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We present a design method for iterative learning control system by using an output recurrent neural network (ORNN).
Two ORNNs are employed to design the learning control structure. The first ORNN, which is called the output recurrent
neural controller (ORNC), is used as an iterative learning controller to achieve the learning control objective. To guarantee the
convergence of learning error, some information of plant sensitivity is required to design a suitable adaptive law for the ORNC.
Hence, a second ORNN, which is called the output recurrent neural identifier (ORNI), is used as an identifier to provide the
required information. All the weights of ORNC and ORNI will be tuned during the control iteration and identification process,
respectively, in order to achieve a desired learning performance. The adaptive laws for the weights of ORNC and ORNI and
the analysis of learning performances are determined via a Lyapunov like analysis. It is shown that the identification error will
asymptotically converge to zero and repetitive output tracking error will asymptotically converge to zero except the initial resetting
error.

1. Introduction

Iterative learning control (ILC) system has become one of
the most effective control strategies in dealing with repeated
tracking control of nonlinear plants. The ILC system
improves the control performance by a self-tuning process in
the traditional PID-type ILC algorithms for linear plants or
affine nonlinear plants with nonlinearities satisfying global
Lipschitz continuous condition [1–3]. Recently, the ILC
strategies combined with other control methodologies such
as observer-based iterative learning control [4], adaptive iter-
ative learning control [5], robust iterative learning control
[6], or adaptive robust iterative learning control [7], have
been widely studied in order to extend the applications to
more general class of nonlinear systems. However, more and
more restrictions are required in theory to develop these
learning controllers. Among these ILC algorithms, PID-
type ILC algorithms are still attractive to engineers since
they are simple and effective for real implementations and
industry applications. A main problem of the PID-type
ILC algorithms is that a sufficient condition required to

guarantee learning stability and convergence will depend on
plant’s input/output coupling function (matrix). In general,
it is hard to design the learning gain if the nonlinear
dynamic plant is highly nonlinear and unknown. In order
to get the input/output coupling function (matrix), the ILC
using a neural or fuzzy system to solve the learning gain
implementation problem can be found in [8, 9]. A neural
network or a fuzzy system was used to approximate the
inverse of plant’s input/output coupling function (matrix).
The inverse function (matrix) is claimed to be an optimal
choice of the learning gain from a convergent condition point
of view. As the nonlinear system is assumed to be unknown,
some offline adaptive mechanisms are applied to update
the network parameters in order to approximate the ideal
optimal learning gain.

Actually, for control of unknown nonlinear systems,
neural-network-based controller has become an important
strategy in the past two decades. Multilayer neural networks,
recurrent neural networks and dynamic neural network [10–
16] were used for the design of adaptive controllers. On
the other hand, fuzzy logic system, fuzzy neural network,
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recurrent fuzzy neural networks and dynamic fuzzy neural
network were also a popular tool for the design of adaptive
controllers [17–22]. These concepts have also been applied to
the design of adaptive iterative learning control of nonlinear
plants [23–25]. However, few ILC works were developed
for general unknown nonlinear plants, especially nonaffine
nonlinear plants. As the authors can understand, a real-
time recurrent network (RTRN) was developed in [26] for
real-time learning control of general unknown nonlinear
plants. But unfortunately, their learning algorithm depends
on the generalized inverse of weight matrix in the RTRN. If
the generalized inverse of weight matrix does not exist, the
learning control scheme is not implementable.

In this paper, we consider the design of an iterative
learning controller for a class of unknown nonlinear dynamic
plants. Motivated by our previous work in [27], an improved
version of an identifier-based iterative learning controller
is proposed by using an output recurrent neural network
(ORNN). Two ORNNs are used to design an ORNN-based
iterative learning control system. The proposed ORNN-
based ILC system includes an ORNN controller (ORNC)
and an ORNN identifier (ORNI). The ORNC is used as
an iterative learning controller to achieve the repetitive
tracking control objective. The weights of ORNC are tuned
via adaptive laws determined by a Lyapunov-like analysis.
In order to realize the adaptive laws and guarantee the
convergence of learning error, some information of the
unknown plant sensitivity is required for the design of adap-
tive laws. Hence, the ORNI is then applied as an identifier
to provide the required information from plant sensitivity.
In a similar way, the weights of ORNI are tuned via some
adaptive laws determined by a Lyapunov-like analysis. Both
of the proposed ORNC and ORNI update their network
weights along the control iteration and identification process,
respectively. This ORNN-based ILC system can be used to
execute a repetitive control task of a general nonlinear plant.
It is shown that the identification error will asymptotically
converge to zero and repetitive output tracking error will
asymptotically converge to zero except the initial resetting
error.

