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Abstract The aim of this work is to apply Weitzeböck
Induced Matter Theory (WIMT) to Gullstränd–Painlevé and
Reissner–Nordström metrics in the framework of WIMT.
This is a newly developed method that extends Induced Mat-
ter Theory from a curved 5D manifold using the Weitzeböck’s
geometry, using the fact that the Riemann–Weitzenböck cur-
vature tensor is always null. We obtain the presence of cur-
rents whose interpretation can lead to the presence of stable
gravito-magnetic monopoles.

Introduction

In a previous paper [1] we incorporated the Weitzeböck’s
geometry (using its characteristic connections) into the treat-
ment of extended Induced Matter Theory (IMT) [2,3]. This
theory is based on the assumption that ordinary matter and
physical fields, which we can observe in our 4D universe,
can be geometrically obtained from a 5D space–time which
is at least Ricci-flat (in the sense of Levi-Civita connections).
We are interested in the cases where the extra dimension is
non-compact,1 and we define a physical vacuum supported
by the Ricci-flatness condition [4]. This theory is founded in
the Campbell–Magaard embedding theorem [5–8] as a par-

1 In contrast with the Kaluza–Klein Theory (KK) in which it is assumed
that the extra dimension is compact, cyclic, and having a small radius.
2 In our convention the indices “a, b, c, . . . , h” and “A, B,C, . . . , H”
are related to 5D space–time and run from 1 to 5. Greek indices
“α, β, γ, . . .” are related to 4D space–time and run from 1 to 4, and
indices “i, j, k, . . .” are only spatial and run from 2 to 4. We choose our
first index related to time coordinate and the last index in 5D space–time
is due to the extra coordinate associated with the extra dimension.

a e-mail: jesusromero@conicet.gov.ar
b e-mail: mbellini@mdp.edu.ar

ticular case in which (5D)Rab = λ (5D)gab,2 with λ = 0.
We must remark that the λ = 0 condition implies Ricci-
flatness and this makes it possible to define a 5D apparent
vacuum that determines the equations of motion for the fields
of the theory. Such equations are given by (5D)Rab = 0. The
aim of WIMT is to use an alternative description, based on
the Weitzenböck geometry, to apply a IMT-like formalism
for any 5D space–time, even if this is not flat in the Rie-
mannian sense with Levy-Civita (LC) connections. The cen-
tral idea of WIMT is to convert the geometrical description
of the problem from a non-flat (but torsion-less) Rieman-
nian with LC connections, into a Weitzenböck’s geometri-
cal description with a Riemann–Weitzenböck null tensor,3

but with non-zero torsion. In this case we can use the IMT
tools to induce 4D effective space–time dynamics making
a foliation over the Riemann–Weitzenböck flat 5D space–
time (this is the vacuum in the Weitzenböck sense).4 Once
this cjoice has been made, we can recover the Riemannian
description by doing a transformation over the induced ten-
sors (now obtained in terms of Weitzenböck connections)
according to (LC)�a

bc =(W) �a
bc + Ka

bc. Here (LC)�a
bc is the

symbol denoting the LC connection (the usual Christoffel

3 What we refer to as the Riemann–Weitzenböck tensor is the Riemann
curvature tensor expressed in terms of Weitzenböck connections. In
a coordinate (holonomic) basis the Riemann–Weitzenböck curvature
takes the form

(W)Ra
bcd = (W)�a

dc,b −(W) �a
db,c + (W)�n

dc
(W)�a

nb − (W)�n
db

(W)�a
nc.

The label (W) identifies the geometric objects expressed in the Weitzen-
böck representation and the (W)�a

dc,b terms are the ordinary partial

derivatives of the Weitzenböck connection (W)�a
dc. We assume the Ein-

stein summation convention for repeated indices.
4 We set the Weitzenböck vacuum as a 5D space–time with null Rie-
mann curvature tensor in Weitzenböck geometry,

(W)Ra
bcd = 0.
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symbols of the second kind), (W)�a
bc denotes the Weitzen-

böck connections and Ka
bc is the contortion, which depends

on the non-metricity and torsion. The shape of the contortion
is presented in the next section.

