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By a symmetric Mountain Pass Theorem, a class of biharmonic equations with Navier type boundary value at the resonant and
nonresonant case are discussed, and infinitely many solutions of the equations are obtained.

1. Introduction and Main Results

In this paper, we study the following fourth-order elliptic
equation:

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝜇ℎ (𝑥) |𝑢|

𝑝−2
𝑢 + 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(1)

where Δ
2 is the biharmonic operator, 𝑐 is a constant,Ω ⊂ 𝑅

𝑁

is a bounded smooth domain, 1 < 𝑝 < 2, 𝜇 ≥ 0 is a parameter,
ℎ ∈ 𝐿

∞
(Ω), ℎ(𝑥) ≥ 0, ℎ(𝑥) ̸≡ 0, 𝑓(𝑥, 𝑠) is a continuous

function onΩ × 𝑅.
This fourth-order semilinear elliptic problem can be con-

sidered as an analogue of a class of second-order problems
which have been studied by many authors. A main tool of
seeking solutions of the problem is the Mountain Pass The-
orem (see [1–3]). In [4], Pei studied the following problem:

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(2)

and obtained at least three nontrivial solutions by using the
minimax method and Morse theory.

Problem (1) has been studied extensively in recent years;
we refer the reader to [5–11] and the references therein. In [12],
the author showed that the problem (1) admits at least three
(or four or five) nontrivial solutions by using the minimax
method and Mountain Pass Theory.

However, to the best of author’s knowledge, there have
been very few results dealingwith (1) using a symmetricMou-
ntain PassTheorem.This paper will make some contribution
in the research field. In this paper, we study the problem (1)
by a symmetric Mountain Pass Theorem at the resonant and
nonresonant case and obtain infinitely many solutions of the
equation.

Consider eigenvalue problem

−Δ𝑢 = 𝜆𝑢, 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(3)

Let us denote that 𝜆
𝑘
(𝑘 ∈ 𝑁) are the eigenvalues and 𝜑

𝑘
(𝑘 ∈

𝑁) are the corresponding eigenfunctions of the eigenvalue
problem (3). It is well known that 0 < 𝜆

1
< 𝜆
2
≤ 𝜆
3
≤ ⋅ ⋅ ⋅ ≤

𝜆
𝑘

→ +∞, and the first eigenfunction 𝜑
1
> 0, 𝑥 ∈ Ω.

It is easy to see that 𝜆
𝑘
(𝜆
𝑘
−𝑐), 𝑘 = 1, 2, . . ., are eigenvalues

of the problem

Δ
2
𝑢 + 𝑐Δ𝑢 = Λ𝑢, 𝑥 ∈ Ω,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(4)

and 𝜑
𝑘
(𝑘 = 1, 2, . . .) are still the corresponding eigenfunc-

tions.
Let 𝐻 = 𝐻

2
(Ω) ∩ 𝐻

1

0
(Ω) be the Hilbert space equipped

with the inner product

⟨𝑢, V⟩
𝐻

= ∫
Ω

(Δ𝑢ΔV + ∇𝑢∇V) d𝑥, (5)
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and the deduced norm

‖𝑢‖𝐻 = [∫
Ω

(|Δ𝑢|
2
+ |∇𝑢|

2
) d𝑥]
1/2

. (6)

Suppose that 𝑐 < 𝜆
1
. Let us define a norm of the space 𝐻

as follows:

‖𝑢‖ = [∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) d𝑥]
1/2

. (7)

It is easy to verify that the norm ‖ ⋅ ‖ is equivalent to the
norm ‖ ⋅ ‖

𝐻
on 𝐻, and for all 𝑢 ∈ 𝐻, the following Poincaré

inequality holds:

‖𝑢‖
2
≥ 𝜆
1
(𝜆
1
− 𝑐) |𝑢|

2

2
, (8)

where |𝑢|
2

2
= ∫
Ω
|𝑢|
2
𝑑𝑥.

