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We propose a new Neumann series method to solve a family of local fractional Fredholm and Volterra integral equations. The
integral operator, which is used in our investigation, is of the local fractional integral operator type. Two illustrative examples show
the accuracy and the reliability of the obtained results.

1. Introduction

Many initial- and boundary-value problems associated with
ordinary differential equations (ODEs) and partial differen-
tial equations (PDEs) can be transformed into problems of
solving the corresponding approximate integral equations.
However, some initial- and boundary-value domains are frac-
tal curves, which are everywhere continuous, but nowhere
differentiable. As a result, we cannot employ the classical
calculus, which requires that the defined functions should be
differentiable, in order to process various classes of ordinary
differential equations (ODEs) and partial differential equa-
tions (PDEs). Applications of fractional calculus, in general,
and fractional differential equations [1–10], in particular,
as well as various transport phenomena in complex and
disordered media and fractional systems, have attracted
considerable attention during the past two decades or so [11–
22].

Recently, local fractional calculus [23–40], processing
local fractional continuous non-differential functions, was
successfully applied to model the stress-strain relation in

fractal elasticity [26, 27], fractal release equation [32], wave
equations on Cantor sets [34], fractal heat equation [34],
diffusion equation arising in discontinuous heat transfer in
fractal media [35], Laplace equation within local fractional
operators [36], Schrödinger equation in fractal time-space
[37], damped wave equation and dissipative wave equation
in fractal strings [38], heat-conduction equation on Cantor
sets without heat generation in fractal media [39], and so on.
There are some analytical and numerical methods for solving
local fractional ODEs and PDEs, such as fractional complex
transform method with local fractional operator [35], local
fractional variational iteration method [37], Cantor-type
cylindrical-coordinate method [38], local fractional Fourier
series method [39], local fractional series expansion method
[40], Fourier and Laplace transforms with local fractional
operator [39], and reference therein.

The Neumann series method was applied to solve the
integral equations [41, 42]. Recently, the fractional Neumann
series method was considered in [43, 44]. This paper focuses
on a new Neumann series method for solving the local
fractional Fredholm and Volterra integral equation being
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here facts in mind. This paper is structured as follows.
Section 2 introduces the notations and the basic concepts.
Section 3 is devoted to a new Neumann series method via
local fractional integral operator. Two illustrative examples
are explained in Section 4. Finally, conclusions are reported
in Section 5.

2. Preliminaries

In order to investigate the local fractional continuity of non-
differential functions, we suggest the result derived from
fractal geometry [34, 39].

Let 𝑓(𝑥) be local fractional continuous on interval (𝑎, 𝑏);
then we write [34, 35]

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (1)

If 𝑓 : (𝐹, 𝑑) → (Ω󸀠, 𝑑󸀠) is a bi-Lipschitz mapping, then

𝜌𝑠𝐻𝑠 (𝐹) ≤ 𝐻
𝑠 (𝑓 (𝐹)) ≤ 𝜏

𝑠𝐻𝑠 (𝐹) , (2)

which leads to

𝜌𝛼
󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨
𝛼

≤
󵄨󵄨󵄨󵄨𝑓 (𝑥1) − 𝑓 (𝑥2)

󵄨󵄨󵄨󵄨 ≤ 𝜏
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨
𝛼

, (3)

so that
󵄨󵄨󵄨󵄨𝑓 (𝑥1) − 𝑓 (𝑥2)

󵄨󵄨󵄨󵄨 < 𝜀
𝛼, (4)

where 𝜌, 𝜏 > 0 and 𝑥
1
, 𝑥
2
∈ 𝐹.

The result deduced from fractal geometry is related to
fractal coarse-grained mass function 𝛾𝛼[𝐹, 𝑎, 𝑏], which reads
[34] as

𝛾𝛼 [𝐹, 𝑎, 𝑏] =
𝐻𝛼 (𝐹 ∩ (𝑎, 𝑏))

Γ (1 + 𝛼)
, (5)

with

𝐻𝛼 (𝐹 ∩ (𝑎, 𝑏)) = (𝑏 − 𝑎)
𝛼, (6)

where𝐻𝛼 is an 𝛼-dimensional Hausdorff measure.
Notice that we consider that the dimensions of any fractal

spaces (e.g., Cantor spaces or the Cantor-like spaces) are a
positive numbers. It looks like the Euclidean space because its
dimension is also positive number. The detailed results were
considered in [34].

