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The experimental data transmission is an important part of high energy physics experiment. In this paper, we connect fusion frames
with the experimental data transmission implement of high energy physics. And we research the utilization of fusion frames for
data transmission coding which can enhance the transmission efficiency, robust against erasures, and so forth. For this application,
we first characterize a class of alternate fusion frames which are duals of a given fusion frame in a Hilbert space.Then, we obtain the
matrix representation of the fusion frame operator of a given fusion frame system in a finite-dimensional Hilbert space. By using
the matrix representation, we provide an algorithm for constructing the dual fusion frame system with its local dual frames which
can be used as data transmission coder in the high energy physics experiments. Finally, we present a simulation example of data
coding to show the practicability and validity of our results.

1. Introduction

Because of the cross-regional feature of high energy physics
experiment, there exists a huge amount of data produced
in the experiment procedure which needs to be transmitted
from each experimental field to the remote center for process-
ing synthetically every day.The relevant technologies inmany
current data transmission systems are the data transmission
protocol GridFTP, the object-related database management
system PostgreSQL, the application sever JBoss, and so forth
in order to ensure the real-time, reliable, and efficient data
transmission [1]. But in many transmission systems, all the
signals have to be retransmitted when one or more vectors
of data are lost in the transmission process, which leads to
wasting a lot of time and resources. Why not use fusion
frames? We find that they are natural suitable tools for
the experimental data transmission coding of high energy
physics. In fact, this application of fusion frames can save
more time and resources caused by the retransmission.

Redundancy is an interesting and attractive feature of
frames, because it has at least two advantages. First, it
makes the construction of various classes of frames flexible;
secondly, it can enhance the robustness of encoding data

when erasures occur in signal transmissions. So, the theory
of frames has been developed rapidly in mathematics and
achieved successful applications in various areas of pure and
applied sciences and engineering in the past twenty years.
We only mention some applications of frames here such as
signal and image processing [2], quantization [3], capacity of
transmission channel [4–6], coding theory [7–12], and data
transmission technology [13].

With the development of signal processing systems,
frames are restricted and fusion frames appear. The utility
of fusion frames in handling missing data packet erasures
problem is shown in [14]. The theory of fusion frames
was systematically introduced in [15, 16]. Since then, many
excellent results about the theory and application of fusion
frames have been obtained in an amazing speed [15–22]. In
fact, fusion frames are generalization of conventional frames
and go beyond them, and they have been found to be good
tools in large signal processing systems in which distributed
or parallel processing is required. For instance, in a coding
transmission process, the encoded and quantized data must
be put in numbers of packets. When one or more packets
are scrumped, lost, or delayed, fusion frames can enhance
the robustness to the packet erasures. Furthermore, we can
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see the successful applications of fusion frames in sensors
network [23], filter bank [24], transmission coding [14, 25,
26], and so forth. We refer to [27] and the reference therein
for more details about the applications of fusion frames.

We first describe how to use fusion frames for transmis-
sion coding in experiment of high energy physics to enhance
the transmission efficiency and robust against erasures.
According to the characteristics of the experimental data
transmission system of high energy physics, the distributed,
parallel, and fused processing are required in the transmis-
sion process. Hence, fusion frames can be applied to coding
in the transmission scheme to improve the transmission
efficiency, stability, and robust of the whole system.

On the other hand, however, some related problems
about fusion frames, especially in applications, are still open.
Many excellent results about conventional frames have been
achieved and applied successfully, but how to generalize them
to fusion frames? It is a tempting subject because of the
complexity of the structure of fusion frames compared with
conventional frames. For the application of data transmis-
sion, we studymainly the dual fusion frames of a given fusion
frame and thematrix representations of fusion frame systems
in finite-dimensional Hilbert spaces for constructing dual
fusion frame systems in this paper.

Weoutline this paper as follows. In Section 2,we recall the
experimental data transmission course of high energy physics
and propose a new transmissionmodel inwhich fusion frame
and its dual are used for data coding.Then, we introduce and
recall some notations, conceptions, and some basic theory
about frames and fusion frame systems. In Section 3, we
first introduce a kind of alternate fusion duals based on
the definition given in [20]. We investigate and characterize
these alternate fusion duals. Then, we consider how to get
the matrix representation of the fusion frame operator of a
given fusion frame system in a finite-dimensional Hilbert
space. So that, based on this matrix representation, a method
for construction of the dual fusion frame system with its
local dual frames is prescribed. A simulation example is
given to show the practicality and validity of these results in
experimental data transmission.

2. Fusion Frames for Experimental Data
Transmission Coding of High Energy
Physics and Preliminaries

The main function of fusion frame in data transmission
procedure is data coding to implement distributed, parallel,
and fused processing of the whole transmission system.
A large amount of data produced by experiment sites of
high energy physics is encoded by local frames and stored
in some packets in the sender sides; the packets from all
experiment sites are decoded/processed by dual fusion frame
in the center. Based on the conventional transmission system,
we establish the structure scheme of the data transmission
system by using fusion frames (see Figure 1) and precise
the transmission procedure briefly as follows. The original
data from the Data Acquisition System is transmitted to the
Dropbox for TemporaryDirectories by theData Buffer.When

the Fetcher finds that there are new data directories in the
Dropbox, the original data will be encoded by using a local
frame, quantized, and stored into some packets in it. Once
the SendingDirectories receives these encoded andquantized
packets which consist of some vectors from the Dropbox,
it will send all these vectors to the processing center and
wait the feedback from the receiver. The feedback is sent by
the Data Checking Module of the processing center when
it confirms that all data from the sender are received. Then
it submits all these vectors to the Receiving Directories in
which these vectors will be decoded and fusing processed by a
fusion frame system and its dual. Finally, all decoded signals
are submitted to the Warehouse, and the procedure is over.
In the old transmission model, the Data Checking Module of
the receiver will check the integrity of these received packets.
When it finds that some vectors or coefficients are lost in
the transmission process, it will ask the sender retransmit
all signals. The re-transmission procedure is unnecessary
if a fusion frame and its dual are used for data coding,
and a lot of time and resources are saved. Thus, applying
fusion frames for data coding in the transmission process can
enhance the reliability, efficiency, and robust for erasures. of
the transmission system.