Throughout this paper, the weak solutions of (1) are the
critical points of the associated functional

Φ
𝜇
(𝑢)

=
1

2
(∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) d𝑥)

−
𝜇

𝑝
∫
Ω

ℎ (𝑥) |𝑢|
𝑝d𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) d𝑥, ∀ 𝑢 ∈ 𝐻,

(9)

where 𝐹(𝑥, 𝑢) = ∫
𝑢

0
𝑓(𝑥, 𝑡) 𝑑𝑡.

ObviouslyΦ
𝜇
∈ 𝐶
1
(𝐻, 𝑅), and for all 𝑢, 𝜑 ∈ 𝐻,

⟨Φ
󸀠

𝜇
(𝑢) , 𝜑⟩

= ∫
Ω

(Δ𝑢Δ𝜑 − 𝑐∇𝑢∇𝜑 d𝑥)

− 𝜇∫
Ω

ℎ (𝑥) |𝑢|
𝑝−2

𝑢𝜑 d𝑥 − ∫
Ω

𝑓 (𝑥, 𝑢) 𝜑 d𝑥.

(10)

In order to establish solutions for problem (1), we make the
following assumptions:

(𝐹
0
) ℎ ∈ 𝐿

∞
(Ω), ℎ(𝑥) ≥ 0;

(𝐹
1
) 𝑓(𝑥, 0) = 0, 𝑓(𝑥, −𝑡) = −𝑓(𝑥, 𝑡), for all 𝑥 ∈ Ω,

𝑡 ∈ 𝑅;
(𝐹
2
) lim
|𝑡|→0

𝑓(𝑥, 𝑡)/𝑡 = 𝛼, lim
|𝑡|→∞

𝑓(𝑥, 𝑡)/𝑡 = 𝛽

uniformly for a.e. 𝑥 ∈ Ω, where 0 ≤ 𝛼 < 𝜆
𝑘
(𝜆
𝑘
− 𝑐) <

𝛽, or 𝛽 = 𝜆
𝑘
(𝜆
𝑘
− 𝑐);

(𝐹
3
) lim
|𝑡|→∞

(𝑓(𝑥, 𝑡)𝑡−2𝐹(𝑥, 𝑡)) = −∞ uniformly in
𝑥 ∈ Ω.

Definition 1 (see [13]). Let Φ ∈ 𝐶
1
(𝑋, 𝑅), we say that Φ sati-

sfies the Cerami condition at the level 𝑐 ∈ 𝑅, if any sequence
{𝑢
𝑛
} ⊂ 𝑋 with

Φ(𝑢
𝑛
) 󳨀→ 𝑐, (1 +

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩)Φ
󸀠
(𝑢
𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞

(11)

possesses a convergent subsequence; Φ satisfies the (𝐶)

condition ifΦ satisfies (𝐶)
𝑐
for all 𝑐 ∈ 𝑅.

Lemma 2. Let𝑋
𝑘
= span{𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑘
};𝐻 = 𝑋

𝑘
⊕𝑋
⊥

𝑘
; then

‖𝑢‖
2
≤ 𝜆
𝑘
(𝜆
𝑘
− 𝑐) |𝑢|

2

2
, ∀ 𝑢 ∈ 𝑋

𝑘
;

‖𝑢‖
2
≥ 𝜆
𝑘+1

(𝜆
𝑘+1

− 𝑐) |𝑢|
2

2
, ∀ 𝑢 ∈ 𝑋

⊥

𝑘
, 𝑘 ≥ 2.

(12)

Proof. It is similar to the proof of Lemma 2.5 in [13].