For 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏), local fractional integral of 𝑓(𝑥) of

order 𝛼 in the interval [𝑎, 𝑏] is given by [34, 37, 39]

𝑎
𝐼(𝛼)
𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑
𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(7)

where Δ𝑡
𝑗
= 𝑡
𝑗+1
− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .} and

[𝑡
𝑗
, 𝑡
𝑗+1
], 𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, 𝑡

𝑁
= 𝑏, is a partition

of the interval [𝑎, 𝑏].

For any 𝑥 ∈ (𝑎, 𝑏), we have [34]

𝑎
𝐼(𝛼)
𝑥
𝑓 (𝑥) , (8)

denoted by
𝑓 (𝑥) ∈ 𝐼

(𝛼)

𝑥
(𝑎, 𝑏) . (9)

If 𝑓(𝑥) ∈ 𝐼(𝛼)
𝑥
(𝑎, 𝑏), then we have [34]

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (10)

For detailed content of fractal geometrical explanation of
local fractional integral, we can see [34, 35]. Some properties
of local fractional integral operator were suggested in (A.1)–
(A.5).

3. A New Neumann Series Method to
Deal with the Local Fractional Fredholm
and Volterra Integral Equations

In this section, we consider a new Neumann series method
to process the local fractional Fredholm and Volterra integral
equations.

AnewNeumann seriesmethod to deal with the local frac-
tional Fredholm integral equation is written in the following
form:

𝑢 (𝑥) = 𝑓 (𝑥) +
𝜆𝛼

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑢 (𝑡) (𝑑𝑡)
𝛼. (11)

It is obtained if we set

𝑢
0
(𝑥) = 𝑓 (𝑥) , (12)

such that

𝑢
1
(𝑥) = 𝑢

0
(𝑥) +

𝜆𝛼

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑢
0
(𝑡) (𝑑𝑡)

𝛼

= 𝑓 (𝑥) + 𝜆
𝛼𝜓
1
(𝑥) ,

(13)

where 𝜓
1
(𝑥) = (1/Γ(1 + 𝛼)) ∫

𝑏

𝑎

𝐾(𝑥, 𝑡)𝑓(𝑡)(𝑑𝑡)𝛼.
The zeroth approximation can be written as

𝑢
2
(𝑥) = 𝑓 (𝑥) +

𝜆𝛼

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑢
1
(𝑡) (𝑑𝑡)

𝛼

= 𝑓 (𝑥) +
𝜆𝛼

Γ (1 + 𝛼)

× ∫
𝑏

𝑎

𝐾 (𝑥, 𝑡) {𝑓 (𝑥) + 𝜆
𝛼𝜓
1
(𝑥)} (𝑑𝑡)

𝛼

= 𝑓 (𝑥) + 𝜆
𝛼𝜓
1
(𝑥) + 𝜆

2𝛼𝜓
2
(𝑥) ,

(14)

where 𝜓
2
(𝑥) = (1/Γ(1 + 𝛼)) ∫

𝑏

𝑎

𝐾(𝑥, 𝑡)𝜓
1
(𝑥)(𝑑𝑡)𝛼.

Proceeding in this manner, the final solution 𝑢(𝑥) can be
obtained as

𝑢 (𝑥) = 𝑓 (𝑥) + 𝜆
𝛼𝜓
1
(𝑥) + 𝜆

2𝛼𝜓
2
(𝑥) + ⋅ ⋅ ⋅ + 𝜆

𝑛𝛼𝜓
𝑛
(𝑥) + ⋅ ⋅ ⋅

= 𝑓 (𝑥) +
∞

∑
𝑛=1

𝜆𝑛𝛼𝜓
𝑛
(𝑥) ,

(15)

where 𝜓
𝑛
(𝑥) = (1/Γ(1 + 𝛼)) ∫

𝑏

𝑎

𝐾(𝑥, 𝑡)𝜓
𝑛−1
(𝑥)(𝑑𝑡)𝛼, 𝑛 ≥ 1.
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Now we structure a new Neumann series method to
handle the local fractional Volterra integral equation, which
reads as