This paper is organized as follows. The structure of
ORNN is introduced in Section 2. In Section 3, we present
the design of ORNC and ORNI for the ORNN-based ILC
system. The adaptation laws are derived and the learning per-
formance is guaranteed based on a Lyapunov-like analysis.
To illustrate the effectiveness of the proposed ILC system,
a numerical example is used in Section 4 for computer
simulation. Finally a conclusion is made in Section 5.

In the subsequent discussions, the following notations
will be used in all the sections.

(i) |z| denotes the absolute value of a function z.

(ii) ‖v‖ = √(v�v) denotes the usual Euclidean norm of a
vector v = [v1, . . . , vn]� ∈ Rn.

(iii) ‖A‖ = max1≤i≤n{
∑m

j=1 |ai j|} denotes the norm of a
matrix A = {ai j} ∈ Rn×m.

· · · · · · · · ·

· · ·
Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

D

O(3)(t)

x1(t) xn(t)

Figure 1: Structure of the ORNN.

2. The Output Recurrent Neural Network

In this paper, two ORNNs are used to design an iterative
learning control system. The structure of the ORNN is shown
in Figure 1, which comprises an input layer, a hidden layer,
and an output layer.

(i) Layer 1 (Input Layer): Each node in this layer
represents an input variable, which only transmits
input value to the next layer directly. For the ith input
node, i = 1, . . . ,n + 1,

net(1)
i =

⎧
⎨

⎩
xi, i = 1, . . . ,n

D
[
O(3)

]
, i = n + 1

O(1)
i = f (1)

i

(
net(1)

i

)
= net(1)

i ,

(1)

where xi, i = 1, . . . ,n represents the ith external input
signal to the ith node of layer 1, and D[O(3)] denotes
the delay of ORNN output O(3) whcih can be further
defined as xn+1 = D[O(3)].

(ii) Layer 2 (Hidden Layer): Each node in this layer
performs an activation function whose inputs come
from input layer. For the �th hidden node, a sigmoid
function is adopted here such that the �th node, � =
1, . . . ,M will be represented as

net(2)
� =

n+1∑

i=1

Vi�x
(2)
i ,

O(2)
� = f (2)

�

(
net(2)

�

)
= 1

1 + exp
(
−net(2)

�

) ,
(2)

where x(2)
i = O(1)

i , Vi� is the connective weight
between the input layer and the hidden layer, M is
the number of neuron in the hidden layer.
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(iii) Layer 3 (Output Layer): Each node in this layer
represents an output node, which computes the
overall output as the summation of all input signals
from hidden layer. For the output node,

net(3) =
M∑

�=1

w� · x(3)
� ,

O(3) = f (3)
(

net(3)
)
= net(3),

(3)

where x(3)
� = O(2)

� and w� is the connective weight
between the hidden layer and the output layer.

Let n denotes the dimension of input vector X =
[x1, . . . , xn]� ∈ Rn×1 of nonlinear function f (X) and M
denotes the number of neurons in the hidden layer, the
ORNN which performs as an approximator of the nonlinear
function f (X) is now described in a matrix form as follows:

O(3)
(

D
[
O(3)

]
,X ,W ,V

)
=W�O(2)(V�Xa), (4)

where W ∈ RM×1 and V ∈ R(n+1)×M are output-
hidden wight matrix and hidden-input weight matrix,
respectively, X ∈ Rn×1 is the external input vector,
Xa ≡ [X�, D[O(3)]]

� ∈ R(n+1)×1 is the augmented neural
input vector, and D[O(3)] denotes the delay of ORNN
output O(3). The activation function vector is defined as

O(2)(V�Xa) ≡ [O(2)
1 (V�

1 Xa), . . . ,O(2)
M (V�

MXa)]
� ∈ RM×1

whereV = [V1,V2, . . . ,VM] with V� ∈ R(n+1)×1 being the �th

column vector, and O(2)
� (V�

� Xa) ≡ 1/(1 + exp(−V�
� Xa)) ∈ R,

� = 1, . . . ,M is a sigmoid function.