Then, let us recall and introduce some basic notations,
concepts, and results about frames and fusion frames that are
needed for this paper. Let us beginwith the concept of frames.

Let H be a separable (real or complex) Hilbert space. A
collection of vectors 𝐹 = {𝑓

𝑖
}
𝑖∈𝐼

⊂ H is called a frame forH
if there exist constants 0 < 𝐴 ≤ 𝐵 < ∞ such that

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
≤ ∑

𝑖∈𝐼

󵄨󵄨󵄨󵄨⟨𝑓, 𝑓𝑖⟩
󵄨󵄨󵄨󵄨

2
≤ 𝐵

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
∀𝑓 ∈H (1)

holds for every 𝑓 ∈ H, where 𝐼 denote an index set. The
optimal constants (maximal for 𝐴 and minimal for 𝐵) are
called lower and upper frame bounds. If𝐴 = 𝐵, then𝐹 is called
a tight frame, and it is called a Parseval frame (Sometimes, a
Parseval frame is also called a normalized tight frame) when
𝐴 = 𝐵 = 1. A uniform frame is a frame when all the elements
in the frame sequence have the same norm.

Given a frame 𝐹 = {𝑓
𝑖
}
𝑖∈𝐼
, the operator Θ

𝐹
: H → ℓ

2
(𝐼)

defined by

Θ
𝐹
(𝑓) = ∑

𝑖∈𝐼

⟨𝑓, 𝑓
𝑖
⟩ 𝑒
𝑖 (2)

is called the analysis operator of𝐹, where {𝑒
𝑖
}
𝑖∈𝐼

is the standard
orthonormal basis for ℓ2(𝐼). The adjoint operator Θ∗

𝐹
of Θ
𝐹

given by

Θ
∗

𝐹
(∑

𝑖∈𝐼

𝑐
𝑖
𝑒
𝑖
) = ∑

𝑖∈𝐼

𝑐
𝑖
𝑓
𝑖 (3)

is called the synthesis operator of 𝐹. If we let 𝑆
𝐹
= Θ
∗

𝐹
Θ
𝐹
, then

we have

𝑆
𝐹
(𝑓) = ∑

𝑖∈𝐼

⟨𝑓, 𝑓
𝑖
⟩ 𝑓
𝑖
, 𝑓 ∈ 𝐻. (4)

Thus, 𝑆
𝐹
is a positive invertible bounded linear operator on

H, which is called the frame operator of 𝐹.
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Figure 1: The experimental data transmission course of high energy physics.

A collection of vectors 𝐹 = {𝑓
𝑖
}
𝑖∈𝐼

in H is called a dual
frame for 𝐹 = {𝑓

𝑖
}
𝑖∈𝐼

if 𝐹 = {𝑓
𝑖
}
𝑖∈𝐼

satisfies the reconstruction
formula

𝑓 = ∑

𝑖∈𝐼

⟨𝑓, 𝑓
𝑖
⟩ 𝑓
𝑖
= ∑

𝑖∈𝐼

⟨𝑓, 𝑓
𝑖
⟩𝑓
𝑖

∀𝑓 ∈H. (5)

A direct calculation yields

𝑓 = ∑

𝑖∈𝐼

⟨𝑓, 𝑓
𝑖
⟩ 𝑆
−1

𝐹
(𝑓
𝑖
) = ∑

𝑖∈𝐼

⟨𝑓, 𝑆
−1

𝐹
(𝑓
𝑖
)⟩ 𝑓
𝑖

∀𝑓 ∈H. (6)

This implies that {𝑆−1
𝐹
(𝑓
𝑖
)}
𝑖∈𝐼

is a dual frame of {𝑓
𝑖
}
𝑖∈𝐼
. The

frame {𝑆−1
𝐹
(𝑓
𝑖
)}
𝑖∈𝐼

is called the canonical dual frame of {𝑓
𝑖
}
𝑖∈𝐼
.

If a dual frame {𝑓
𝑖
}
𝑖∈𝐼

is not the canonical dual frame, it is also
called an alternate dual frame.

A frame 𝐹 is a tight frame if and only if 𝑆
𝐹
= Θ
∗

𝐹
⋅ Θ
𝐹
=

𝐴𝐼H for some positive constant 𝐴, where 𝐼H is the identity
operator. A frame 𝐹 is a Parseval frame if and only if 𝑆

𝐹
=

Θ
∗

𝐹
⋅ Θ
𝐹
= 𝐼H; that is, the canonical dual of 𝐹 is itself. So,

the analysis operator Θ
𝐹
of a Parseval frame is an isometry

operator. A linear operator 𝑃 from a Hilbert spaceH toH is
called an orthogonal projection if 𝑃 is self-adjoint and 𝑃2 = 𝑃.

Given a finite frame 𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
in an 𝑛-dimensional

Hilbert spaceH, thenwe necessarily have 𝑘 ≥ 𝑛.When 𝑘 = 𝑛,
𝐹 is automatically a basis ofH.