𝑢 (𝑥) = 𝑓 (𝑥) +
𝜆𝛼

Γ (1 + 𝛼)
∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) 𝑢 (𝑡) (𝑑𝑡)
𝛼. (16)

The method is applicable provided that 𝑢(𝑥) is a local frac-
tional analysis function; that is, 𝑢(𝑥) have a local fractional
Taylor’s expansion around 𝑥 = 0.
𝑢(𝑥) can be expressed by a local fractional series expan-

sion; which reads as

𝑢 (𝑥) =
∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼, (17)

where the coefficients 𝑎
𝑛
and 𝑥 are constants that are required

to be determined.
We have
∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼 = 𝑓 (𝑥) +

𝜆𝛼

Γ (1 + 𝛼)
∫
𝑥

𝑎

𝐾 (𝑥, 𝑡)
∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼(𝑑𝑡)

𝛼.

(18)

Thus, using a few terms of the expansion in both sides, we
find that

𝑎
0
+ 𝑎
1
𝑥𝛼 + 𝑎

2
𝑥2𝛼 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥𝑛𝛼 + ⋅ ⋅ ⋅

= 𝑓 (𝑥) +
𝜆𝛼

Γ (1 + 𝛼)
∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) 𝑎
0
(𝑑𝑡)
𝛼

+
𝜆𝛼

Γ (1 + 𝛼)
∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) 𝑎
1
𝑥𝛼(𝑑𝑡)

𝛼

+
𝜆𝛼

Γ (1 + 𝛼)
∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) 𝑎
2
𝑥2𝛼(𝑑𝑡)

𝛼 + ⋅ ⋅ ⋅

+
𝜆𝛼

Γ (1 + 𝛼)
∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) 𝑎
𝑛
𝑥𝑛𝛼(𝑑𝑡)

𝛼 + ⋅ ⋅ ⋅ .

(19)

We thenwrite the local fractional Taylor’s expansions for𝑓(𝑥)
and count the first few integrals in (19). After the integration
is performed, we equate the coefficients of the same powers
of 𝑥𝛼 in both sides of (19). By this way, we can determine
completely the unknown coefficients and produce solution in
a local fractional series form.

4. Examples

Example 1. Solve the following local fractional Fredholm
integral equation:

𝑢 (𝑥) = Γ (1 + 𝛼) +
1

Γ (1 + 𝛼)
∫
1

0

𝑥𝛼𝑢 (𝑡) (𝑑𝑡)
𝛼. (20)

Let us consider the zeroth approximation given by

𝑢
0
(𝑡) = Γ (1 + 𝛼) . (21)

The first approximation can be computed as follows:

𝑢
1
(𝑥) = Γ (1 + 𝛼) +

1

Γ (1 + 𝛼)
∫
1

0

𝑥𝛼Γ (1 + 𝛼) (𝑑𝑡)
𝛼

= Γ (1 + 𝛼) + 𝑥
𝛼.

(22)

Proceeding in this manner, we find the following local
fractional series approximation:

𝑢
2
(𝑥) = Γ (1 + 𝛼) +

1

Γ (1 + 𝛼)
∫
1

0

𝑥𝛼 (Γ (1 + 𝛼) + 𝑡
𝛼) (𝑑𝑡)

𝛼

= Γ (1 + 𝛼) + 𝑥
𝛼 (1 +

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
) .

(23)

Similarly, the third approximation reads as follows:

𝑢
3
(𝑥) = Γ (1 + 𝛼) +

1

Γ (1 + 𝛼)

× ∫
1

0

𝑥𝛼 (Γ (1 + 𝛼) + 𝑡
𝛼 (1 +

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
)) (𝑑𝑡)

𝛼

= Γ (1 + 𝛼) + 𝑥
𝛼 (1 +

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
+
Γ2 (1 + 𝛼)

Γ2 (1 + 2𝛼)
) .