3. Design of Output-Recurrent-
Neural- Network-Based Iterative
Learning Control System

In this paper, we consider an unknown nonlinear dynamic
plant which can perform a given task repeatedly over a finite
time sequence t = {0, . . . ,N} as follows:

y j(t + 1) = f
(
y j(t), . . . , y j(t − n + 1),uj(t)

)
, (5)

where j ∈ Z+ denotes the index of control iteration number
and t = {0, . . . ,N} denotes the time index. The signals
y j(t) and uj(t) ∈ R are the system output and input,
respectively. f : Rn+1 → R is the unknown continuous
function, n represents the respective output delay order.
Given a specified desired trajectory yd(t), t ∈ {0, . . . ,N},
the control objective is to design an output-recurrent-neural-
network-based iterative learning control system such that
when control iteration number j is large enough, |yd(t) −
y j(t)| will converge to some small positive error tolerance
bounds for all t ∈ {0, . . . ,N} even if there exists an initial
resetting error. Here the initial resetting error means that
yd(0) /= y j(0) for all j ≥ 1. To achieve the control objective,
an iterative learning control system based on ORNN design
is proposed in Figure 2. In this figure, D denotes the delay in
time domain and M denotes the memory in control iteration
domain.

r(t)

ORNC

M

D

ORNI

A.L.

A.L.

Dynamic
plant

Reference model

+
−

uj(t) y j(t + 1)

uj−1(t)
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yd(t + 1)

•

+
−

sgn(y
j
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e
j
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ŷk(t + 1)

ekI (t +1)

Figure 2: Block diagram of the ORNN-based ILC system.

Before we state the design steps of the proposed control
structure, some assumptions on the unknown nonlinear
system and desired trajectories are given as follows.

(A1) The nonlinear dynamic plant is a relaxed system
whose input uj(t) and output y j(t) are related by
y j(t) = 0 for all t ∈ {−∞, . . . ,−1}.

(A2) There exists a bounded unknown upper bounding

function yu,max(t) = max∀ j|y j
u(t)| such that 0 <

|y j
u(t)| ≤ yu,max(t), where the factor y

j
u(t) = ∂y j(t +

1)/∂uj(t) represents the sensitivity of the plant with
respect to its input.

(A3) The reference model is designed to generate
the bounded desired trajectory yd(t + 1) =
fd(yd(t), . . . , yd(t − n + 1), r(t)), which is based
on a specified bounded reference input r(t) with
fd : Rn+1 → R being a continuous function.

The design of the ORNN-based iterative learning control
system is divided into two parts.

3.1. Part 1: Design of ORNC and Corresponding Adaptive
Laws. Based on the assumptions on the nonlinear plant (5),

we define a tracking error e
j
c(t) at jth control iteration as

follows:

e
j
c(t) = yd(t)− y j(t). (6)

It is noted that there exist bounded constants ε
j
c , j ∈ Z+ such

that the initial value of e
j
c(t) will satisfy

∣
∣∣e

j
c(0)

∣
∣∣ = ε

j
c . (7)
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The difference of e
j
c(t) between two successive iterations can

be computed as [28]

Δe
j
c(t + 1) = e

j+1
c (t + 1)− e

j
c(t + 1)

= −
(
y j+1(t + 1)− y j(t + 1)

)

≈ −∂y j(t + 1)
∂uj(t)

(
uj+1(t)− uj(t)

)

≡ −y j
u(t)

(
uj+1(t)− uj(t)

)
.

(8)

The ORNN is used to design an ORNC in order to
achieve the iterative learning control objective. Let nc
be the dimension of the external input vector X

j
c (t) =

[r(t), y j(t),uj−1(t), ]
� ∈ Rnc×1 and Mc denote the number

of neurons in hidden layer of the ORNC. The ORNC which
performs as an iterative learning controller is described in a
matrix form as follows:

uj(t) = O(3)
c

(
D
[
O(3)

c
j
(t)
]

,X
j
c (t),W

j
c (t),V

j
c (t)

)

=W
j
c (t)�O(2)

c

(
V

j
c (t)�X j

ca(t)
)