We will use the notation F when the result being stated
holds for both the real number field R and the complex
number field C. When H = F𝑛, then 𝑓

𝑖
(𝑖 = 1, 2, . . . , 𝑘) are

column vectors, and the analysis operator Θ
𝐹
for the frame

𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
is a matrix with the row vector 𝑓∗

𝑖
as the 𝑖th

row of the matrix for 𝑖 = 1, 2, . . . , 𝑘, where the superscript
“∗” denotes the conjugate-transpose of a vector or a matrix.
Relatively, the synthesis operator Θ∗

𝐹
for the frame 𝐹 is the

conjugate-transpose matrix of Θ
𝐹
, and the frame operator

𝑆
𝐹
= Θ
∗

𝐹
⋅Θ
𝐹
is an 𝑛×𝑛 positive invertiblematrix.With respect

to a fixed orthonormal basis ofH, any element ofH and any
linear operator can be expressed by the coordinate vector and
thematrix representation. So inmost cases wewill identify an
𝑛-dimensional Hilbert space with F𝑛.

Let us now recall the definitions and basic results about
fusion frames which are mostly adopted from [15, 16].

Definition 1. Let 𝐼 denote an index set, and let {𝑊
𝑖
}
𝑖∈𝐼

be a
family of closed subspaces of a Hilbert spaceH with a family

of weights {𝑤
𝑖
}
𝑖∈𝐼

where𝑤
𝑖
> 0 for all 𝑖 ∈ 𝐼.Then, {(𝑊

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

is called a fusion frame forH if there exist constants 0 < 𝐶 ≤

𝐷 < ∞ such that

𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
≤ ∑

𝑖∈𝐼

𝑤
2

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑊𝑖
(𝑓)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐷
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
∀𝑓 ∈H, (7)

where𝑃
𝑊𝑖

denotes the orthogonal projection onto the𝑊
𝑖
.The

constants𝐶 and𝐷 are called the lower and upper fusion frame
bounds.The family {(𝑊

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

is called aC-tight fusion frame
if 𝐶 = 𝐷, and it is called a Parseval fusion frame if 𝐶 = 𝐷 = 1.
The family {(𝑊

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

is called an orthonormal fusion basis
if H = ⊕

𝑖∈𝐼
𝑊
𝑖
. A Bessel fusion sequence refers to the case

when {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

has an upper fusion frame bound, but not
necessarily a lower bound.

Definition 2. Let {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame for H, and
{𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖

be a frame of𝑊
𝑖
where 𝐽

𝑖
are index sets for 𝑖 ∈ 𝐼.Then,

{𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖

, 𝑖 ∈ 𝐼 are called local frames, and {(𝑊
𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖
)}
𝑖∈𝐼

is called a fusion frame system forH. The constants 𝐶 and 𝐷
are the associated lower and upper fusion frame bounds if they
are the fusion frame bounds for {(𝑊

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼
, and𝐴 and 𝐵 are

the local frame bounds if there are the common frame bounds
for the local frames {𝑓

𝑖𝑗
}
𝑗∈𝐽𝑖

for each 𝑖 ∈ 𝐼. The dual frames
{𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖

, 𝑖 ∈ 𝐼 of the local frames in 𝑊
𝑖
are called local dual

frames.

The following result shows the relationship between a
fusion frame system and its local frames, as well as their frame
bounds.

Theorem 3 (c.f. [16], Theorem 2.3). For each 𝑖 ∈ 𝐼, let 𝑊
𝑖

be a closed subspace for H, and let {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖

be a frame for
𝑊
𝑖
with frame bounds 𝐴

𝑖
and 𝐵

𝑖
. Suppose that 0 < 𝐴 =

inf
𝑖∈𝐼
𝐴
𝑖
≤ sup

𝑖∈𝐼
𝐵
𝑖
= 𝐵 < ∞. Then, the following conditions

are equivalent.

(i) {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

is a fusion frame forH.
(ii) {𝑤

𝑖
𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖 ,𝑖∈𝐼

is a frame forH.

In particular, if {(𝑊
𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖
)}
𝑖∈𝐼

is a fusion frame
system for H with fusion frame bounds 𝐶 and 𝐷, then
{𝑤
𝑖
𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖,𝑖∈𝐼

is a frame forH with frame bounds 𝐴𝐶 and 𝐵𝐷.
If {𝑤
𝑖
𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖 ,𝑖∈𝐼

is a frame for H with frame bounds 𝐶 and 𝐷,
then {(𝑊

𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖
)}
𝑖∈𝐼

is a fusion frame system forH with
fusion frame bounds 𝐶/𝐵 and 𝐷/𝐴.
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Let W = {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame for H. The
analysis operator ΘW is defined by

ΘW :H 󳨀→ (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

with ΘW (𝑓) = {𝑤
𝑖
𝑃
𝑊𝑖
(𝑓)}
𝑖∈𝐼
,

(8)

where

(∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

= {{𝑓
𝑖
}
𝑖∈𝐼

| 𝑓
𝑖
∈ 𝑊
𝑖
, {
󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩}𝑖∈𝐼

∈ ℓ
2
(𝐼)} (9)

is called the representation space. The synthesis operator Θ∗W
(the adjoint operator of ΘW) can be defined by

Θ
∗

W : (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

󳨀→H with Θ
∗

W (𝑓) = ∑

𝑖∈𝐼

𝑤
𝑖
𝑓
𝑖
,

𝑓 = {𝑓
𝑖
}
𝑖∈𝐼
∈ (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ2

.

