J—
Q
+00 [+00 (400 +00 Rl (S) + |g (s)l
x JT L J L o) B ) y (w)] v
L M 1
<=+ —+—
Q 6 G
><min<[(c2 - l)M—L,(2 —Q>N+ 2L}
G G
<M,
(86)
Spx (t)
> £ + N — l
a a9
+00 +00 +00 R2 (u)
% JT L J o) B )y ()] 44
1
)
+00 [+00 [+00 [+00 Rl (S) + |g($)|
8 JT L J L o () B () y (w)] AV
SL N 1
a a Q
xmin{(oz— l)M—L,(g —q>N+ 2L]»
G G
>N,
(87)

which imply (29). That is, S; is a contraction mapping in
A(N, M) and has a unique fixed point x € A(N, M), which
is a bounded positive solution of (11). The rest of the proof is
similar to that of Theorem 7 and is omitted. This completes
the proof. O

3. Examples

Now we construct seven examples as applications of the
results presented in Section 2.



18

Example 9. Consider the following fourth order nonlinear
neutral delay differential equation:

<(t2+1)
y 26t + 1
In(t+1)

2 N
X (—t3<x(t) y 2 costo 1/ lcjsfo_tzl/zx(t—r)> ) ) )

S 2 (3, !
+(tsm (tx (t 1))) N

!

cos (t) x° (tz)
t3

(t+3)*(t+1)°

. 2
:sm(2—t)+l s
3t T
(88)

wheret > 0,t, =T, =3,k =1,N =2, M = 20, ¢, = 3/10,
¢, =3/5,a =min{3 - 7,2}, and

4
at)=t+1,  B)= %

3t cost —1/2

_ 3 _
yO=-t pO= " g
sin(2-£7) +1
g(t)=T, hy()=t-1,
3
A= ftu= %f(t) (89)
tsin? (tu3 ) 3IM?
M ey YT
6t M?> M
Q1) = m) Ry (t) = R
R, () d (t,u) € [tg, +00) X R.

T t+3 1)

It is easy to verify that (16)-(20) are satisfied. It follows from
Theorem 2 that (11) possesses uncountably many bounded
positive solutions in A(N, M). On the other hand, for any
L € (N +¢M,(1 - c)M), there exist 8 € (0,1) and T >
ty + lal + T + |Ty| such that the Mann iterative sequence
{X,n}men, With mixed errors generated by (21) converges to
a bounded positive solution x € A(N, M) of (11) and has the
error estimate (22), where {y,,},,.n, is an arbitrary sequence
in A(N, M), and {e,,,},nery, and {B,,},nen, are any sequences
in [0, 1] satisfying (23) and (24).
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Example 10. Consider the following fourth order nonlinear
neutral delay differential equation:

1+t

3 Y\
X<t4<_\/m(x(t)+ 3t3t+z’“(t_7)) ) ) >

<x2(t—2)+x2(\/t 1)—x(\/t+l)>,
n

!

1+18

2x2(t—1)+x2(t—\/?) 1-t

t > 10,
214 + 1

t4 + cos?t’

(90)

wheret > 0,t) =T, =10,k =2, N =5 M =21,¢ = 1/3,
¢, = 1/4,a = min{10 - 7, V/11}, and

t5 ln(l + t2)

4
t)= —————, t)=1t,
o (1) T+7 B ()
t3
t) = -Vt +1, t)= ————,
y (£) + p () P2
1-t
t)= ——m——, h,(t) =t-2,
9 t4 + cos’t 1 ()
() =Vt+1,  fi(t)=t-1,
2+ (91)
t) =t - Vi, tu,v) = >
f® MO G 264+ 1
2 2
u +v--v
ht) > = = >
(tu,) 1+t
6M 4M +1
t) = , )= —f,
Q=57 QO=T5
3M?
R (t) = ——,
1) 2t4 + 1
2
Ry(t)= 2 M ) € [t +00) x R2,

1+1¢3

It is easy to verify that (16)-(18) and (35) are satisfied. It
follows from Theorem 3 that (11) possesses uncountably
many bounded positive solutions in A(N, M). On the other
hand, for any L € (N + ¢ M, M + ¢,N), there exist 0 ¢
(0,1) and T > t; + lal + 7 + |T,| such that the Mann
iterative sequence {x,,},,c, with mixed errors generated by
(21) converges to a bounded positive solution x € A(N, M)
of (11) and has the error estimate (22), where {ym}meNO
is an arbitrary sequence in A(N,M), and {a,,},q\, and
{ﬁm}mGNO are any sequences in [0,1] satisfying (23) and
(24).
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Example 11. Consider the following fourth order nonlinear
neutral delay differential equation:

<—t5((3t2+2)
@t +1)° 1-t '\
X (—t <x(t)+3+5tx(t—‘r)>)>>

!