,
(9)

where W
j
c (t) ∈ RMc×1 and V

j
c (t) ∈ R(nc+1)×Mc are output-

hidden wight matrix and hidden-input weight matrix to
be tuned via some suitable adaptive laws, respectively, and

X
j
ca(t) ≡ [X

j
c (t)�, D[O

(3) j
c (t)]]

� ∈ R(nc+1)×1 is the augmented
neural input vector. For the sake of convenience, we define

O(2)
c (V

j
c (t)�X j

ca(t)) ≡ O(2)
c

j
(t). Now substituting (9) into (8),

we will have

Δe
j
c(t + 1) = −y j

u(t)
(
W

j+1
c (t)�O(2)

c
j+1

(t)−W
j
c (t)�O(2)

c
j
(t)
)
.

(10)

For simplicity, we define ΔX
j
ca(t) = X

j+1
ca (t) − X

j
ca(t),

ΔW
j
c (t) =W

j+1
c (t)−W

j
c (t), ΔV

j
c (t) = V

j+1
c (t)−V

j
c (t). After

adding and subtracting W
j
c (t)�O(2)

c
j+1

(t) to (10), we can find
that

Δe
j
c(t + 1) = −y j

u(t)ΔW
j
c (t)�O(2)

c
j+1

(t)

− y
j
u(t)W

j
c (t)�

(
O(2)

c
j+1

(t)−O(2)
c

j
(t)
)
.

(11)

Investigating the second term in the right hand side of (11)
by using the mean-value theorem, we have

O(2)
c

j+1
(t)−O(2)

c
j
(t)

= O(2)
c

′ j
(t)
(
V

j+1
c (t)�X j+1

ca (t)−V
j
c (t)�X j

ca(t)
)

= O(2)
c

′ j
(t)
(
V

j+1
c (t)�X j+1

ca (t)−V
j
c (t)�X j+1

ca (t)

+V
j
c (t)�X j+1

ca (t)−V
j
c (t)�X j

ca(t)
)

= O(2)
c

′ j
(t)
(
ΔV

j
c (t)�X j+1

ca (t) + V
j
c (t)�ΔX j

ca(t)
)

,

(12)

where O(2)
c
′ j

(t) = diag[O(2)
c,1

′ j
(t), . . . ,O(2)′ j

c,Mc
(t)] ∈ RMc×Mc with

O(2)
c,l

′ j
(t) ≡ dO(2)

c,�

j
(Zc,�(t))/dZc,�(t)|Zc,�(t), Zc,�(t) has a value

between V
j+1
c,� (t)�X j+1

ca (t) and V
j
c,�(t)

�X j
ca(t), � = 1, . . . ,Mc.

Now if we substitute (12) into (11), we will have

Δe
j
c(t + 1) = −y j

u(t)ΔW
j
c (t)�O(2)

c
j+1

(t)

− y
j
u(t)W

j
c (t)�O(2)

c
′ j

(t)

×
(
ΔV

j
c (t)�X j+1

ca (t) + V
j
c (t)�ΔX j

ca(t)
)
.

(13)

The adaptation algorithms for weights W
j+1
c (t) and V

j+1
c (t)

of ORNC at (next) j + 1th control iteration to guarantee the
error convergence are given as follows:

W
j+1
c (t) =W

j
c (t) +

sgn
(
y
j
u(t)

)
e
j
c(t + 1)O(2)

c
j+1

(t)

yu,max(t)Mc
, (14)

V
j+1
c (t) = V

j
c (t)− X

j+1
ca (t)ΔX

j
ca(t)�V j

c (t)
∥
∥
∥X

j+1
ca (t)

∥
∥
∥

2 , (15)

where yu,max(t) is defined in assumption (A2). If we substi-
tute adaptation laws (14) and (15) into (13), we can find that

e
j+1
c (t + 1) = e

j
c(t + 1)− e

j
c(t + 1)

×
∣
∣
∣y

j
u(t)

∣
∣
∣O(2)

c
j+1

(t)�O(2)
c

j+1
(t)

yu,max(t)Mc
.

(16)

Theorem 1. Consider the nonlinear plant (5) which satisfies
assumptions (A1)–(A3). The proposed ORNC (9) and adapta-
tion laws (14) and (15) will ensure the asymptotic convergence
of tracking error as control iteration approaches infinity.

