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We summarize recent findings linking inflammatory hypoxia to chromatin modifications, in particular to repressive histone
signatures. We focus on the role of Hypoxia-Induced Factor-1 in promoting the activity of specific histone demethylases thus
deeply modifying chromatin configuration. The consequences of these changes are depicted in terms of gene expression and
cellular phenotypes. We finally integrate available data to introduce novel speculations on the relationship between inflammation,

histones, and DNA function and integrity.

1. Introduction

Epigenetic control is a motor of gene regulation. In a broad
sense, it can be viewed as a “bridge” between genotype
and phenotype, as being capable of changing the function
of a given locus without modification of the underlying
sequence. This occurs because both DNA and histones
can be chemically modified in the cell without changing
the base composition, and these modifications are read
by the transcriptional apparatus as a on/off signal. DNA
can be methylated, when needed, mainly on promoter
cytosines, whereas histones can be modified on lysines,
and less frequently on arginines, by methylation and other
modifications, creating a template for heritable changes in
gene expression, the epigenome. In evolutionary terms, the
evolving epigenome is probably increasing the variability and
adaptation of species, as recently shown for Schistosoma
[1]. Moreover, epigenetic modifications are now viewed both
as localized locus-specific changes acting at the single-gene
level and as a global change, capable of reprogramming vast
areas in genomes if needed. The epigenome is the result
of a developmental genetic asset and of the lifetime action
of environment. The main environmental factors able to
cause this extended effect are not well characterized, but
metabolism is emerging as an important candidate. Indeed,
the concurrence of metabolic events and epigenetic changes
in gene expression has a long, often anecdotal record in

science. Metabolism seems to be a prime force behind epi-
genetic configuration and activity, and in this paper we focus
on recent molecular findings linking inflammatory hypoxia
to epigenome configurations; but it should be pointed out
that, reciprocally, epigenetics may regulate cardinal aspects
of cell metabolism as shown by strong epidemiological data
[2] even to the point of causing transgenerational effects (see
below).

2. Epigenetics: Histones under
the Spotlight Again!

More than 40 years ago, Vincent Allfrey proposed that his-
tone modifications could contribute significantly to the reg-
ulation of gene expression [3] but only recently progress has
been made in elucidating in great detail the chemical nature
of these changes and their relationship with metabolism
[4-7]. Now it is known that besides the well-established
HAT/HDAC (histone acetylase/deacetylase) equilibrium, in
which acetylation or deacetylation is strictly correlated
to gene activation or repression, respectively, histones are
known to undergo dozens of other specific modifications,
contributing to the finely tuned control of gene expression.
One such modification is the enzymatic control of histone
3 methylation status at lysine residues; this is viewed as
a central event, linked to a number of cellular processes



including DNA repair, replication, transcriptional activation,
and repression [4].

Histone methylation was once considered enzymatically
irreversible until a histone lysine demethylase (LSD1) was
identified [8]. Subsequently, a large family of jumonji family
(JmjC) domain-containing histone lysine demethylases has
been isolated and their mechanism of action elucidated [9,
10]. The existence of inducible enzymes erasing a histone
methylation mark prompted the concept of bistable states.
Bi-stable systems can exist in usually two alternative states
under the same conditions. One interesting property is that
one of these acquired states can be maintained even after an
external stimulus that initiated the switch is extinguished, a
property called hysteresis [11]. Events such as X chromoso-
mal inactivation or Hox gene expression could be examples
of such regulation. Another is presumably hyperglycemic
memory, a metabolic situation in which the deleterious
effects of the initial insult are remembered by the organism
despite the return to normal glucose levels (see below).

3. Inflammatory Hypoxia Induces HIF-1

In multicellular organisms, oxygen is supplied essentially
by blood circulation, which brings molecular O, to long
distances and wide areas via an intricate network of vessels,
culminating in capillaries. Low oxygenation (hypoxia) occurs
when cells are at a distance greater then roughly 200 nm
from these capillaries, while, within this distance, oxygen can
freely diffuse from cell to cell [12]. Hypoxia is a common
experience in a life of an animal and a frequent event in
inflammation: in acute inflammations (such as many infec-
tions), it is driven mainly—but not exclusively—by factors
such as elevated O, consuption by the pathogen or first-aid
immune cells, or transient ischemia due to vasoconstriction
or compression by local edema; ischemia may be a more
relevant factor in subacute or chronic inflammations, due
for instance to vessel clogging by incoming cellular infiltrate;
moreover, some anatomical districts may be more prone to
undergo inflammatory hypoxia [13].