!

tx* (2t - 3) x* (')
(92)

! ((1 +12) (2 + sin (x (2t — 3) x (£2)))

2

+ - t7x2 ((t+ 1)2)

+ Msinz (tx (3t+1) X (2t))
e +1

1+¢t?
= , =2,
t+1
where 1 > 0,t, =T, =2,k =3, N =100, M =500, ¢; = 4/5,
¢, =1/13,a = min{2 - 7,1}, and

a(t)=-t5,  B@t)=3t"+2,
(2t +1)° 1-t
t = > t = N
e t P 3+ 5t
VitE
t) = , hy (t) =2t -3,
9O =" 10!
ht)=t, ht)=¢,
L@ =0+17°  fO=3t+1 f(t)=2t,
' AIn(t+1) 5
f(t,u,v,w):1+t7+ oo sin (tvw’),
tutw? 93)
h(t,u,V,lU) = - s
(1 +¢2) (2 + sin (uv))
aMt* 4MP/In(t + 1
Ql (t) = 1 7 * t ( )’
+1t eh+1
t(2M° + 12M°)
= —m———————=,
Q. (1 —
*M>  AIn(t+1)
Rl (f) = Z 7 s
1+t e +1
tM*
R, (t) = 1+ (t, u, v, w) € [t,,+00) x R’

It is easy to verify that (17), (18), and (39) are satisfied. It
follows from Theorem 4 that (11) possesses uncountably many
bounded positive solutions in A(N, M). On the other hand,
forany L € ((1 — )N, (1 — ¢;)M), there exist 0 € (0, 1) and
T >ty + |a| + 7 + |T,| such that the Mann iterative sequence
{%Xm}men, With mixed errors generated by (21) converges to a
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bounded positive solution x € A(N, M) of (11) and has the
error estimate (22), where {y,,},,.n, is an arbitrary sequence
in A(N, M), and {e,,,},.eny, and {B,,,},nen, are any sequences in
[0, 1] satisfying (23) and (24).

Example 12. Consider the following fourth order nonlinear
neutral delay differential equation:

4 AW
(12:t((t2 w1) (@ +x-1)')) )

t3+1 2 '
+ (—tmln(t+2)x (t-2)x(t- 1))

.\ X2 (t-3)
(1+£3)(1+x2(t—4))
\/1+t2—sin(2t2+1)
= 5 . t23,

wheret > 0,t, =T, =3,k =2, N =10, M = 20,a =
min{3 - 7,-1}, and

(94)

4

at) = IZL” B =t +1,

y® =~  p®)=1,

V1 + 12 - sin (21.‘2 + 1)
t8
hy(t)=t-1,

fity=t-3,  f,({t)=t-4

g(t) = , hy(t) =t -2,

2
u

e = ey

(t3 + 1) uy
t191n (t +2)°

2M + 4M°

Bt v) = _ eMeAMT
(t10.7) (1+£3)(1+N2)

Ql (f) =

3M? (1 + t3)

L= ooy

M2
RO=0rmas ey
M3(1+t3)

=—— 2 (t,u,v) € [ty +00) X R%,
s O®Y [t0: +00)

R, (t)
(95)

It is easy to verify that (16)-(18) and (42) are satisfied. It
follows from Theorem 5 that (11) possesses uncountably many
bounded positive solutions in A(N, M). On the other hand,
for any L € (N, M), there exist 0 € (0,1) and T > ¢, +
lal + 7 + |T,| such that the Mann iterative sequence {x,,},en,
with mixed errors generated by (43) converges to a bounded
positive solution x € A(N,M) of (11) and has the error
estimate (22), where {y,,},,en, is an arbitrary sequence in
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A(N, M), and {e,,},pen, and {B,},en, are any sequences in
[0, 1] satisfying (23) and (24).

Example 13. Consider the following fourth order nonlinear
neutral delay differential equation:

!

(4te-a-se-o)

N
1+1¢°

X <x2(t—3)x2(t—1)—

2x% (t+1) ))
1+ V1+x2 (t—3) (96)

+ (x3 (t —4) (1 + sinx (2t — 3))

3t4 + 2t

+x(2t —3)cos® (t—1)
1+x2(3t-2)

_In(1+1)

_W’ t >4,

where 7 > 0,t, = T, = 4,k = 3, N = 100, M = 200,
a = min{4 — 7,0}, and

a(f) = -, Bt) =1, y()=1-t, (97)

~ In(1+1)
pM=-1  g®)=— 5"
h()=t+1, h(t)=t-3  h@t)=t-1,
L) =t-4,  f,()=2t-3
;) =3t-2,
2
— 3 . veos” (t —1)
f(t,u,v,w)—3t4+2t<u (1+s1nv)+—1+w2 )
1 2 2 2’ )
ht,uvw)= — [ vw - —— |,
( : 1+t6( 1+V1+42
1+3M>
)= —— [ M*(6+ M)+ ———cos*(t-1) |,
Q () 3t4+2t< (6 + )+(1+N2)2COS( ))
1
Q2(t)_1+t6
o 6M* (1+ V1 +M?)
x| 4 +
(1+x/W)2
. 2M*
1+ VI+ N2 ) Vie e )

1 3
R, (¢ :—<2M +—),
1 (0 3t4 + 2t 1+ N?