Proof. Let us choose a discrete-type Lyapunov function as

E
j
c (t + 1) = 1

2

(
e
j
c(t + 1)

)2
, (17)

then the change of Lyapunov function is

ΔE
j
c (t + 1) = E

j+1
c (t + 1)− E

j
c (t + 1)

= 1
2

[(
e
j+1
c (t + 1)

)2 −
(
e
j
c(t + 1)

)2
]
.

(18)

Taking norms on (16), it yields

∣∣
∣e

j+1
c (t + 1)

∣∣
∣ =

∣∣
∣
∣∣
∣
∣
∣∣

e
j
c(t + 1)

⎡

⎢
⎢
⎢
⎣

1−

∣
∣
∣y

j
u(t)

∣
∣
∣

∥∥
∥
∥O

(2)
c

j+1
(t)
∥∥
∥
∥

2

yu,max(t)Mc

⎤

⎥
⎥
⎥
⎦

∣∣
∣
∣∣
∣
∣
∣∣

<
∣∣
∣e

j
c(t + 1)

∣∣
∣

(19)

for iteration j ≥ 1. This further implies that E
j
c (t + 1) > 0,

ΔE
j
c (t + 1) < 0, for all t ∈ {0, . . . ,N} for j ≥ 1. Using

Lyapunov stability of E
j
c (t + 1) > 0, ΔE

j
c (t + 1) < 0 and (7),

the tracking error e
j
c(t) will satisfy

lim
j→∞

∣
∣
∣e

j
c(t)

∣
∣
∣ =

{
ε∞c , t = 0

0, t /= 0.
(20)

This proves Theorem 1.
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Remark 2. If the plant sensitivity y
j
u(t) is completely known

so that sgn(y
j
u(t)) and yu,max(t) are available, then the control

objective can be achieved by using the adaptation algorithms

(14) and (15). However, the plant sensitivity y
j
u(t) is in

general unknown or only partially known. In part 2, we
will design an ORNN-based identifier (ORNI) to estimate

the unknown plant sensitivity y
j
u(t) and then provide the

sign function and upper bounding function of y
j
u(t) for

adaptation algorithms of ORNC.

3.2. Part 2: Design of ORNI and Corresponding Adaptive
Laws. After each control iteration, the ORNI subsequently
begins to perform identification process. The trained ORNI
will then provide the approximated plant sensitivity to the
ORNC to start the next control iteration. We would like to
emphasize that the ORNI only identifies the nonlinear plant
after each control iteration. This concept is quite different
from traditional control tasks [29] and very important to the
proposed ORNN-based ILC structure.

The structure of ORNN is further applied to design an
ORNI to identify the nonlinear plant after the jth control
iteration. The identification process is stated as follows. After
each trial of controlling the nonlinear system, we collect
the input output data uj(t) and y j(t), t = 0, 1, . . . ,N +
1 as the training data for the identifier. When discussing
the identification, we omit the control iteration index j
and introduce a new identification iteration index k ∈
Z+ to represent the number of identification process. That
is, the notation for the training data uj(t), y j(t) and the
ORNI output ŷ j,k(t) are simplified as u(t), y(t), and ŷk(t),
respectively. For the ORNI, let nI be the dimension of
external input vector XI(t) = [u(t), y(t)]� ∈ RnI×1 and MI

denote the number of neurons in hidden layer of the ORNI.
The ORNI which performs as an iterative learning identifier
for nonlinear plant (5) is now described in a matrix form as
follows:

ŷk(t + 1) = O(3)
I

(
D
[
O(3)

I

k
(t)
]

,Xk
Ia(t),Wk

I (t),Vk
I (t)

)

=Wk
I (t)�O(2)

I

(
Vk
I (t)�Xk

Ia(t)
)

,
(21)

where Wk
I (t) ∈ RMI×1 and Vk

I (t) ∈ R(nI+1)×MI are output-
hidden wight matrix and hidden-input weight matrix to
be tuned via some suitable adaptive laws, respectively, and

Xk
Ia(t) ≡ [XI(t)

�, D[O(3)k
I (t)]]

� ∈ R(nI+1)×1 is the augmented
neural input vector. For the sake of convenience, we define

O(2)
I (Vk

I (t)�Xk
Ia(t)) ≡ O(2)

I

k
(t).