(10)

The fusion frame operator 𝑆W forW is defined by

𝑆W (𝑓) = Θ
∗

WΘW (𝑓) = ∑

𝑖∈𝐼

𝑤
2

𝑖
𝑃
𝑊𝑖
(𝑓) . (11)

About dual fusion frames, the following definition was
given in [15].

Definition 4. Let {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame for space H
with fusion frame operator 𝑆W.Then, {(𝑆−1W𝑊𝑖, 𝑤𝑖)}𝑖∈𝐼 is called
the dual fusion frame of {(𝑊

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼
.

The dual fusion frame defined previously satisfies the
following reconstruction formula

𝑓 = ∑

𝑖∈𝐼

𝑤
2

𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓)

= ∑

𝑖∈𝐼

𝑤
2

𝑖
𝑃
𝑆
−1

W
𝑊𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) , 𝑓 ∈H.

(12)

Based on (12), the following definition about alternate duals
was introduced in [20].

Definition 5. Let W = {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame for
spaceHwith fusion frame operator 𝑆W, and,V = {(𝑉

𝑖
, V
𝑖
)}
𝑖∈𝐼

be a Bessel fusion sequence. Then, V is called an alternate
dual ofW if

𝑓 = ∑

𝑖∈𝐼

𝑤
𝑖
V
𝑖
𝑃
𝑉𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) , (13)

holds for all 𝑓 ∈H.

Then, it was proved thatV is also a fusion frame [20]. We
will call it an alternate fusion dual ofW in this paper.

3. A Class of Alternate Fusion Duals and
Construction of Dual Fusion Frame Systems

We first introduce a class of alternate fusion duals V =

{(𝑉
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

of a given fusion frame W = {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

which
satisfy

𝑃
𝑉𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) = 𝑃

𝑆
−1

W
𝑊𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) , ∀𝑓 ∈H, 𝑖 ∈ 𝐼. (14)

A Bessel fusion sequence which satisfies (14) naturally satis-
fies (13). So, we can obtain the following obvious result.

Proposition 6. Let W = {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame for
space H with fusion frame operator 𝑆W. If a Bessel fusion
sequenceV = {(𝑉

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

satisfies (14), then it is an alternate
fusion dual ofW.

All Bessel fusion sequences satisfying (14) form a special
kind of alternate fusion duals ofW.The following proposition
will characterize these duals.

Proposition 7. Let W = {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame
for space H with fusion frame operator 𝑆W. A Bessel fusion
sequenceV = {(𝑉

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

satisfies (14) if and only if it has the
form

𝑉
𝑖
= 𝑆
−1

W𝑊𝑖 ⊕ 𝑈𝑖, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑈
𝑖
𝑜𝑓H

𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑖 ∈ 𝐼.

(15)

Proof. If (14) holds for any 𝑖 ∈ 𝐼, then we have

𝑃
𝑉𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) = 𝑃

𝑆
−1

W
𝑊𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) = 𝑆

−1

W𝑃𝑊𝑖
(𝑓) , ∀𝑓 ∈H,

(16)

which follows

(𝐼H − 𝑃
𝑉𝑖
) 𝑆
−1

W𝑃𝑊𝑖
(𝑓) = 𝑃

𝑉
⊥

𝑖

𝑆
−1

W𝑃𝑊𝑖
(𝑓) = 0, ∀𝑓 ∈H.

(17)

For any 𝑓 ∈ 𝑆
−1

W𝑊𝑖, there exists 𝑔 ∈ 𝑊
𝑖
such that 𝑓 = 𝑆

−1

W𝑔.
Hence,

𝑃
𝑉
⊥

𝑖

𝑓 = 𝑃
𝑉
⊥

𝑖

𝑆
−1

W𝑔 = 𝑃𝑉⊥
𝑖

𝑆
−1

W𝑃𝑊𝑖
𝑔 = 0, (18)

which implies that 𝑓 ⊥ 𝑉
⊥

𝑖
. Hence, 𝑆−1W𝑊𝑖 ⊥ 𝑉

⊥

𝑖
, which

follows 𝑆−1W𝑊𝑖 ⊂ 𝑉
𝑖
. Let 𝑈

𝑖
= 𝑉
𝑖
− 𝑆
−1

W𝑊𝑖; then for any
𝑓 = 𝑆

−1

W𝑔 ∈ 𝑆
−1

W𝑊𝑖, we have

𝑃
𝑈𝑖
𝑓 = (𝑃

𝑉𝑖
− 𝑃
𝑆
−1

W
𝑊𝑖
) 𝑆
−1

W𝑃𝑊𝑖
(𝑔) = 0, (19)

which implies

𝑆
−1

W𝑊𝑖 ⊥ 𝑈
𝑖
. (20)

Hence, 𝑉
𝑖
= 𝑆
−1

W𝑊𝑖 ⊕ 𝑈𝑖.
Conversely, assume thatV satisfies (15).Then for any𝑓 ∈

H and 𝑖 ∈ 𝐼, since 𝑆−1W𝑃𝑊𝑖(𝑓) ∈ 𝑆
−1

W𝑊𝑖, we have

𝑃
𝑉𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) = 𝑃

𝑆
−1

W
𝑊𝑖
𝑆
−1

W𝑃𝑊𝑖
(𝑓) , (21)

which implies that (14) holds.
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The following proposition shows that the dual fusion
frame {(𝑆−1W𝑊𝑖, 𝑤𝑖)}𝑖∈𝐼 can minimize the projection norm of
any 𝑓 ∈ H in the class of alternate fusion duals introduced
previously. The property is analogous to Theorem 6.8 of [28]
in the case of traditional frames, and its proof is trivial.

