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The active noise control (ANC) is discussed. Many digital
ANC systems often based on the filter-x algorithm for fi-
nite impulse response (FIR) filter use adaptive filtering tech-
niques. But if the primary noise path is nonlinear, the control
system based on adaptive filter technology will be invalid. In
this paper, an adaptive active nonlinear noise feedback con-
trol approach using a neural network is derived. The feed-
back control system drives a secondary signal to destructively
interfere with the original noise to cut down the noise power.
An on-line learning algorithm based on the error gradient de-
scent method was proposed, and the local stability of closed
loop system is proved using the discrete Lyapunov function.
A nonlinear simulation example shows that the adaptive ac-
tive noise feedback control method based on a neural network
is very effective to the nonlinear noise control.

1. Introduction

Active noise control (ANC) is based on the simple
physics principle of destructive interference of prop-
agating acoustic waves. Active attenuation is a more
attractive means to achieve large amounts of noise re-
duction in a small package or in a duct, particularly
at low frequencies (bellow 500 Hz). A relatively sim-
ple feedback control system for a duct is illustrated in
Fig. 1. The ANC system uses the estimated primary
acoustic noise signal to generate a signal y(n) of equal
amplitude but 180◦ out of phase. This antinoise sig-
nal is used to drive the loudspeaker to produce a can-
celing sound that attenuates the primary acoustic noise
traveling in the duct.

∗Supported by Science Founds of Educational Committee of Bei-
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Many digital ANC systems use adaptive filtering
techniques, often based on the filter-x algorithm for
finite impulse response (FIR) filter [3] because of its
simplicity and its relatively low computational load.
The linear digital feedback controller based on filter-x
algorithm may not perform well in the case that non-
linearities are found in an ANC system. The use of
a nonlinear feedback controller can improve the con-
trol performance on a system with a nonlinear behav-
ior. The neural network feedback control is a perfect
control technology for nonlinear systems, and has been
used in various systems with nonlinearities [1]. For the
active control of sound and vibration, the use of neu-
ral networks as nonlinear control structure has been re-
ported [4], and multilayer perceptron neural networks
were used to control nonlinear plants. This paper will
focus on the active noise control problem of nonlinear
response of an unknown primary acoustic path. A feed-
back control structure based on multilayer feedforward
neural network is proposed. The stability of closed
loop system is proved utilizing the discrete Lyapunov
function. A digital simulating example with nonlinear
primary noise path shows that the neural feedback con-
trol approach proposed in this paper performs better
than feedback filter-x method does in dealing with a
nonlinear control problem.

2. Active noise feedback control using a neural
network

Please refer to Fig. 2 for the development of the
algorithm for adapting a neural network based feedback
controller. To make it simple, only the nonlinearity
in the primary noise path is considered. A multilayer
feedforward neural network based feedback controller
is adopted. There is only one linear neuron in output
layer. The neural network structure is shown in Fig. 3.
The main symbols used in this paper are defined as
follows:

x(k) = [x(k)x(k − 1) . . . x(k − I)]T x(k) is the
estimated value of d(k) at time k,
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Fig. 1. Feedback control system in a duct.

z(k) = [z1(k)z2(k) . . . zJ(k)]T zj(k) is the out-
put of the jth hidden neuron at time k,

u(k) = [u(k)u(k − 1) . . . u(k − n)]T u(k) is the
output of the neural network at time k,

n(k) the reference noise input at time k,
y(k) output of secondary source at time k,
d(k) the primary noise at time k,
e(k) the input of error microphone at time k,
h = (h0h1 . . . hn) the filter coefficients of sec-

ondary source path,
c = (c0c1 . . . cn) the filter coefficients of esti-

mated secondary source path,
I, J number of the neurons in input layer and in

hidden layer,
W I

ij(k) the connected weight from ith input neu-
ron to jth hidden neuron,

WI
j (k) WI(k) the weight row vector and matrix

from input layer to hidden layer,
WO(k) the weight row vector from hidden layer

to output neuron,
W(k) the weight matrix combined WO(k) and

WI(k),
fj(x) the activation function of jth hidden neuron.
In the ideal case where the estimated secondary path

c is equal to the real secondary path h, then an equiv-
alent feedforward architecture could be obtained [3].
But in general case, c �= h, then the NN control system
is a feedback control system.