Based on the assumptions on the nonlinear plant (5),
we define an identification error ekI (t) at kth identification
process as follows:

ekI (t) = y(t)− ŷk(t). (22)

The difference of ekI (t) between two successive identification
process can be computed as

ΔekI (t + 1) = ek+1
I (t + 1)− ekI (t + 1)

= −
(
ŷk+1(t + 1)− ŷk(t + 1)

)
.

(23)

Now substituting (21) into (23), we will have

ΔekI (t + 1) = −
(
Wk+1

I (t)�O(2)
I

k+1
(t)−Wk

I (t)�O(2)
I

k
(t)
)
.

(24)

For simplicity, we define ΔXk
Ia(t) = Xk+1

Ia (t) − Xk
Ia(t),

ΔWk
I (t) =Wk+1

I (t)−Wk
I (t), ΔVk

I (t) = Vk+1
I (t)−Vk

I (t). After

adding and subtracting Wk
I (t)�O(2)

I

k+1
(t) to (24), we can find

ΔekI (t + 1) = −ΔWk
I (t)�O(2)

I

k+1
(t)

−Wk
I (t)�

(
O(2)

I

k+1
(t)−O(2)

I

k
(t)
)
.

(25)

Investigating the second term in the right hand side of (25)
by using the mean-value theorem, we can derive

O(2)
I

k+1
(t)−O(2)

I

k
(t)

= O(2)
I

′k
(t)
(
Vk+1
I (t)�Xk+1

Ia (t)−Vk
I (t)�Xk

Ia(t)
)

= O(2)
I

′k
(t)
(
Vk+1
I (t)�Xk+1

Ia (t)−Vk
I (t)�Xk+1

Ia (t)

+Vk
I (t)�Xk+1

Ia (t)−Vk
I (t)�Xk

Ia(t)
)

= O(2)
I

′k
(t)
(
ΔVk

I (t)�Xk+1
Ia (t) + Vk

I (t)�ΔXk
Ia(t)

)
,

(26)

where O(2)
I

′k
(t) = diag[O(2)

I ,1

′k
(t), . . . ,O(3)′k

I ,MI
(t)] ∈ RMI×MI with

O(2)
I ,�

′k
(t) ≡ dO(2)

I ,�

k
(ZI ,�(t))/dZI ,�(t)|ZI ,�(t), ZI ,�(t) has a value

between Vk+1
I ,� (t)�Xk+1

Ia (t) and V
j
I ,�(t)

�Xk
Ia(t), � = 1, . . . ,MI .

Now if we substitute (26) into (25), we will have

ΔekI (t + 1) = −ΔWk
I (t)�O(2)

I

k+1
(t)

−Wk
I (t)�O(2)

I

′k
(t)

×
(
ΔVk

I (t)�Xk+1
Ia (t) + Vk

I (t)�ΔXk
Ia(t)

)
.

(27)

The adaptation algorithms for weights Wk+1
I (t) and

Vk+1
I (t) of ORNI at (next) k + 1th identification process are

given as follows:

Wk+1
I (t) =Wk

I (t) +
ekI (t + 1)O(2)

I

k+1
(t)

MI

Vk+1
I (t) = Vk

I (t)− Xk+1
Ia (t)ΔXk

Ia(t)�Vk
I (t)

∥∥
∥Xk+1

Ia (t)
∥∥
∥

2 .
(28)

If we substitute adaptation laws (28) into (27), we have

ek+1
I (t + 1) = ekI (t + 1)− ekI (t + 1)

O(2)
I

k+1
(t)�O(2)

I

k+1
(t)

MI
.

(29)

Theorem 3. Consider the nonlinear dynamic plant (5) which
satisfies assumptions (A1)–(A3). The proposed ORNI (21)
and adaptation laws (28) will ensure that the asymptotic
convergence of identification error is guaranteed as the numbers
of identification approach infinity.
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Proof. Let us choose a discrete-type Lyapunov function as

Ek
I (t + 1) = 1

2

(
ekI (t + 1)

)2
, ∀t ∈ {0, . . . ,N}, (30)

then we can derive the change of Lyapunov function as

ΔEk
I (t + 1) = Ek+1

I (t + 1)− Ek
I (t + 1)

= 1
2

[(
ek+1
I (t + 1)

)2 −
(
ekI (t + 1)

)2
]
.