Proposition 8. Let W = {(𝑊
𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

be a fusion frame for
spaceHwith fusion frame operator 𝑆W.Then for any alternate
fusion dual V = {(𝑉

𝑖
, 𝑤
𝑖
)}
𝑖∈𝐼

of W which satisfies (14), one
have

∑

𝑖∈𝐼

𝑤
2

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑆
−1

W
𝑊𝑖
(𝑓)

󵄩󵄩󵄩󵄩󵄩

2

≤ ∑

𝑖∈𝐼

𝑤
2

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑉𝑖
(𝑓)

󵄩󵄩󵄩󵄩󵄩

2

, ∀𝑓 ∈H. (22)

Then, we consider the construction of the dual fusion
frame in a finite-dimensional Hilbert space H. In Section 2,
we will see that any 𝑛-dimensional Hilbert space can be
identified with F𝑛, and the analysis, synthesis, and frame
operator of any conventional frame can be expressed by
their matrix representations, respectively. It is essential for
this construction to obtain the matrix representation of
the fusion frame operator 𝑆W and its inverse which need
the local frames. Hence, we will study the construction
of the dual fusion frame system {(𝑆

−1

W𝑊𝑖, 𝑤𝑖, {𝑆
−1

W𝑓𝑖𝑗}𝑗∈𝐽𝑖
)}
𝑖∈𝐼

with its local dual frames of a given fusion frame system
{(𝑊
𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖
)}
𝑖∈𝐼
.

Let {(𝑊
𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
𝑛𝑖

𝑗=1
)}
𝑚

𝑖=1
be a fusion frame system for

space F𝑛.Then the analysis operator of the local frame of𝑊
𝑖
is

a 𝑛
𝑖
×𝑛matrixΘ

𝐹𝑖
with𝑓∗

𝑖𝑗
as its 𝑗th row, and the 𝑛×𝑛

𝑖
matrix

Θ
∗

𝐹𝑖
is its synthesis operator. Furthermore, the 𝑖th local frame

operator is an 𝑛 × 𝑛matrix 𝑆
𝐹𝑖
= Θ
∗

𝐹𝑖
Θ
𝐹𝑖
.

Remark 9. For the purpose of coding of any 𝑓 ∈ F𝑛, any
vector of the subspaces of F𝑛 we consider has 𝑛 elements, and
Θ
𝐹𝑖
always denotes the analysis operator of the system {𝑓

𝑖𝑗
}
𝑘𝑖

𝑗=1

in F𝑛 throughout this paper. Hence, it is a 𝑘
𝑖
× 𝑛matrix, not a

𝑘
𝑖
× (dim𝑊

𝑖
)matrix.

Definition 10. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with
a local frame 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
. 𝑆
𝐹
is the local frame operator of 𝐹.

If there exists an operator 𝐴 such that 𝑓 = 𝑆
𝐹
𝐴(𝑓) = 𝐴𝑆

𝐹
(𝑓)

holds for all 𝑓 ∈ 𝑊, we call 𝐴 the inverse of 𝑆
𝐹
in 𝑊 and

denote it by 𝑆−1
𝐹
.

For obtaining the local dual frames 𝑓
𝑖𝑗
= 𝑆
−1

𝐹𝑖
(𝑓
𝑖𝑗
) (𝑗 =

1, 2, . . . , 𝑛
𝑖
, 𝑖 = 1, 2, . . . , 𝑚) of a given fusion frame system

{(𝑊
𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖
)}
𝑖∈𝐼
, where 𝑆−1

𝐹𝑖
is the inverse of 𝑆

𝐹𝑖
in 𝑊
𝑖
,

we must calculate 𝑆−1
𝐹𝑖

at first. For this purpose, the following
lemma holds.

Lemma 11. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with an
orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
and a frame 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
with frame

bounds 𝐴, 𝐵. Define 𝐿 to be an 𝑙 × 𝑛 matrix with the vector
𝑒
∗

𝑖
as its 𝑖th row for 𝑖 = 1, 2, . . . , 𝑙, where 𝑒∗

𝑖
is the conjugate-

transpose of 𝑒
𝑖
. The sequence 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
is given by 𝑔

𝑖
= 𝐿(𝑓

𝑖
)

for 𝑖 = 1, 2, . . . , 𝑘. Then, 𝐺 is a frame of F 𝑙 with the same frame
bounds as 𝐹.

Proof. For any 𝑓 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑙
)
∗
∈ F 𝑙, we have 𝐿∗(𝑓) =

∑
𝑙

𝑖=1
𝑎
𝑖
𝑒
𝑖
∈ 𝑊, and ‖ 𝐿∗(𝑓)‖2 = ∑𝑙

𝑖=1
|𝑎
𝑖
|
2
= ‖𝑓‖

2, where 𝐿∗ is
the conjugate-transpose of 𝐿. Therefore,

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
= 𝐴

󵄩󵄩󵄩󵄩𝐿
∗
(𝑓)

󵄩󵄩󵄩󵄩

2

≤

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨⟨𝐿
∗
(𝑓) , 𝑓

𝑖
⟩
󵄨󵄨󵄨󵄨

2
=

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨⟨𝑓, 𝐿 (𝑓𝑖)⟩
󵄨󵄨󵄨󵄨

2

=

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨⟨𝑓, 𝑔𝑖⟩
󵄨󵄨󵄨󵄨

2
≤ 𝐵

󵄩󵄩󵄩󵄩𝐿
∗
(𝑓)

󵄩󵄩󵄩󵄩

2
= 𝐵

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
,

(23)

as required.