Theorem 3 (see [14] a symmetric Mountain Pass Theorem).
Suppose that Φ ∈ 𝐶

1
(𝐸, 𝑅) is even,Φ(𝜃) = 0, and

(i) there exist 𝜌, 𝛼 > 0, and a finite dimensional linear
subspace 𝑍 such that

Φ|
𝑍
⊥
∩𝜕𝐵
𝜌
(𝜃)

≥ 𝛼, (13)

(ii) there exist a sequence of linear subspace 𝑍
𝑚
,

dim(𝑍
𝑚
) = 𝑚, and 𝑅

𝑚
> 0 such that

Φ (𝑥) ≤ 0, ∀ 𝑥 ∈ 𝑍
𝑚

\ 𝐵
𝑅
𝑚

, 𝑚 = 1, 2, . . . . (14)

If Φ satisfies (𝑃𝑆) condition, then Φ possesses infinitely many
distinct critical points corresponding to positive critical values.

Remark 4. If Φ satisfies the (𝐶) condition, Theorem 3 still
holds.

The main results of this paper are as follows.

Theorem 5. Assume that (𝐹
0
)−(𝐹
2
) hold, and 𝑐 < 𝜆

1
, 𝜆
𝑘
(𝜆
𝑘
−

𝑐) < 𝛽, 𝛽 is not an eigenvalue of (4); then there exist 𝜇∗ > 0

such that for 𝜇 ∈ (0, 𝜇
∗
), (1) has infinitely many solutions.

Theorem 6. Assume that (𝐹
0
)− (𝐹
3
) hold, and 𝑐 < 𝜆

1
, 𝛽 =

𝜆
𝑘
(𝜆
𝑘
− 𝑐); then there exist 𝜇∗ > 0 such that for 𝜇 ∈ (0, 𝜇

∗
), (1)

has infinitely many solutions.

2. Proofs of Theorems

Proof of Theorem 5. (i) Assume that {𝑢
𝑛
} ⊂ 𝐻 is a (𝐶) seq-

uence, that is,

(1 +
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩)Φ
󸀠

𝜇
(𝑢
𝑛
) 󳨀→ 0, Φ

𝜇
(𝑢
𝑛
) 󳨀→ 𝑐. (15)

We claim that {𝑢
𝑛
} is bounded.Assume as a contradiction that

|𝑢
𝑛
|
2

→ ∞. Setting V
𝑛
= 𝑢
𝑛
/|𝑢
𝑛
|
2
, then |V

𝑛
|
2
= 1. Without

loss of generality, we assume

V
𝑛
⇀ V in 𝐻, V

𝑛
󳨀→ V in 𝐿

2
(Ω) ,

V
𝑛
󳨀→ V a.e. 𝑥 ∈ Ω.

(16)

From (15) we know that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
Ω

(ΔV
𝑛
Δ𝜑 − 𝑐∇V

𝑛
∇𝜑) d𝑥

−𝜇∫
Ω

ℎ (𝑥)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝−2

𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

𝜑 d𝑥 − ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

𝜑 d𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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=
1

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

󵄨󵄨󵄨󵄨󵄨
⟨Φ
󸀠

𝜇
(𝑢
𝑛
) , 𝜑⟩

󵄨󵄨󵄨󵄨󵄨

≤
1

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

󵄩󵄩󵄩󵄩󵄩
Φ
󸀠

𝜇
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 󳨀→ 0, ∀ 𝜑 ∈ 𝐻.

(17)

Next we consider the two possible cases: (a)V ̸= 0, (b)V = 0.
In case (a), from (𝐹

2
) we derive

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨2
󳨀→ ∞, lim

𝑛→∞

𝑓 (𝑥, 𝑢
𝑛
)

𝑢
𝑛

= 𝛽. (18)

For V
𝑛

→ V in 𝐿
2
(Ω), we have

lim
𝑛→∞

𝑓 (𝑥, 𝑢
𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

= lim
𝑛→∞

𝑓 (𝑥, 𝑢
𝑛
)

𝑢
𝑛

V
𝑛
= 𝛽V, a.e. 𝑥 ∈ Ω.