(31)

Taking norms on (29), we have

∣
∣
∣ek+1

I (t + 1)
∣
∣
∣ =

∣
∣
∣ekI (t + 1)

∣
∣
∣

∣
∣
∣∣
∣
∣
∣∣
∣

1−

∥
∥
∥
∥O

(2)
I

k+1
(t)
∥
∥
∥
∥

2

MI

∣
∣
∣∣
∣
∣
∣∣
∣

<
∣∣
∣ekI (t + 1)

∣∣
∣

(32)

for iteration k ≥ 1. This implies that Ek
I (t + 1) > 0, ΔEk

I (t +
1) < 0, for all t ∈ {0, . . . ,N} for k ≥ 1, and hence the
identification error ekI (t) will satisfy limk→∞|ekI (t)| = 0, for
all t ∈ {0, 1, . . . ,N}. This proves Theorem 3.

Remark 4. The ORNN is a promising tool for identification
because it can approximate any “well-behaved” nonlinear
function to any desired accuracy. This good function approx-
imation is applied to estimate the unknown plant sensitivity

in this paper. The plant sensitivity y
j
u(t) in (8) can be

approximated as follows:

y
j
u(t) ≡∂y j(t + 1)

∂uj(t)
≈ ∂ŷ j(t + 1)

∂uj(t)
. (33)

Note that the index k in the identifier output ŷk(t) is removed
once the identification process stops. Applying the chain rule
to (21), it yields

∂ŷ j(t + 1)
∂uj(t)

= ∂O(3)
I

j
(t)

∂uj(t)
=

MI∑

�=1

∂ŷ j(t + 1)

∂O(2)
I ,�

j
(t)

∂O(2)
I ,�

j
(t)

∂uj(t)

=
MI∑

�=1

w
j
I ,�(t)

∂O(2)
I ,�

j
(t)

∂uj(t)
.

(34)

Also from (21), we have

∂O(2)
I ,�

j
(t)

∂uj(t)
= f (2)

I ,�

′(
net(2)

I ,�

j
(t)
)
∂net(2)

I ,�

j
(t)

∂uj(t)
. (35)

Since the inputs to ORNI are uj(t), y j(t) and D[O(3)
I

j
(t)],

we further have

net(2)
I ,�

j
(t) = V

j
I ,1�(t)u

j(t) + V
j
I ,2�(t)y

j(t)

+ V
j
I ,3�(t)D

[
O(3)

I

j
(t)
]
.

(36)

Thus,

∂net(2)
I ,�

j
(t)

∂uj(t)
= V

j
I ,1�(t). (37)

From (34), (35) and (37), we obtain

ŷ
j
u(t) = ∂ŷ j(t + 1)

∂uj(t)
=

MI∑

�=1

w
j
I ,�(t) f

(2)
I ,�

′(
net(2)

I ,�

j
(t)
)
V

j
I ,1�(t),

(38)

where 0 < f (2)
I ,�

′
(net(2)

I ,�

j
(t)) < 0.5. If we define ‖wj

I (t)‖ ≡
max�|wj

I ,�(t)|, and ‖V j
I ,1(t)‖ ≡ max�|V j

I ,1�(t)|, then

∣
∣
∣ ŷ

j
u(t)

∣
∣
∣ ≤MI

∥
∥
∥w

j
I (t)

∥
∥
∥

∥∥
∥
∥ f

(2)
I ,�

′(
net(2)

I ,�

j
(t)
)
V

j
I ,1(t)

∥∥
∥
∥

≤ MI

2

∥
∥
∥w

j
I (t)

∥
∥
∥
∥
∥
∥V

j
I ,1(t)

∥
∥
∥ ≡ ŷ

j
u,max(t).

(39)

The sign function and upper bounding function of plant
sensitivity after finishing the identification process at jth
control iteration can be obtained as follows:

sgn
(
y
j
u(t)

)
= sgn

(
ŷ
j
u(t)

)

yu,max(t) = max
{
ŷ
j
u,max(t), ŷ

j−1
u,max(t)

}
.

(40)

It is noted that we do not need the exact plant sensitivity y
j
u(t)

for the design of adaptive law (14). Even though there may

exist certain approximation error between y
j
u(t) and ŷ

j
u(t),

we can still guarantee the convergence of learning error since
only a upper bounding function is required. Also note that

the value of sgn(y
j
u(t)) (+1 or −1) can be easily determined

from the identification result.