Theorem 12. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with
an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
and a frame 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
. 𝐿 is

defined as the previously mentiond lemma. 𝑆
𝐹
is the frame

operator of 𝐹. Then,

𝑆
−1

𝐹
= 𝐿
∗
(𝐿𝑆
𝐹
𝐿
∗
)
−1
𝐿, (24)

is the inverse of 𝑆
𝐹
in𝑊. Moreover, the orthogonal projection

𝑃
𝑊
from 𝐹

𝑛 onto𝑊 is 𝑃
𝑊
= 𝑆
−1

𝐹
𝑆
𝐹
= 𝑆
𝐹
𝑆
−1

𝐹
= 𝐿
∗
𝐿.

Proof. Let Θ
𝐹
and Θ∗

𝐹
be the analysis operator and synthesis

operator of 𝐹, respectively; then 𝐿Θ
∗

𝐹
= (𝐿(𝑓

1
), 𝐿(𝑓
2
), . . . ,

𝐿(𝑓
𝑘
)) is the synthesis operator of 𝐺 = {𝑔

𝑖
= 𝐿(𝑓

𝑖
)}
𝑘

𝑖=1
which

is denoted by Θ∗
𝐺
. By the previous lemma lemma, 𝐺 is the

frame of F 𝑙; hence, the matrix 𝑆
𝐺
= Θ
∗

𝐺
Θ
𝐺
= 𝐿Θ

∗

𝐹
Θ
𝐹
𝐿
∗
=

𝐿𝑆
𝐹
𝐿
∗ which is the frame operator of 𝐺 is invertible. Denote

𝐿
∗
(𝐿𝑆
𝐹
𝐿
∗
)
−1
𝐿 by 𝑆−1

𝐹
.

For any 𝑓 ∈ 𝑊, we have

𝑓 =

𝑙

∑

𝑖=1

⟨𝑓, 𝑒
𝑖
⟩ 𝑒
𝑖
= 𝐿
∗
𝐿 (𝑓) . (25)

Therefore, we can get

𝑆
−1

𝐹
𝑆
𝐹
(𝑓)

= 𝐿
∗
(𝐿𝑆
𝐹
𝐿
∗
)
−1
𝐿𝑆
𝐹
(𝑓)

= 𝐿
∗
(𝐿𝑆
𝐹
𝐿
∗
)
−1
𝐿𝑆
𝐹
𝐿
∗
𝐿 (𝑓) = 𝐿

∗
𝐿 (𝑓) = 𝑓,

𝑆
𝐹
𝑆
−1

𝐹
(𝑓)

= 𝑆
𝐹
𝐿
∗
(𝐿𝑆
𝐹
𝐿
∗
)
−1
𝐿 (𝑓)

= 𝐿
∗
𝐿𝑆
𝐹
𝐿
∗
(𝐿𝑆
𝐹
𝐿
∗
)
−1
𝐿 (𝑓) = 𝐿

∗
𝐿 (𝑓) = 𝑓;

(26)

hence, 𝑆−1
𝐹

is the inverse of 𝑆
𝐹
in𝑊.

Moreover, for any 𝑓 ∈ F𝑛, its orthogonal projection onto
𝑊 is

𝑃
𝑊
(𝑓) =

𝑘

∑

𝑖=1

⟨𝑃
𝑊
(𝑓) , 𝑓

𝑖
⟩ 𝑆
−1

𝐹
(𝑓
𝑖
)

=

𝑘

∑

𝑖=1

⟨𝑓, 𝑓
𝑖
⟩ 𝑆
−1

𝐹
(𝑓
𝑖
) = 𝑆
−1

𝐹
Θ
∗

𝐹
Θ
𝐹
(𝑓) = 𝑆

−1

𝐹
𝑆
𝐹
(𝑓)
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=

𝑘

∑

𝑖=1

⟨𝑓, 𝑆
−1

𝐹
(𝑓
𝑖
)⟩ 𝑓
𝑖
= Θ
∗

𝐹
Θ
𝐹
𝑆
−1

𝐹
(𝑓)

= 𝑆
𝐹
𝑆
−1

𝐹
(𝑓) =

𝑙

∑

𝑖=1

⟨𝑓, 𝑒
𝑖
⟩ 𝑒
𝑖
= 𝐿
∗
𝐿 (𝑓) ,

(27)

as claimed.

The proof of the following proposition is straightforward,
by using Proposition 2.6 of [16] and the previous theorem, we
omit it.

Proposition 13. Let {(𝑊
𝑖
, 𝑤
𝑖
, 𝐹
𝑖
= {𝑓
𝑖𝑗
}
𝑛𝑖

𝑗=1
)}
𝑚

𝑖=1
be a fusion

frame system for F𝑛, and let 𝐹
𝑖
= {𝑓
𝑖𝑗
}
𝑗∈𝐽𝑖

, 𝑖 ∈ 𝐼 be the local
dual frames given by 𝑓

𝑖𝑗
= 𝑆
−1

𝐹𝑖
(𝑓
𝑖𝑗
) for all 𝑗 = 1, 2, . . . , 𝑛

𝑖
,

𝑖 = 1, 2, . . . , 𝑚. Then, the matrix representation of the fusion
frame operator is given by

𝑆W = ∑

𝑖∈𝐼

𝑤
2

𝑖
Θ
∗

𝐹𝑖
Θ
𝐹𝑖
= ∑

𝑖∈𝐼

𝑤
2

𝑖
Θ
∗

𝐹𝑖
Θ
𝐹𝑖

= ∑

𝑖∈𝐼

𝑤
2

𝑖
𝑆
−1

𝐹𝑖
𝑆
𝐹𝑖
= ∑

𝑖∈𝐼

𝑤
2

𝑖
𝑆
𝐹𝑖
𝑆
−1

𝐹𝑖
,

(28)

where Θ
𝐹𝑖

and Θ
𝐹𝑖

are the analysis operators of 𝐹
𝑖
and 𝐹

𝑖
,

respectively, and 𝑆
𝐹𝑖
is the frame operator of 𝐹

𝑖
for each 𝑖 ∈ 𝐼.