(19)

In case (b), we have

𝑓 (𝑥, 𝑢
𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

≤ 𝑐
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨 󳨀→ 0. (20)

Then

lim
𝑛→∞

∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝜑

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨2

d𝑥 = lim
𝑛→∞

∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) V
𝑛

𝑢
𝑛

𝜑 d𝑥

= ∫
Ω

𝛽V𝜑 d𝑥, ∀ 𝜑 ∈ 𝐻.

(21)

By (17) and lim
𝑛→∞

∫
Ω
ℎ(𝑥)(|𝑢

𝑛
|
𝑝−2

𝑢
𝑛
/|𝑢
𝑛
|
2
)𝜑𝑑𝑥 = 0, we

have

∫
Ω

(ΔVΔ𝜑 − 𝑐∇V∇𝜑) d𝑥

= ∫
Ω

𝛽V𝜑d𝑥, ∀ 𝜑 ∈ 𝐻.

(22)

We can easily see that V ̸≡ 0. In fact, if V ≡ 0, then
|V|
2
= 0, which contradicts lim

𝑛→∞
|V
𝑛
|
2
= |V|
2
= 1. Hence,

𝛽 is an eigenvalue of the problem (4); this contradicts our
assumption. Then {𝑢

𝑛
} is bounded; there exist a subsequence

of {𝑢
𝑛
}(we can also denote by {𝑢

𝑛
}) and 𝑢 ∈ 𝐻, such that

𝑢
𝑛
⇀ 𝑢 in𝐻. By Lemma 2 and (15), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑚

󵄩󵄩󵄩󵄩 = 𝜇∫
Ω

ℎ (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢

𝑚

󵄨󵄨󵄨󵄨

𝑝d𝑥

+ ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
− 𝑢
𝑚
) (𝑢
𝑛
− 𝑢
𝑚
) d𝑥

+ 𝑜 (1)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚

󵄩󵄩󵄩󵄩

≤ 𝜇|ℎ|
∞

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢
𝑚

󵄨󵄨󵄨󵄨

𝑝d𝑥

+ ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
− 𝑢
𝑚
) (𝑢
𝑛
− 𝑢
𝑚
) d𝑥

+ 𝑜 (1)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚

󵄩󵄩󵄩󵄩 ,

(23)

where 𝑜(1) → 0, and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑓 (𝑥, 𝑢
𝑛
− 𝑢
𝑚
) (𝑢
𝑛
− 𝑢
𝑚
) d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢

𝑛
− 𝑢
𝑚
)
󵄨󵄨󵄨󵄨2

󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢
𝑚

󵄨󵄨󵄨󵄨2
,

(24)

as 𝑛,𝑚 → ∞. Hence 𝑢
𝑛

→ 𝑢 in𝐻. We verifyΦ
𝜇
(𝑢) satisfies

(𝐶) condition.
(ii) There exists some 𝜌, 𝛾 > 0 such that Φ

𝜇
|
𝑋
⊥

𝑘
∩𝜕𝐵
𝜌
(𝜃)

≥

𝛾 > 0, where 𝐵
𝜌
(𝜃) = {𝑢 ∈ 𝐻 : ‖𝑢‖ ≤ 𝜌}.

By (𝐹
1
) and (𝐹

2
), taking 𝜎 ∈ (2, 2

∗
), for any given 𝜀 > 0,

there exists 𝐶
1
> 0 such that

𝐹 (𝑥, 𝑢) ≤
1

2
(𝛼 + 𝜀) |𝑢|

2
+ 𝐶
1|𝑢|
𝜎
, ∀ 𝑥 ∈ Ω, (25)

where

2
∗
=

{

{

{

2𝑁

𝑁 − 2
, 𝑁 > 2,

+∞, 𝑁 ≤ 2.