Using the symbols we can obtain the outputs of hid-
den neurons, neural network and secondary source at
time k:

zj(k) = fj

(
I∑

i=0

W I
ij(k)x(k − i)

)
(1)

= fj

(
WI

j (k)x(k)
)

u(k) =
J∑

j=0

WO
j (k)zj(k) = WO(k)z(k) (2)

y(k) =
n∑

j=0

hju(k − j) = hu(k) (3)

The error function of system is defined as

J(k) = e2(k) = [y(k) + d(k)]2 (4)

The weights can be adjusted according to the gradient
descent method

W(k + 1) = W(k) − µ
∂J(k)
∂W(k)

(5)

The gradient of error in (4) with respect to the
weights is represented by

∂J(k)
∂WI

j (k)
= 2e(k)

∂y(k)
∂WI

j (k)
(6)

= 2e(k)
n∑

i=0

hi
∂u(k − i)
∂W I

j (k)

∂J(k)
∂WO(k)

= 2e(k)
∂y(k)

∂WO(k)
(7)

= 2e(k)
n∑

i=0

hi
∂u(k − i)
∂WO(k)

∂u(k)
∂WO(k)

= z(k) (8)

∂u(k)
∂WI

j (k)
=

J∑
i=0

∂u(k)
∂zi(k)

∂zj(k)
∂WI

j (k)
(9)

= WO
j (k)f ′

j

(
WI

j (k)x(k)
)
x(k)

If the weights W(k) are made to adapt slowly
enough with time [2], the gradients of u in (6) and (7)
can be approximately written as:

∂u(k − i)
∂WO(k)

≈ ∂u(k − i)
∂WO(k − i)

(10)

∂u(k − i)
∂WI

j (k)
≈ ∂u(k − i)

∂WI
j (k − i)

(11)

So the gradient of error function with respect to the
weights can be written as:

∂J(k)
∂WI

j (k)
= 2e(k)

n∑
i=0

hiW
O
j (k − i)f ′

j

(12)(
WI

j (k − i)x(k − i)
)
x(k − i)

∂J(k)
∂WO(k)

= 2e(k)
n∑

i=0

hiz(k − i) (13)

In conclusion, the weights of neural network can be
on-line adjusted using the update rule (5) with gradients
calculated by (12) and (13).
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Fig. 2. Block diagram of NN based control system.

3. The stability of active noise feedback control
system

The discrete-type Lyapunov function can be given
by

V (k) =
1
2
e2(k) (14)

The change of the Lyapunov function due to the
training process is obtained by

∆V (k) = V (k + 1) − V (k)
(15)

=
1
2
[
e2(k + 1) − e2(k)

]
The error difference resulting from the learning can

be represented by [1]

e(k + 1) = e(k) + ∆e(k)
(16)

= e(k) +
[

∂e(k)
∂W(k)

]T

∆W(k)

According to the update rule of the weights, we can
obtain

∆W(k) = −2µe(k)
n∑

i=0

hi
∂u(k − i)
∂W(k)

(17)
= −2µe(k)hG(k)

Where

G(k) =
∂u(k)
∂W(k)

,

(18)[
∂e(k)

∂W(k)

]T

= (hG(k))T

A general stability theorem can be presented as fol-
lows:

Theorem: let µ be the learning rate for the weights of
the neural network. We define gmax =max

k
‖G(k)‖,

g0 = ‖h‖, where G(k) = ∂u(k)/∂W(k), ‖ • ‖ is the
norm of matrix or vector. If the learning rate µ is chosen
as e < µ < 1/(g0gmax)2, then the local stability of
closed loop control system based on neural network is
guaranteed.