Part of the motivation for the present work comes from two
principal ideas: (i) WIMT provides a successfully description
for the formation of a spherically symmetric body of finite
size, and (ii) the Weitzenböck torsion present in WIMT is
a possible geometrical source for the existence of magnetic
monopoles.

With respect to the first assertion we can say that already
the WIMT was used to address the problem of the formation
of a massive compact object [1] as a remanent of a collapsing
space–time. This object can be thought of as a black hole.
The second one has been worked out using WIMT in the
framework of the gravito-magnetic formalism in a variety
of cosmological scenarios [9,10], with the result that cur-
rents of gravito-magnetic monopoles are strongly linked to
the Weitzenböck torsion. With the support of these results,
it is generally expected that the density of gravito-magnetic
monopoles and charges decay in an accelerated universe due
to the strong increasing of the scale factor. Hence, the study
of a stationary black hole appears to be an excellent issue to
complete our approach to a spherically symmetric object and
to try to appreciate the existence of stable gravito-magnetic
charges using WIMT. We choose to work in the 5D exten-
sion of the Gullstränd–Painlevé (GP) metric, because with
this metric it is very simple to get the associated basis of
pentads and to operate with them. Additionally, but no less
important, the GP metric is widely used in the study of BH
and their evolution [11–14], so that it is an interesting topic
that deserves further study.

1 WIMT

We shall introduce some basic concepts of the Weitzenböck
geometry and we expose some results that we developed in
previous works, because these will be tools for obtaining
some important results of this article.

1.1 Weitzenböck geometry and vielbeins

In order to revisit the WIMT we shall use some ele-
ments of Weitzenböck geometry [15,16]. The Weitzenböck
connection is

(W)�c
ab = ēcN

−→e b(e
N
a ); (1)

we assume the transformation

−→e a = eAa
−→
E A, (2)

which represents a transformation from an element
−→
E A

(belonging to {−→E A}, an orthonormal Lorentzian basis of the
5D tangent space), into −→e a (belonging to {−→e a}, also a basis
of 5D tangent space but in general not orthonormal). The
elements eAa that perform the transformation are known as
vielbeins [17,18] and fulfill the relations eAaē

b
A = δba and

eAaē
a
B = δAB . The vielbeins provide us with a prescription

to transform bases and therefore any tensorial element. For
example,

gab = eAae
B
bηAB, (3)

where ηAB is a 5D Minkowski-like metric with signature
(+,−,−,−,−), {−→E A} is an orthonormal Lorentzian basis
and gab is the metric tensor expressed in terms of the basis
{−→e a}. This clarifies that eAae

B
b is an object with five “legs”

(corresponding to the five components of the space–time), in
the {−→E A} representation for tensorial elements (upper case
indices) and the other five “legs” in the {−→e a} representa-
tion (lower case indices). For a general tensor T A1...An B1...Bm ,
which is n times tangent (or contravariant) andm times cotan-
gent (or covariant), we obtain

T a1...an
b1...bm = ēa1

A1
. . . ēanAn

eB1
b1

. . . eBmbm T A1...An
B1...Bm . (4)

An important property of the Weitzenböck connection
(W)�c

ab = ēcN
−→e b(eNa ) is that

(W)∇−→e b
(
−→
E A) = (W)∇−→e b

(eaA
−→e a)

= eaA

{
(W)�c

ab − ecN
−→e b(e

N
a )

}
︸ ︷︷ ︸

−→e c = 0.

[(W)∇−→e b
(
−→
E A)]c = [−→E A]c; b = ēcA; b (5)

This means that the covariant Weitzenböck derivative of the
vielbein is null. The expression (1) characterizes the Weitzen-
böck connection with lower case indices as a transformation
of a trivial null connection with upper case indices. About the
trivial upper case index connection we must be more formal
and construct the following expression:

(W)�C
BA

−→
E C = ∇−→

E A
(
−→
E B) = ēaA∇−→e a

(ēbB
−→e b)

= ēaA
−→e a(ē

b
B)

−→e b + ēaAē
b
B ∇−→e a

(
−→e b)︸ ︷︷ ︸

(W)�c
ba

−→e c = ēcN
−→e a(e

N
b )