(26)

Taking 𝜀 > 0 such that 𝛼 + 𝜀 < 𝜆
𝑘
(𝜆
𝑘
− 𝑐), combining

Lemma 2, Poincaré inequality, and Sobolev embedding, we
have

Φ
𝜇
(𝑢) ≥

1

2
(∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) d𝑥)

−
𝜇|ℎ|∞

𝑝
∫
Ω

|𝑢|
𝑝d𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) d𝑥

≥
1

2
‖𝑢‖
2
−

𝛼 + 𝜀

2
|𝑢|
2

2
−

𝜇|ℎ|∞

𝑝
|𝑢|
𝑝

𝑝
− 𝐶
1|𝑢|
𝜎

𝜎

≥
1

2
(1 −

𝛼 + 𝜀

𝜆
𝑘+1

(𝜆
𝑘+1

− 𝑐)
) ‖𝑢‖
2
− 𝜇𝐶
2‖𝑢‖
𝑝
− 𝐶
3‖𝑢‖
𝜎

= (
1

2
(1 −

𝛼 + 𝜀

𝜆
𝑘+1

(𝜆
𝑘+1

− 𝑐)
)

−𝜇𝐶
2‖𝑢‖
𝑝−2

− 𝐶
3‖𝑢‖
𝜎−2

) ‖𝑢‖
2
,

(27)

where 𝐶
2
, 𝐶
3
are constant.

Let 𝑔(𝑡) = 𝜇𝐶
2
𝑡
𝑝−2

+ 𝐶
3
𝑡
𝜎−2; we claim that there exists 𝑡

0

such that

𝑔 (𝑡
0
) <

1

2
(1 −

𝛼 + 𝜀

𝜆
𝑘+1

(𝜆
𝑘+1

− 𝑐)
) . (28)
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It is easy to see that 𝑔(𝑡) has a minimum at 𝑡
0

= ((𝜇𝐶
2
(2 −

𝑝))/(𝐶
3
(𝜎 − 2)))

1/(𝜎−𝑝); substituting 𝑡
0
in 𝑔(𝑡), we have

𝑔 (𝑡
0
) = 𝜇
(𝜎−2)/(𝜎−𝑝)

[(𝐶
2
(
𝐶
2
(2 − 𝑝)

𝐶
3
(𝜎 − 2)

))

(𝑝−2)/(𝜎−𝑝)

+(𝐶
3
(
𝐶
2
(2 − 𝑝)

𝐶
3
(𝜎 − 2)

))

(𝜎−2)/(𝜎−𝑝)

]

<
1

2
(1 −

𝛼 + 𝜀

𝜆
𝑘+1

(𝜆
𝑘+1

− 𝑐)
) ,

(29)

where 0 < 𝜇 < 𝜇
∗

= [1/2(1 − ((𝛼 + 𝜀)/(𝜆
𝑘+1

(𝜆
𝑘+1

− 𝑐))))/

((𝐶
2
(𝐶
2
(2 − 𝑝)/𝐶

3
(𝜎 − 2)))

(𝑝−2)/(𝜎−𝑝)
+ (𝐶
3
(𝐶
2
(2 − 𝑝)/𝐶

3
(𝜎 −

2)))
(𝜎−2)/(𝜎−𝑝)

)]
(2−𝜎)/(𝜎−𝑝).

We take ‖𝑢‖ = 𝜌 = 𝑡
0
> 0, then there exists 𝛾 > 0 such

thatΦ
𝜇
|
𝑋
⊥

𝑘
∩𝜕𝐵
𝜌
(𝜃)

≥ 𝛾 > 0, where 𝐵
𝜌
(𝜃) = {𝑢 ∈ 𝐻 : ‖ 𝑢 ‖≤ 𝜌}.