Abstract and Applied Analysis

1 s 2M?
R()=—— M+ ———— ),
2 (1) 1+t6( 1+\/1+N2)

(t, 1, v, w) € [ty, +00) X R’
(98)

It is easy to verify that (16), (17), (55), and (56) are satisfied.
It follows from Theorem 6 that (11) possesses uncountably
many bounded positive solutions in A(N, M). On the other
hand, for any L € (N, M), there exist 0 € (0,1) and T >

ty + lal + T + |T,| such that the Mann iterative sequence
{%m}men, with mixed errors generated by (57) converges to
a bounded positive solution x € A(N, M) of (11) and has the
error estimate (22), where {y,,},,.cn, is an arbitrary sequence
in A(N, M), and {a, },,en, and {B,,}en, are any sequences in
[0, 1] satisfying (23) and (24).

Example 14. Consider the following fourth order nonlinear
neutral delay differential equation:

3 +sint
t2
X <t1n3t

5 NAW !
(gl i3men)) ) )
<(1—t2)x3(3t—1)x(t—5)>'

+

Q+8)°+t|x(t—-2)

£x (t —sint) - £°x° (t —cost) ¢
I+t +x2(t-22)

(99)

where v > 0,t, = T, = 20,k =3, N =3, M = 20,¢, =3,
¢ =2,a = min{20 — 7,-2}, and

3 +sint 3 £
t) = , t) = tin’t, t) = ,
o (t) o B(t) =tln y(t) = v
(t)_4+5t (t)_i
PO=300 g =T
h () =3t-1, h()=t-5  h(t)=t-2,

fit)y=t—sint,  f,(t) =t - cost,
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P13 _ 1542
t)y=t-22, Lu,Vv,w) = ——,
£ £ )= T AT
(l—tz)u3v
h(t,u,v,w) = —_—
(1+1) +t|w|
Q (¥

3(£+t") M +5M* +2 (£ +') M + 47 M
(T4 + NZ)2

>

4(1+ tz) (1 +0°M° +5¢(1+ tz)M4

Qz(t)z 5 2 >
[(1+t) +tN]
M+ 2 M?
Ri(t) = ——
1+t + N
= LM i)t o) x B
R,(t) = ——F—, t,u,v,w) € |t,,+00) X R".
2 (1+1)° +tN 0

(100)

It is easy to verify that (16)-(18), (71), and (72) are satisfied. It
follows from Theorem 7 that (11) possesses uncountably many
bounded positive solutions in A(N, M). On the other hand,
forany L € ((¢;/6,)M + ¢ N, (,/¢c;) N + ¢, M), there exist
0 € (0,1) and T > t, + lal + 7 + |T,| such that the Mann
iterative sequence {x,,},,cn, with mixed errors generated by
(73) converges to a bounded positive solution x € A(N, M)
of (11) and has the error estimate (22), where {ym}meNO is an
arbitrary sequence in A(N, M), and {&,,,},en, @and {B,.} e,
are any sequences in [0, 1] satisfying (23) and (24).

Example 15. Consider the following fourth order nonlinear
neutral delay differential equation:

Int t? tIn? (1 + )
t 2+ cost 1 + sin’t

X (x (£)+(=3 — sint) x (t —T))’) ) )

+<(1—\/f)x2(t—5)x2(\/——7)>’

1+t + sin? (tx (t — 3))

!

2-x" (V) =7 (t-1)x° (¢ - 10)
1+t +In (12 +3)

+

3+ cos (t2 + 1)
=—— "> t2>209,
>+ 283
(101)
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where v > 0,t, =T, = 9,k =3, N =10, M = 50, ¢, =4,
¢ =2,a =min{9 — 7,-4}, and

Int 2

at)=—  pWO)=

2+ cost’

tfIn? (1 + )
H=—"""
r(® 1 + sin’t

, p(t) = -3 —sint,
3+cos(t2+1)
£+ 263

hy (t) = Vt-7,
L=Vt ) =t-1,  fi(t)=t-10,
(1—\/f)u2v2

1+ 3 + sin® (tw)’

gt = , h,(t)=t-5,

hy(t)=t-3,

h(t,u,v,w) =

2 23
2-u" —vw

1+t +In(t2 +3)

ftuv,w)=

2M +5M*
1+t +In (2 +3)

Ql (t) =

2M? (1+VE) (26 +4+tM)
(1+6)

Q,(t) =

2+ M*+ M
1+t° +1In(t? +3)°

(1+ \/E)M4
1+18

Ry (t) =

R, (¥) = (b u,v,w) € [ty, +00) x R,

(102)

It is easy to verify that (16)-(18) and (82) are satisfied. It
follows from Theorem 8 that (11) possesses uncountably many
bounded positive solutions in A(N, M). On the other hand,
forany L € ((¢; — 1)N, (¢, — 1)M), there exist 0 € (0,1) and
T >ty + |lal + T + |T,| such that the Mann iterative sequence
{%n}men, With mixed errors generated by (83) converges to a
bounded positive solution x € A(N, M) of (11) and has the
error estimate (22), where {y,,},,,cn, is an arbitrary sequence
in A(N, M), and {a, },,en, and {B,,},en, are any sequences in
[0, 1] satistying (23) and (24).
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