Proof: define g(k) = hG(k), According to (15)–
(17), ∆V (k) can be represented as

∆V (k) = ∆e(k)[2e(k) + ∆e(k)]/2

= −
[

∂e(k)
∂W(k)

]T

µe(k)hG(k)

{
2e(k) − 2

[
∂e(k)

∂W(k)

]T

µe(k)hG(k)

}

= −µe(k)‖g(k)‖2 (19){
2e(k) − 2µe(k)‖g(k)‖2

}
= −2λe2(k)

Since ‖g(k)‖ � ‖h‖‖G(k)‖ � g0gmax, if the learn-
ing rate µ is chosen as 0 < µ < 1/(g0gmax)2, then 0 <
µ < 1/‖g(k)‖2, so λ = µ‖g(k)‖2

{
1 − µ‖g(k)‖2

}
> 0 and ∆V (k) < 0. Therefore the control system is
local stable.

4. Simulation results

In this section, a comparison of illustrative results
derived from the feedback filter-x algorithm and a neu-
ral network based algorithm proposed in this paper is
made. The acoustic paths were chosen as follows [2].

The primary acoustic path from noise source to error
microphone

P (z) = 0.05 − 0.001z−1 + 0.001z−2 + 0.8z−3

+0.6z−4 − 0.2z−5 − 0.5z−6 − 0.1z−7

+0.4z−8 − 0.05z−9
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Fig. 3. Neural network structure.

The secondary acoustic path from secondary source
to error microphone

H(z) = 0.95 − 0.5z−1 + 0.1z−2 + 0.05z−3

−0.005z−4

The secondary feedback acoustic path from sec-
ondary source to reference microphone

F (z) = 0.6z−1

Suppose there is nonlinearity in the primary acous-
tic path from noise source to error microphone. The
disturbance

d(k) = 0.05x(k) − 0.001x(k − 1) + 0.001x

(k − 2) + 0.8x(k − 3) + 0.6x(k − 4)

−0.2x(k − 5) − 0.5x(k − 6) − 0.1x

(k − 7) + 0.4x(k − 8) − 0.05x(k − 9)

+x2(k)

The sampling frequency used for simulation was
1000 Hz. The disturbance signal was chosen to be a
100 Hz pure tone signal and with an additional Gauss
white noise signal. An off-line modeling technique [5]
was used to estimate secondary acoustic path H(z)
during the training stage. At the end of training, the
estimated model C(z) will be fixed and used to on-line
adjusting the parameter of controller in active noise
control system. A 16-tap FIR filter was chosen in the
filter-x algorithm. The number of neurons in the neural
network controller was 6-6-1, it is selected according
to some digital simulations, and the 6-6-1 architecture
has the best control performance. In this digital ex-
periment, the learning rate is 0.015, and after about
1.5 second on-line learning, the training scheme con-
verges. Figure 4 gives the simulating results of the
canceling errors in the steady state in the frequency
domain. The sound pressure level of error signal from
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Fig. 4. Sound pressure level of the error signal.

the linear FIR controller trained with filter-x algorithm
is shown in solid thin thread. The sound pressure level
of error signal from the nonlinear neural network con-
troller is shown in solid thick line. The dashed line
shows the sound pressure level of disturbance signal
when the ANC system turns off. It can be observed
that the linear FIR controller does significantly reduce
the 100 Hz tone (over 20 dB of reduction), but the tone
at 200 Hz generated by the nonlinearity can not be re-
duced. The nonlinear neural network controller can
reduce the 100 Hz tone (over 25 dB of reduction) and
200 Hz tone generated by the nonlinearity (over 15 dB
of reduction).

5. Conclusions

The active noise control (ANC) is studied. If the
primary noise path were nonlinear, the control systems
based on adaptive filter technology that are often uti-
lized in practice would be invalid. In this paper, an
adaptive active nonlinear noise feedback control ap-
proach using a neural network is derived, a on-line
learning algorithm based on the error gradient descent
method is proposed, and local stability of closed loop
system is proved based on the discrete Lyapunov func-
tion. A nonlinear simulation example shows that the
adaptive active noise control method based on a neural
network is very effective to the nonlinear noise control.

In this paper, only digital simulations are made, test-
ing the NN controller by experiment will be the future
work.
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