(iii) There exists 𝑅
𝑘
> 𝜌, such that

Φ
𝜇
(𝑢) ≤ 0, ∀ 𝑢 ∈ 𝑋

𝑘
\ 𝐵
𝑅
𝑘

(𝜃) , 𝑘 = 1, 2, . . . . (30)

For 𝛽 > 𝜆
𝑘
(𝜆
𝑘
−𝑐), (𝐹

2
) implies that for any 𝜀 > 0, there exists

𝐶
4
> 0 such that

𝐹 (𝑥, 𝑢) ≥
1

2
(𝛽 − 𝜀) |𝑢|

2
− 𝐶
4
. (31)

Taking 𝜀 > 0 such that 𝛽 − 𝜀 > 𝜆
𝑘
(𝜆
𝑘
− 𝑐). By Lemma 2 and

(𝜇/𝑝) ∫
Ω
ℎ(𝑥)|𝑢|

𝑝d𝑥 ≥ 0, we have

Φ
𝜇
(𝑢) =

1

2
(∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) d𝑥)

−
𝜇

𝑝
∫
Ω

ℎ (𝑥) |𝑢|
𝑝 d𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) d𝑥

≤
1

2
‖𝑢‖
2
−

𝛽 − 𝜀

2
|𝑢|
2

2
+ 𝐶
4 |Ω|

≤
1

2
(1 −

𝛽 − 𝜀

𝜆
𝑘
(𝜆
𝑘
− 𝑐)

) ‖𝑢‖
2

+ 𝐶
4 |Ω| 󳨀→ −∞, ∀ 𝑢 ∈ 𝑋

𝑘
, as ‖𝑢‖ 󳨀→ +∞.

(32)

Hence there exists 𝑅
𝑘
> 𝜌 such that

Φ
𝜇
(𝑢) ≤ 0, ∀𝑢 ∈ 𝑋

𝑘
\ 𝐵
𝑅
𝑘

(𝜃) , 𝑘 = 1, 2, . . . . (33)

Summing up the above proofs,Φ
𝜇
satisfies all the conditions

of Theorem 3 and Remark 4. Then the problem (1) has inf-
initely many solutions.

Proof of Theorem 6. Similar to the proof of Theorem 5(i), we
have

∫
Ω

(ΔVΔ𝜑 − 𝑐∇V∇𝜑) d𝑥

= ∫
Ω

𝜆
𝑘
V𝜑 d𝑥, ∀ 𝜑 ∈ 𝐻.

(34)

We can easily see that V ̸≡ 0. In fact, if V ≡ 0, then |V|
2

=

0, which contradicts lim
𝑛→∞

|V
𝑛
|
2

= |V|
2

= 1. Then V is
a corresponding eigenfunction of the eigenvalue 𝜆

𝑘
; hence

|𝑢
𝑛
| → ∞, a.e. 𝑥 ∈ Ω.
By (𝐹
3
), we have

lim
𝑛→∞

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
))

= −∞ uniformly in 𝑥 ∈ Ω.

(35)

It follows from Fatous Lemma that

lim
𝑛→∞

∫
Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
)) d𝑥 = −∞. (36)

On the other hand, (15) implies that

2𝑐 ←󳨀 2Φ
𝜇
(𝑢
𝑛
) − ⟨Φ

󸀠

𝜇
(𝑢
𝑛
) , 𝑢
𝑛
⟩

= ∫
Ω

(
󵄨󵄨󵄨󵄨Δ𝑢
𝑛

󵄨󵄨󵄨󵄨

2

− 𝑐
󵄨󵄨󵄨󵄨∇𝑢
𝑛

󵄨󵄨󵄨󵄨

2

) d𝑥

−
2𝜇

𝑝
∫
Ω

ℎ (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝 d𝑥 − ∫
Ω

2𝐹 (𝑥, 𝑢
𝑛
) d𝑥

− ∫
Ω

(
󵄨󵄨󵄨󵄨Δ𝑢
𝑛

󵄨󵄨󵄨󵄨

2

− 𝑐
󵄨󵄨󵄨󵄨∇𝑢
𝑛

󵄨󵄨󵄨󵄨

2

) d𝑥

+ 𝜇∫
Ω

ℎ (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 + ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
d𝑥