Hypoxia, including that induced in inflammatory pro-
cesses, induces Hypoxia-Inducible Factor (HIF-1)a, which
binds to and activates regulatory regions of target genes [14].
To do so, it must first bind its partner, HIF-153, and this
interaction is controlled by oxygen levels. When oxygen is
abundant, there is little HIF-1a, it is destroyed under the
direction of the von Hippel-Lindau (VHL) protein—and
what is left cannot bind HIF-18. At low oxygen levels, these
restraints are lifted [15].

HIF-1 is pleiotropic: targets include factors involved in
metabolism and angiogenesis, like the inducible form of
nitric oxide (NO) synthase (iNOS), vascular endothelial
growth factor (VEGF), glucose transporter-1, and several
glycolytic enzymes. Accordingly, studies utilizing knock-
out mice have shown that HIF-1 deletion is lethal during
midterm of embryonic development resulting in major
defects particularly in the vascular system [16].

Inflammation is usually self-contained both in temporal
and structural terms, but one complicating aspect is that

Mediators of Inflammation

Inflammatory O, consumption,

insult (i.e., bacterial
infection)

vasoconstriction, vessel
obstruction ...

ﬂ Hypoxia

HIF causes JMJD activation,
histone 3K9 demethylation
on targets, recruitment and
regulation of incoming cells

New hypoxia

Inflammatory cells
proinflammatory

cytokines

New inflammation

FIGURE 1: A vicious circuit could be established when HIF-1
activates, on recruited inflammatory cells, specific cytokines, such
as IL-10, TNE HIF1 (on macrophages in particular), or IL-4, IL13
(from mastocytes, eosinophils, or other cells). This event would
create new inflammation followed by new hypoxia again.

a vicious circuit (Figure 1) may potentially take place in
which hypoxia itself is bringing about new inflammation,
essentially by HIF’s capacity of calling and regulating the
cellular infiltrate; of cardinal importance among incoming
cells are macrophages, which are capable of responding
promptly to the stimulus (i.e., infections) and inducing a
wide array of proinflammatory mediators such as MIF, TNE,
IL-6, IL-10, and HIF-1 itself again [17-20].

4. HIF-1 Acting on Specific Histone
Demethylases: a Dangerous Liaison?

In addition to the above-mentioned HIF’s direct transac-
tivation of target genes, recent work pointed to HIF-1 as
being capable of “indirect”, albeit dramatic modification of
chromatin structure, particularly in terms of histone code
configuration.

What is the link between HIF-1 and histone modifica-
tions? First, in recent years, evidence has pointed towards
HIF-1 capability of HDAC recruitment and regulation
[20, 21]. Then, and importantly, HIF-1 has been found
to bind specific sites on the promoter of the histone 3
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lysine 9 demethylases thereby inducing their expression.
In particular, it induces JMJD1A and JMJD2A that are
devoted to removal of dimethyl marks on histone 3 lysine
9 (H3K9me2) JMJD2B [22, 23] which removes trimethyl
marks (H3K9me3) and more weakly JMJD2C which converts
H3K9me3 to me2 [24].

Before speculating on the consequences of JMJD acti-
vation in inflammatory hypoxia, we should recollect what
is known on the putative role of H3K9 modification in cell
physiology.

Currently, H3K9 methylation has been linked to the
determination and building of repressive heterochromatin;
for instance, it is established that H3K9 di- and trimethy-
lation creates the binding site for HP1, a conserved het-
erochromatin protein that mediates gene silencing, hete-
rochromatin compaction, and late replication [25]. H3K9
di-trimethylation is enriched in pericentromeric heterochro-
matin, and it is dependent on the Suv39H HMTase activity
[26]. However, pericentromeric chromatin may also be
under complex control; for instance, ncRNAs may play
a role, as loss of RNAi leads to loss of silencing and
H3K9 dimethylation from reporter genes embedded within
centromeric repeats, at least in fission yeast [27].

In Drosophila, it has been shown that HP1 is required
for the normal organization of the nucleolus and heterochro-
matic DNA repeats, and that H3K9 methylation protects
these repeats from being excised from the genome by the
enzyme Ligase 4 [28]. Overall, one strong notion is that
because of H3K9 methylation, the binding of HP1 and the
presence of a compacted chromatin may create a protective
barrier against DNA damage during replication and may
reduce the sensitivity to DNA disrupting agents [28].

On a speculative basis, the removal of H3K9 mark and
the lifting of this protection in inflammation could expose
the cell to the occurrence of cancer initiating events (in the
form of chromosomal instability). Thus, besides the long
recognized role of (chronic) inflammation as instrumental to
cancer progression [29, 30], new data linking inflammation
to initiation can be added to this emerging field [31, 32].

Importantly, the notions discussed in the present paper
indicate one possible (epigenetic) mechanism whereby the
following may occur HIF-1 mediated induction of histone
demethylases, removal of H3K9 methyl marks, loosening of
chromatin compaction, exposure of DNA to instability, or
abnormal transcription of otherwise silent genes.