(24)

The fourth approximation yields

𝑢
4
(𝑥) = Γ (1 + 𝛼) +

1

Γ (1 + 𝛼)

× ∫
1

0

𝑥𝛼 (Γ (1 + 𝛼) + 𝑡
𝛼

× (1+
Γ (1+𝛼)

Γ (1+2𝛼)
+
Γ2 (1+𝛼)

Γ2 (1+2𝛼)
)) (𝑑𝑡)

𝛼

= Γ (1 + 𝛼) + 𝑥
𝛼 (1 +

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

+
Γ2 (1 + 𝛼)

Γ2 (1 + 2𝛼)
+
Γ3 (1 + 𝛼)

Γ3 (1 + 2𝛼)
) .

(25)

In conclusion, we get

𝑢
𝑛
(𝑥) = Γ (1 + 𝛼) + 𝑥

𝛼

𝑛

∑
𝑖=0

(
Γ (1 + 𝛼)

Γ (1 + 2𝛼)
)

𝑛

. (26)

Hence,

𝑢 (𝑥) = lim
𝑛→∞

𝑢
𝑛
(𝑥)

= Γ (1 + 𝛼) + 𝑥
𝛼 lim
𝑛→∞

𝑛

∑
𝑖=0

(
Γ (1 + 𝛼)

Γ (1 + 2𝛼)
)

𝑛

= Γ (1 + 𝛼) +
𝑥𝛼Γ (1 + 𝛼)

Γ (1 + 2𝛼) − Γ (1 + 𝛼)
.

(27)
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Example 2. Obtain the solution of the following local frac-
tional Volterra equation:

𝑢 (𝑥) = 1 +
𝑥𝛼

Γ (1 + 𝛼)
+

1

Γ (1 + 𝛼)
∫
𝑥

0

(𝑡 − 𝑥)𝛼

Γ (1 + 𝛼)
𝑢 (𝑡) (𝑑𝑡)

𝛼.

(28)

Suppose that there exists the solution in the following local
fractional series form:

𝑢 (𝑥) =
∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼. (29)

Then, upon substituting the local fractional series into the
equation, we find that

∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼

=
𝑥𝛼

Γ (1 + 𝛼)
+

1

Γ (1 + 𝛼)
∫
𝑥

0

(𝑡 − 𝑥)𝛼

Γ (1 + 𝛼)

∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼(𝑑𝑡)

𝛼

=
𝑥𝛼

Γ (1 + 𝛼)
−
∞

∑
𝑛=1

Γ (𝑛𝛼 + 1) 𝑎
𝑛
𝑥(𝑛+2)𝛼

Γ ((𝑛 + 2) 𝛼 + 1)
.

(30)

Comparing the coefficients of the same powers of 𝑥𝛼, we get

𝑎
0
= 1, 𝑎

1
=

1

Γ (1 + 𝛼)
,

𝑎
2
= −

𝑎
0

Γ (2𝛼 + 1)
, 𝑎

3
= −
Γ (𝛼 + 1) 𝑎

1

Γ (3𝛼 + 1)
,

...

𝑎
𝑛
= −

Γ ((𝑛 − 2) 𝛼 + 1) 𝑎
𝑛−2

Γ (𝑛𝛼 + 1)
,

(31)

and so on. Thus, the values of the coefficients can be
calculated as follows:

𝑎
0
= 1, 𝑎

1
=

1

Γ (1 + 𝛼)
,

𝑎
2
= −

1

Γ (2𝛼 + 1)
, 𝑎

3
= −

1

Γ (3𝛼 + 1)
,

𝑎
4
=

1

Γ (4𝛼 + 1)
, 𝑎

5
=

1

Γ (5𝛼 + 1)
,

𝑎
6
= −

1

Γ (6𝛼 + 1)
, 𝑎

7
= −

1

Γ (7𝛼 + 1)
,

...