= ∫
Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
)) d𝑥

− (
2

𝑝
− 1)𝜇∫

Ω

ℎ (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝 d𝑥,

(37)

where lim
𝑛→∞

(2/𝑝 − 1)𝜇 ∫
Ω
ℎ(𝑥)|𝑢

𝑛
|
𝑝
𝑑𝑥 = ∞, which con-

tradicts (36); hence {𝑢
𝑛
} is bounded. Similar to the proof of

Theorem 5(i), we have {𝑢
𝑛
} → 𝑢 in𝐻. Hencewe verifyΦ

𝜇
(𝑢)

satisfies (𝐶) condition.
Similar to [15], let 𝐻(𝑥, 𝑡) = 𝐹(𝑥, 𝑡) − (1/2)𝜆

𝑘
(𝜆
𝑘
− 𝑐)𝑡
2,

and 𝑓(𝑥, 𝑡) = 𝜆
𝑘
(𝜆
𝑘
− 𝑐)𝑡 + ℎ(𝑥, 𝑡); then

lim
|𝑡|→∞

2𝐻 (𝑥, 𝑡)

𝑡2
= 0,

lim
|𝑡|→∞

(ℎ (𝑥, 𝑡) 𝑡 − 2𝐻 (𝑥, 𝑡)) = −∞.

(38)

It follows that for every𝑁 > 0, there exists 𝑅
𝑁

> 0 such that

ℎ (𝑥, 𝑡) 𝑡 − 2𝐻 (𝑥, 𝑡) ≤ −𝑁, ∀ 𝑡 ∈ 𝑅,

|𝑡| ≥ 𝑅
𝑁
, a.e. 𝑥 ∈ Ω.

(39)

For 𝑡 > 0, we have

𝑑

𝑑𝑡
[
𝐻 (𝑥, 𝑡)

𝑡2
] =

ℎ (𝑥, 𝑡) 𝑡 − 2𝐻 (𝑥, 𝑡)

𝑡3
; (40)

over the interval [𝑡, 𝑠] ⊂ [𝑇, +∞), we have

𝐻(𝑥, 𝑠)

𝑠2
−

𝐻 (𝑥, 𝑡)

𝑡2
≤

𝑁

2
(
1

𝑠2
−

1

𝑡2
) . (41)
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Letting 𝑠 → +∞, we see that𝐻(𝑥, 𝑡) ≥ (𝑁/2), 𝑡 ∈ 𝑅, 𝑡 ≥ 𝑅
𝑁
,

a.e. 𝑥 ∈ Ω. In a similar way, we have 𝐻(𝑥, 𝑡) ≥ (𝑁/2), 𝑡 ∈ 𝑅,
𝑡 ≤ −𝑅

𝑁
, a.e. 𝑥 ∈ Ω. Hence

lim
|𝑡|→∞

𝐻(𝑥, 𝑡) = +∞. a.e. 𝑥 ∈ Ω. (42)

By Lemma 2 and ℎ(𝑥) ≥ 0, we have

Φ
𝜇
(𝑢) =

1

2
(∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) d𝑥)

−
1

2
𝜆
𝑘
(𝜆
𝑘
− 𝑐) ∫

Ω

𝑢
2 d𝑥

−
𝜇

𝑝
∫
Ω

ℎ (𝑥) |𝑢|
𝑝 d𝑥 − ∫

Ω

𝐻(𝑥, 𝑢) d𝑥

≤ − ∫
Ω

𝐻(𝑥, 𝑢) d𝑥 󳨀→ −∞, ∀ 𝑢 ∈ 𝑋
𝑘
,

as ‖𝑢‖ 󳨀→ +∞.

(43)

Hence there exists 𝑅
𝑘
> 𝜌 such that

Φ
𝜇
(𝑢) ≤ 0, ∀ 𝑢 ∈ 𝑋

𝑘
\ 𝐵
𝑅
𝑘

(𝜃) , 𝑘 = 1, 2, . . . . (44)

Summing up the above proofs andTheorem 5 (ii),Φ
𝜇
satisfies

all the conditions of Theorem 3 and Remark 4, then the
problem (1) has infinitely many solutions.
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