4. Simulation Example

In this section, we use the proposed ORNN-based ILC
to iteratively control an unknown non-BIBO nonlinear
dynamic plant [26, 29]. The difference equation of the
nonlinear dynamic plant is given as

y j(t + 1) = 0.2
(
y j(t)

)2
+ 0.2y j(t − 1)

+ 0.4 sin
(

0.5
(
y j(t − 1) + y j(t)

))

× cos
(

0.5
(
y j(t − 1) + y j(t)

))

+ 1.2uj(t),

(41)

where y j(t) is the system output, uj(t) is the control input.
The reference model is chosen as

yd(t + 1) = 0.6yd(t) + r(t), yd(0) = 0, (42)

where r(t) = sin(2πt/25) + sin(2πt/10) is a bounded
reference input. The control objective is to force y j(t) to
track the desired trajectory yd(t) as close as possible over a
finite time interval t ∈ {1, . . . , 200} except the initial point.
The network weight adaptation for the ORNI and ORNC
is designed according to (14), (15), and (28), respectively.

In the ORNC, we set W
j
c (t) ∈ R2×1 and V

j
c (t) ∈ R4×2,

that is, only two hidden nodes in layer 2 are used to
construct the ORNC. In a similar way, we let Wk

I (t) ∈ R2×1
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Figure 3: (a) maxt∈{1,...,200}|e jc (t)| versus control iteration j. (b) maxt∈{0,...,200}|e10,k
I (t)| versus identification process k at the 10th control

iteration. (c) y10(t) (dotted line) and yd(t) (solid line) versus time t at the 10th control iteration. (d) ŷ10(t) (dotted line) and y10(t) (solid
line) versus time t at the 10th control iteration. (e) u10(t) at the 10th control iteration versus time t.

and Vk
I (t) ∈ R3×2, that is, only two hidden nodes in

layer 2 are used to set up the ORNI. For simplicity, all
the initial conditions of ORNC parameters are set to be
0 at the first control iteration. In addition, the initial
ORNI parameters are set to be 0 at the first identification
process which begins after the first control iteration. We
assume that the plant initial condition satisfies y j(0) =
2 + randn where randn is a generator of random number
with normal distribution, mean = 0 and variance = 1. To
study the effects of learning performances, we first show the

maximum value of tracking error |e jc(t)|, t ∈ {1, . . . , 200}
with respect to control iteration j in Figure 3(a). It is noted

that |e jc(0)| is omitted in calculating the maximum value of
tracking error since it is not controllable. The identification
error at 10th control iteration |e10,k

I (t)| with respect to
identification process k is shown in Figure 3(b). According
to the simulation results, it is clear that the asymptotic

convergence proved in Theorems 1 and 3 is achieved. Since a
reasonable tracking performance is almost observed at the
10th control iteration, the trajectories between the desired
output yd(t) and plant output y10(t) at the 10th control
iteration are shown to demonstrate the control performance
in Figure 3(c). Figure 3(d) shows the comparison between
the identification result of ŷ10(t) and the plant output y10(t).
The nice identification result enables the ORNI to provide
the required information for the design of ORNC. Finally,
the bounded control input u10(t) is plotted in Figure 3(e).

5. Conclusion

For controlling a repeatable nonaffine nonlinear dynamic
plant, we propose an output-recurrent-neural-network-
based iterative learning control system in this paper. The
control structure consists of an ORNC used as an iterative
learning controller and an ORNI used as an identifier.



8 Journal of Control Science and Engineering

The ORNC is the main controller utilized to achieve the
repetitive control task. The ORNI is an auxiliary component
utilized to provide some useful information from plant
sensitivity for the design of ORNC’s adaptive laws. All the
network weights of ORNC and ORNI will be tuned during
the control iteration and identification process so that no
prior plant knowledge is required. The adaptive laws for the
weights of ORNC and ORNI and the analysis of learning
performances are determined via a Lyapunov-like analysis.
We show that if the ORNI can provide the knowledge of
plant sensitivity for ORNC, then output tracking error will
asymptotically converge to zero except an initial resetting
error. We also show that the objective of identification can
be achieved by the ORNI if the number of identifications is
large enough.
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