(32)

Hence, the local fractional series solution is given by

𝑢 (𝑥) =
∞

∑
𝑛=1

𝑎
𝑛
𝑥𝑛𝛼

= (1 −
𝑥3𝛼

Γ (3𝛼 + 1)
+

𝑥5𝛼

Γ (5𝛼 + 1)
−

𝑥7𝛼

Γ (7𝛼 + 1)
+ ⋅ ⋅ ⋅ )

+ (
𝑥𝛼

Γ (1 + 𝛼)
−

𝑥2𝛼

Γ (2𝛼 + 1)
+

𝑥4𝛼

Γ (4𝛼 + 1)

−
𝑥6𝛼

Γ (6𝛼 + 1)
+ ⋅ ⋅ ⋅ )

= cos
𝛼
𝑥𝛼 + sin

𝛼
𝑥𝛼,

(33)

which are satisfied with the condition given by [34, 39]

𝐸
𝛼
(𝑖𝛼𝑥𝛼) = cos

𝛼
𝑥𝛼 + 𝑖𝛼sin

𝛼
𝑥𝛼, (34)

where the Mittag-Leffler function defined on fractal set of
fractal dimension 𝛼 is suggested by [34, 39]

𝐸
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

𝑥𝛼𝑘

Γ (1 + 𝑘𝛼)
. (35)

5. Conclusions

Local fractional differential and integral operators have
proven to be useful tools to deal with everywhere continuous
(but nowhere differentiable) functions in fractal areas ranging
from fundamental science to engineering. In this paper, it is
proven that a new Neumann series method can be used for
solving the local fractional Fredholm and Volterra integral
equations, and their solutions are fractal functions. The
proposed method is efficient and leads to accurate, approx-
imately convergent solutions to local fractional Fredholm
and Volterra integral equations. It is demonstrated that the
solutions of local fractional Fredholm and Volterra integral
equations are fractal functions, which are equippedwith local
fractional continuities. However, the classical and fractional
Neumann series methods [41–44] were only applied to
continuous functions.

Appendix

The following properties of local fractional integral operator
are valid [34].

(a) For any𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏), 0 < 𝛼 ≤ 1, we have local

fractionalmultiple integrals, which are written as [34]

𝑥0
𝐼(𝑘𝛼)
𝑥
𝑓 (𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑥0
𝐼(𝛼)
𝑥
. . .
𝑥0
𝐼(𝛼)
𝑥
𝑓 (𝑥) .

(A.1)

(b) If 𝜓(𝑥, 𝑦) ∈ 𝐶
𝛼
(𝑎, 𝑏) × 𝐶

𝛼
(𝑐, 𝑑), then [34]

𝑎
𝐼(𝛼)
𝑏 𝑐
𝐼(𝛼)
𝑏
𝜓 (𝑥, 𝑦) =

𝑐
𝐼(𝛼)
𝑑 𝑎
𝐼(𝛼)
𝑏
𝜓 (𝑥, 𝑦) . (A.2)
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(c) The sine and cosine subfunctions can, respectively, be
written as follows [34, 39]:

sin
𝛼
𝑥𝛼 =

∞

∑
𝑘=0

(−1)
𝑘

𝑥𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]
,

cos
𝛼
𝑥𝛼 =

∞

∑
𝑘=0

(−1)
𝑘

𝑥2𝛼𝑘

Γ (1 + 2𝛼𝑘)
, 0 < 𝛼 ≤ 1.

(A.3)

(d) Suppose that𝑓(𝑡) is local fractional continuous on the
interval [𝑎, 𝑏]. Then

𝑎
𝐼(𝛼)
𝑥 𝑎
𝐼(𝛼)
𝜏
𝑓 (𝑡) =

𝑎
𝐼(𝛼)
𝑥

(𝑥 − 𝑡)𝛼𝑓 (𝑡)

Γ (1 + 𝛼)
(𝑥 ∈ [𝑎, 𝑏]) . (A.4)

(e) We have

0
𝐼(𝛼)
𝑥 0
𝐼(𝛼)
𝜏

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
=

𝑡(𝑘+2)𝛼

Γ ((𝑘 + 2) 𝛼 + 1)
. (A.5)
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