Given a fusion frame system {(𝑊
𝑖
, 𝑤
𝑖
, 𝐹
𝑖
= {𝑓
𝑖𝑗
}
𝑛𝑖

𝑗=1
)}
𝑚

𝑖=1

of a finite-dimensional Hilbert space F𝑛, we summarize
the previous results to provide the concrete algorithm to
construct its dual fusion frame system {(𝑆

−1

W𝑊𝑖, 𝑤𝑖, 𝑆
−1

W𝐹𝑖 =

{𝑆
−1

W𝑓𝑖𝑗}
𝑛𝑖

𝑗=1
)}
𝑚

𝑖=1
with its local dual frames as follows.

Step 1. For each 𝑖 = 1, 2, . . . , 𝑚, search the maximally linear
independent subset of 𝐹

𝑖
; we denote it by 𝐺

𝑖
= {𝑔
𝑖𝑗
}
𝑙𝑖

𝑗=1
.

Step 2. Use the Gram-Schmidt process on 𝐺
𝑖
to compute

an orthonormal basis for 𝑊
𝑖
; we denote it by 𝑅

𝑖
= {𝑒
𝑖𝑗
}
𝑙𝑖

𝑗=1
.

Construct the matrix 𝐿
𝑖
constituted by this basis as follows:

𝐿
𝑖
=

[
[
[
[

[

←󳨀 𝑒
∗

𝑖1
󳨀→

←󳨀 𝑒
∗

𝑖2
󳨀→

...
←󳨀 𝑒
∗

𝑖𝑙𝑖
󳨀→

]
]
]
]

]

. (29)

Step 3. Since 𝑃
𝑊𝑖

= 𝐿
∗

𝑖
𝐿
𝑖
by Theorem 12, we have 𝑆W =

∑
𝑚

𝑖=1
𝑤
2

𝑖
𝐿
∗

𝑖
𝐿
𝑖
.

Step 4. Compute the local frames 𝑆−1W𝐹𝑖 = {𝑆
−1

W(𝑓𝑖𝑗)}
𝑛𝑖

𝑗=1
of

{(𝑆
−1

W𝑊𝑖, 𝑤𝑖)}
𝑚

𝑖=1
for 𝑖 = 1, 2, . . . , 𝑚.

Step 5. Use formula (24) to calculate the inverse of all local
frame operators 𝑆−1

𝑆
W−1𝐹𝑖

in 𝑆W−1𝑊𝑖 for 𝑖 = 1, 2, . . . , 𝑚.

Step 6. Calculate the local dual frames 𝑆−1
𝑆
W−1𝐹𝑖

(𝑆
−1

W𝐹𝑖) =

{𝑆
−1

𝑆
W−1𝐹𝑖

(𝑆
−1

W(𝑓𝑖𝑗))}
𝑛𝑖

𝑗=1
, of {(𝑆−1W𝑊𝑖, 𝑤𝑖)}

𝑚

𝑖=1
for 𝑖 = 1, 2, . . . , 𝑚, as

required.
The fusion frame system of the following example is given

in [21].

Example 14. Assume that 𝑛 = 4, 𝑚 = 2, and 𝑛
1
= 𝑛
2
= 3.

The fusion frame system {(𝑊
𝑖
, 𝑤
𝑖
, 𝐹
𝑖
= {𝑓
𝑖𝑗
}
3

𝑗=1
)}
2

𝑖=1
is given by

𝑤
1
= 𝑤
2
= 1 and

𝑓
11
= (

√6

6
, −
√6

6
,
√6

6
, −
√3

3
)

𝑇

,

𝑓
12
= (

√6

6
, −
√6

6
, −
√6

6
,
√3

3
)

𝑇

,

𝑓
13
= (

√6

6
, −
√6

6
, 0, 0)

𝑇

, 𝑓
21
= (

6

6
,
6

6
, 0, 0)

𝑇

,

𝑓
22
= (0, 0, −

√6

3
, −
√3

3
)

𝑇

, 𝑓
23
= (

√3

3
,
√3

3
, 0, 0)

𝑇

.

(30)

The maximally linear independent subsets of 𝐹
1
and 𝐹

2
are

{𝑓
11
, 𝑓
12
} and {𝑓

21
, 𝑓
22
}, respectively. Applying the Gram-

Schmidt process on them, we get the orthonormal bases of
𝑊
1
and𝑊

2
as follows:

𝑒
11
= (√

1

5
, −√

1

5
,√

1

5
, −√

2

5
)

𝑇

,

𝑒
12
= (√

3

10
, −√

3

10
, −√

2

15
,√

4

15
)

𝑇

,

𝑒
21
= (

1

√2

,
1

√2

, 0, 0)

𝑇

, 𝑒
22
= (0, 0, −

√6

3
, −
√3

3
)

𝑇

.

(31)

So that

𝐿
1
=

[
[
[
[

[

√
1

5
−√

1

5
√
1

5
−√

2

5

√
3

10
−√

3

10
−√

2

15
√
4

15

]
]
]
]

]

,

𝐿
2
=

[
[
[

[

1

√2

1

√2

0 0

0 0 −
√6

3
−
√3

3

]
]
]

]

.

