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1. INTRODUCTION

Radomes are sheltering structures to protect antennas against
severe weather such as high winds, rain, icing, and/or
temperature extremes [1]. In addition, radomes must not
interfere with normal operation of the antennas. Therefore,
the input reflection of radomes must be negligible at the
usable frequency band of the protected antennas. Inhomo-
geneous planar layers (IPLs) are widely used in microwave
and antenna engineering [2–4]. In this paper, we propose
utilizing IPLs as flat radomes [5, 6] in a desired frequency
range. To optimally design IPLs, the electric permittivity
function of them is expanded in a truncated Fourier series,
first. Then, the optimum values of the coefficients of the
series are obtained through an optimization approach. The
identical procedure has been used to optimally design IPLs
as impedance matchers between two different mediums
previously [7]. Finally, the usefulness of the proposed
structure is verified using some examples.

2. ANALYSIS OF IPLs

In this section, the frequency domain equations of the IPLs
are reviewed. Figure 1 shows a typical IPL with thickness d,
whose left and right mediums are the free space and whose
electric permittivity function is εr(z). One way to fabricate
the IPLs is to place several thin homogeneous dielectric layers
beside each other. It is assumed that the incidence plane wave
propagates obliquely toward positive x and z direction with
an angle of incidence θi and electric filed strength Ei. Also,

two different polarizations are possible, one is TM and the
other is TE. Of course, we know that the wave radiated by
an antenna can be decomposed to many plane waves with
different angle of incidence.

The differential equations describing IPLs have noncon-
stant coefficients and so, except for a few special cases, no
analytical solution exists for them. There are some methods
to analyze the IPLs such as finite difference [8], Taylor ’s series
expansion [9], Fourier series expansion [10], the equivalent
sources method [11], and the method of moments [12]. Of
course, the most straightforward method to analyze IPLs
is subdividing them into K thin homogeneous layers with
thickness
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K
� λmin

∼= c
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√
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in which c is the velocity of the light and fmax is the maximum
analysis frequency. The ABCD parameters [13] of the IPL are
obtained from those of the layers as follows:
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where the ABCD parameters of the kth layer are as follows:
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Figure 1: A typical IPL as a flat radome (a) TE polarization mode, (b) TM polarization mode.
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Figure 2: The electric permittivity function εr(z), considering
(εr)min = 1.05.
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Figure 3: The electric permittivity function εr(z), considering
(εr)min = 1.10.

In (3),
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Figure 4: The magnitude of |Γin( f )| for TE polarization, consider-
ing (εr)min = 1.05.
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Figure 5: The magnitude of |Γin( f )| for TM polarization, consid-
ering (εr)min = 1.05.

is the electrical length of the kth layer and Zc(z, θi) is the
characteristic impedance of the IPL, defined as the ratio of
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Figure 6: The magnitude of |Γin( f )| for TE polarization,
considering (εr)min = 1.10.
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Figure 7: The magnitude of |Γin( f )| for TM polarization, consid-
ering (εr)min = 1.10.

the transverse electric field to the transverse magnetic field,
given by

Zc(z, θi) =
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(5)

Finally, the input impedance and reflection coefficient of the
radome are determined as follows:

Zin( f , θi) = AZL(θi) + B

CZL(θi) +D
,

Γin( f , θi) =
Zin( f , θi)− ZS(θi)
Zin( f , θi) + ZS(θi)

,

(6)
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(7)

are the equivalent load and source impedances, respectively.

3. SYNTHESIS OF RADOMES

In this section, a general method is proposed to optimally
design the IPLs as radomes. First, we consider the following
truncated Fourier series expansion for the electric permittiv-
ity function

ln
(
εr(z)− 1

) =
N∑

n=0

Cncos
(
πnz

d

)
. (8)

The reason to use logarithm function at the left of (8) is
to keep εr(z) ≥ 1. An optimum designed radome has to
have the input reflection coefficient as small as possible in
a desired frequency and incidence angle range. Therefore,
the optimum values of the coefficients Cn in (8) can be
obtained through minimizing the following error function
corresponding to M frequencies, J incidence angles, and two
possible polarizations TE and TM:

Error =

√
√√
√
√
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. (9)

The defined error function should be restricted by some
constraints such as not having a significant reflection at
all incidence angles [0 − θi,max], and easy fabrication,
respectively, as follows:
∣
∣Γin

(
fm, θi, j

)∣∣ ≤ ρmax, ∀m=1, 2, . . . ,M, ∀ j=1, 2, . . . , J ,

POL. = TE and TM,
(10)

εr(z) ≤ (εr
)

max, (11)