The perspective linking inflammation to cancer initiation
is obviously a worrisome one, and it is likely that safeguard
mechanisms, such as p53 activation, would be called often
for extra work to protect tissues from dangerous karyotypes
arising [33].

5. A Cellular Scenario Arising

Which transcriptome scenario—hence cellular phenotype—
should be expect within inflammatory hypoxic areas? In a
simplified (and speculative) view, together with the large
panel of targets known to be affected by HIF-1 as a
transactivator, we could witness a whole set of genes being

rapidly derepressed as a result of increased JMJD function,
with unpredictable consequences on cell life. Moreover,
in a genomic “topographical” sense, the extent of this
derepression could be significant if long distance spreading
of the newly acquired modification would take place [34].
Given the known cross-talk between histone and DNA
modifications [35], it would also be of interest to study what
influence the subtraction of such histone repressive mark
may exert on loci bearing repressive methylation on their
promoter DNA, as in the PGC-1a gene in cells treated by
the proinflammatory fatty acid palmitate [36]. Alteration
of the equilibrium between opposing chromatin-modifying
activities (histone code) might also allow the system to jump
from one state to another (bistability). It remains to be seen if
such waves of epigenetic alteration could reach catastrophic
dimensions, like in nuclear reprogramming [37]. Likely,
again, under usual conditions adaptation could restrain the
number of targets or limit spreading in order to ensure the
proper evolution of an inflammatory insult.

Cellular consequences could than range from minor to
significant, depending on the cell maturation level, the time
frame of activation, and the relevance of some target genes.
In an inflammatory context, metaplasia of differentiated cells
has been postulated as one possible outcome [38]. Hypoxia
(via JMJD1A and JMJD2c function) has been implicated
in regulating the properties of stem cells [39, 40]; exit
from stemness would be favoured by the deposition in
key genes of the H3K9 di-trimethylation marks. Thus, one
could speculate that JMJD induction would erase the marks,
counteract the silencing, and presumably help maintaining
the self-renewal state even when not appropriate. In this
case, we could envisage hypoxia as a potential reactivator of
genes that are regulated similarly to Polycomb Group (PcG)
targets, known to be sensitive to H3K27 demethylases [38,
41]. This event would be a potential oncogenic occurrence:
histone repressive marks are thought to keep certain loci
on a hold until a given level of expression is needed, thus
their writing and reading are a developmentally regulated
process that requires tight control throughout life. Although
timely reactivation of some targets would be beneficial to
differentiation and tissue repair during inflammation, other
genes must be kept silent at that time point to maintain the
stem cell pool. The equilibrium between these compartments
is likely to be disrupted in tumours, and this allows us to
look at a cellular theory of cancer with new eyes after so
long has passed since the Virchow hypothesis (1849). It is
therefore central to complete the annotation of the relevant
JMJD demethylase targets in a given tissue and in a given cell
type exposed to hypoxia. Technology is currently available to
this purpose and some results relative to kidney and colon
have already been published [42].

6. Conclusions

The discovery of a relationship between environmental clues
and H3 lysine demethylases sheds new light on the intricacies
of gene expression and advances our understanding on the
epigenetics of inflammation.



We should here stress that, although in this paper we
have focused mainly on the reduction of oxygen tension, it
is clear that, in inflammation, a whole array of molecular
events could concur to alter the histone code, with important
consequences on cell life. For instance, it was found that, in
hyperglycemic memory,NF«B high transcriptional activity is
due to enzymatic erasing of H3K9 methyl marks from its
promoter [43, 44]. This finding discloses a new perspective
on the blueprint left by our alimentary (and possibly other)
habits and emphasizes the link between metabolism and
inflammation (henceNF«B activity) in shaping our evolving
epigenome [45, 46].

Moreover, recent findings suggest that even trans-
generational differences can be due to environmental clues
(such as exposure to chemical compounds or mother’s
diet) acting in the temporal windows of gametogenesis
and embryo implantation, during which massive epigenetic
reprogramming takes place [47]. The impact of inflamma-
tory hypoxia occurring within these developmental time
frames has not been evaluated yet but it could now deserve
attention.

Together, these findings have broad implications for how
we envisage the mechanisms underlying epigenetics and the
every day physiology and offer us a mechanistic glimpse into
the exciting world of dynamic chromatin.

Abbreviations
HAT/HDAC: Histone acetylatilase/deacetylase
IMJD: Jumonji-domain-containing

histone demethylases
H3K9me2,H3K9me3: Di, trimethylated histone3-lysine9

ncRNA: Noncoding RNA
RNAI: RNA interference.
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