(32)

Then, we have 𝑆W = ∑
2

𝑖=1
𝑤
2

𝑖
𝐿
∗

𝑖
𝐿
𝑖
= 𝐼, where 𝐼 is the

identity matrix, which implies that the fusion frame
system {(𝑊

𝑖
, 𝑤
𝑖
, {𝑓
𝑖𝑗
}
3

𝑗=1
)}
2

𝑖=1
is a Parseval fusion frame,

and the local frames of the dual fusion frame system
{(𝑆
−1

W𝑊𝑖, 𝑤𝑖, {𝑆
−1

W𝑓𝑖𝑗}
3

𝑗=1
)}
2

𝑖=1
are 𝑆−1W𝐹𝑖 = 𝐹𝑖 for 𝑖 = 1, 2.
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Since

Θ
𝐹1
=

[
[
[
[
[
[
[
[
[

[

√6

6
−
√6

6

√6

6
−
√3

3

√6

6
−
√6

6
−
√6

6

√3

3

√6

6
−
√6

6
0 0

]
]
]
]
]
]
]
]
]

]

,

Θ
𝐹2
=

[
[
[
[
[
[
[
[
[

[

6

6

6

6
0 0

0 0 −
√6

3
−
√3

3

√3

3

√3

3
0 0

]
]
]
]
]
]
]
]
]

]

,

Θ
∗

𝐹1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

√6

6

√6

6

√6

6

−
√6

6
−
√6

6
−
√6

6

√6

6
−
√6

6
0

−
√3

3

√3

3
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Θ
∗

𝐹2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

6

6
0

√3

3

6

6
0

√3

3

0 −
√6

3
0

0 −
√3

3
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(33)

we can get

𝑆
𝐹1
= Θ
∗

𝐹1
Θ
𝐹1
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2
−
1

2
0 0

−
1

2

1

2
0 0

0 0
1

3
−
√2

3

0 0 −
√2

3

2

3

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑆
𝐹2
= Θ
∗

𝐹2
Θ
𝐹2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

4

3

4

3
0 0

4

3

4

3
0 0

0 0
2

3

√2

3

0 0
√2

3

1

3

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(34)

By using (24), we obtain

𝑆
−1

𝐹1
= 𝐿
∗

1
(𝐿
1
𝑆
𝐹1
𝐿
∗

1
)
−1

𝐿
1
=

[
[
[
[
[
[
[
[
[
[
[

[

1

2
−
1

2
0 0

−
1

2

1

2
0 0

0 0
1

3
−
√2

3

0 0 −
√2

3

2

3

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑆
−1

𝐹2
= 𝐿
∗

2
(𝐿
2
𝑆
𝐹2
𝐿
∗

2
)
−1

𝐿
2
=

[
[
[
[
[
[
[
[
[
[
[
[

[

3

16

3

16
0 0

3

16

3

16
0 0

0 0
2

3

√2

3

0 0
√2

3

1

3

]
]
]
]
]
]
]
]
]
]
]
]

]

.

(35)

Hence, the local dual frame of 𝐹
1
is

𝑓
11
= 𝑆
−1

𝐹1
𝑓
11
= 𝑓
11
, 𝑓

12
= 𝑆
−1

𝐹1
𝑓
12
= 𝑓
12
,

𝑓
13
= 𝑆
−1

𝐹1
𝑓
13
= 𝑓
13
,

(36)

the local dual frame of 𝐹
2
is

𝑓
21
= 𝑆
−1

𝐹2
𝑓
21
= (

3

8
,
3

8
, 0, 0)

𝑇

, 𝑓
22
= 𝑆
−1

𝐹2
𝑓
22
= 𝑓
22
,

𝑓
23
= 𝑆
−1

𝐹2
𝑓
23
= (

√3

8
,
√3

8
, 0, 0)

𝑇

.

(37)

They are also the local dual frames of the dual fusion frame
system {(𝑆

−1

W𝑊𝑖, 𝑤𝑖, {𝑆
−1

W𝑓𝑖𝑗}
3

𝑗=1
)}
2

𝑖=1
.

The quark-gluon plasma is a state of the extremely dense
matter which contains the quarks and gluons in high energy
physics. The gray image of quark-gluon plasma is shown in
Figure 2. We encode the data of the image by using the local
frames of the fusion frame given by this example. Suppose
that the fist element of every local vector is lost in the
transmission process. Then, we decode the received data by
using the dual fusion frame computed by this example. The
reconstructed image is shown in Figure 3. One can observe
the reconstruction effect by comparing the two figures.
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Figure 2: The original gray image of quark-gluon plasma.

Figure 3:The reconstructed gray image of quark-gluon plasma.The
data of the original image is encoded by the local frames of the fusion
frame given by Example 14.The first coefficient of every local vector
is deleted. The remained data is decoded by the dual fusion frame
obtained by Example 14.

4. Conclusion

We found that fusion frames can be used for experimental
data transmission coding of high energy physics and studied
the application of fusion frames in this field. For this goal,
we first investigated the characteristics of fusion frames.
We researched a class of alternate fusion duals of a given
fusion frame and obtained some results about these duals.We
provided amethod for thematrix representation of the fusion
frame operator of a given fusion frame system in a finite-
dimensional Hilbert space. Based on these results, we gave
an algorithm for the construction of the dual fusion frame
system with its local dual frames. A simulation example has
been given to show the coding effect of a fusion frame system
and its dual constructed by our methods when data erasure
occurs in the transmission process.
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