εr = 1
d

∫ d

0
εr(z)dz ≥ (εr

)
min, (12)

where (εr)max is the maximum value of εr(z), in the
fabrication step. It is noticeable that the constraint (12) is
necessary to avoid obtaining the wrong solution εr(z) = 1
(the free apace) in the optimization process. Also, to enforce
the designed radomes to be symmetric, we have to use the
following truncated Fourier series instead of (8) for the
electric permittivity function

ln
(
εr(z)− 1

) =
N∑

n=0

C′ncos
(

2πnz
d

)
. (13)

To solve the above constrained minimization problem, we
can use the fmincon. m file in the MATLAB program. fmincon
uses a sequential quadratic programming (SQP) method, in
which a quadratic programming (QP) subproblem is solved
at each of its iteration.
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Figure 8: The electric permittivity function εr(z), considering (εr)min = 1.05 (a) d = 2.5 cm, (b) d = 5.0 cm, (c) d = 7.5 cm, (d) d = 10 cm.

Table 1: The unknown coefficients of the truncated Fourier series for d = 2.5 cm.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

(εr)min = 1.05 −29.046 24.689 −5.8701 −20.617 −20.551 29.999 8.6137 11.6949 −6.1217 7.6555 0.2282

(εr)min = 1.10 −30.000 −20.412 −11.794 −10.023 −0.0521 3.0247 8.9473 12.8205 10.4252 15.4492 23.7096

4. EXAMPLES AND RESULTS

We would like to design an IPL with thickness d = 2.5 cm
(a practical and feasible chosen) as a radome in a frequency
range DC to 8.0 GHz, considering θi,max = 60◦, ρmax = 0.1 =
−20 dB, and (εr)max = 10. Using the proposed optimization
approach, considering N = 10 spatial harmonics, M =
80 frequencies, J = 2 incidence angles (0◦ and 60◦), and
(εr)min = 1.05 or 1.10, two radomes were synthesized.
The unknown coefficients of the truncated Fourier series
related to the synthesized radomes are written in Table 1.
Figures 2 and 3 illustrate the obtained electric permittivity
function εr(z), respectively, considering (εr)min = 1.05 or
1.10. Figures 4, 5, 6, and 7 illustrate the magnitude of

the input reflection coefficient |Γin( f )| for TE and TM
polarizations. It is observed that the designed radomes have
a good performance in both desired frequency band and the
incidence angle range. Meanwhile, the reflection coefficient
degrades with increasing the angle of incidence. To show the
effect of the thickness of IPLs, we increase d from 2.5 cm to
5, 7.5, and 10 cm. The unknown coefficients of the truncated
Fourier series, the electric permittivity function εr(z), and
the magnitude of the input reflection coefficient |Γin( f )|
corresponding to θi = 60◦ and considering (εr)min = 1.05
are shown in Table 2 and Figures 8, 9, and 10, respectively.
It is observed that as the thickness of the IPL is chosen
larger, the obtained electric permittivity function tends to a
continuous function, whose property is matching between
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Table 2: The unknown coefficients of the truncated Fourier series for (εr)min = 1.05.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

d = 2.5 cm −29.046 24.689 −5.8701 −20.617 −20.551 29.999 8.6137 11.6949 −6.1217 7.6555 0.2282

d = 5.0 cm −30.000 −3.4358 −19.617 −1.3242 −6.8844 0.9201 14.4735 1.9353 17.2640 2.1848 25.0426

d = 7.5 cm −8.5288 −1.3020 −1.3469 −0.4938 −0.9210 0.1405 1.2922 0.5839 1.2605 1.2345 7.2452

d = 10 cm −3.0284 −0.0009 −0.3182 0.0019 −0.0076 0.0026 0.1534 0.0023 0.0976 0.0021 0.0659
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Figure 9: The magnitude of |Γin( f )| for TE polarization with θi =
60◦, considering (εr)min = 1.05.
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Figure 10: The magnitude of |Γin( f )| for TM polarization with θi =
60◦, considering (εr)min = 1.05.

the air mediums and an intermediate medium. Also, it is seen
that the efficiency for TM polarization is better than that for
the TE polarization.

5. CONCLUSION

Inhomogeneous planar layers (IPLs) were optimally de-
signed as flat radomes in a desired frequency. First, the
electric permittivity function of the IPL is expanded in
a truncated Fourier series. Then, the optimum values of
the coefficients of the series are obtained through an
optimization approach. The performance of the proposed
structure is verified using some examples. It was observed
that the designed radomes have a good performance in
both desired frequency band and the incidence angle range,
where the efficiency for TM polarization is better than that
for the TE polarization. Also, as the thickness of the IPL
is chosen larger, the obtained electric permittivity function
tends to a continuous function, whose property is matching
between the air mediums and an intermediate medium. The
proposed method can be extended for IPLs, whose magnetic
permeability is inhomogeneous solely or along with their
electric permittivity. Also, we can consider IPLs for spherical
wavefronts instead of planar ones in the future.
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