−→e c

= ēaA{−→e a(ē
b
B) − ēbBe

N
b

−→e a(ē
b
N )}−→e b = 0, (6)

where we have used eNb ē
b
B = δNB , eNb ē

c
N = δcb, and con-

sequently −→e a(eNb )ēcN = −eNb
−→e a(ēcN ). The elements

−→
E C

are linearly independent so that (W)�C
AB = 0. In this way

the Weitzenböck connection represents the extension of
the derivative operator with trivial zero connections in the
orthonormal basis to the new basis. In the most general case
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the Riemann curvature tensor in the Weitzenböck geometry
takes the following shape in terms of the upper case index
connection:

(W)RA
BCD = −→

E B((W)�A
DC ) − −→

E C ((W)�A
DB)

+(W)�N
DC

(W)�A
N B −(W) �N

DB
(W)�A

NC

−CN
CB

(W)�A
DN = 0, (7)

due to each upper case index connection being null: (W)�N
MO= 0, as we can see in (6). The structure coefficients in the

expression (7) are defined by [−→E B,
−→
E A] = CC

AB
−→
E C . There-

fore, the following expression is trivial:

(W)Ra
bcd = ēaAe

B
b e

C
c e

D
d

(W)RA
BCD = 0. (8)

This relationship is the key of WIMT. It provides us with a
tool to define the 5D Weitzenböck vacuum and make use of
the usual philosophy of IMT,5 even in the absence of the 5D
Riemannian (LC) vacuum.6

Finally, the relationships between the LC and Weitzen-
böck connections are

(W)�a
bc =(LC) �a

bc − (W)Ka
bc, (9)

where the Weitzenböck contortion (W)Ka
bc is

(W)Ka
bc = gma

2
{gbm;c + gmc;b − gbc;m}

+ gma

2
{(W)T n

cmgbn + (W)T n
bmgnc − (W)T n

cbgnm}. (10)

In the last expression gab ; c = (W)Qabc is the Weitzen-
böck non-metricity. In the absence of such a non-metricity
we recover the usual shape for contortion, which is totally
given in terms of the torsion tensor [20,21]. In the present
case we make a start with an orthonormal basis {−→E A}. The
Weitzenböck non-metricity is

(W)QABC = ηAB ;C = −→
E C (ηAB) − ηN B

(W)�N
AC

−ηAN
(W)�N

BC ,

which reduces to (W)QABC = −→
E C (ηAB), because of

(W)�A
BC = 0. We must remember that each ηAB is constant

and then

(W)QABC = −→
E C (ηAB) = 0.

The last expression is general but in the next section we shall
study some cases in which this is specially easy to see. We
shall work with a holonomic coordinate basis {−→e a}, so that

(W)QABC = −→
E C (ηAB) = ēcC

−→e c(ηAB) = ēcC ηAB , c = 0,

5 The central ideas of IMT are very didactically developed in [19].
6 We want to clarify what we mean by “Riemannian (LC) vacuum”:
it means that the Einstein tensor written in terms of LC connections is
zero. This is trivial when the Riemann curvature tensor is null.

because of ηAB , c = 0. In the last expression ηAB , c =
∂ηAB
∂xc , where the coordinate xc is related to the cth ele-

ment of the coordinate basis −→e c. The Weitzenböck non-
metricity in lower case indices is given by (W)Qabc =
eAa e

B
b e

C
c

(W)QABC = 0. Because of all this, in the present
case we must set

(W)Ka
bc = gma

2
{(W)T n

cmgbn + (W)T n
bmgnc − (W)T n

cbgnm},
which is the usual well-known contortion tensor [20,21]. This
tensor transforms according to (W)K A

BC = eAa ē
b
B ē

c
C

(W)Ka
bc.

1.2 Some results in WIMT

We consider a 5D space–time with coordinates φ(p) =
(t, x, y, z, ψ)p dotted by an inner product described by
Diag(ηAB) = (+1,−1,−1,−1,−1), expressed in a non-
holonomic basis. The action on the 5D apparent vacuum is
given by the gravito-electromagnetic fields

S =
∫

d5x
√|η|

[
R

16 π G
− 1

4
FAB F

AB − λ

2
(AB

; B)2
]

,

(11)

where the penta-vector potential is
−→
A = (φ,A, 
), φ is the

electric potential, A = (Ax , Ay, Az) is the vector potential,
and 
 is the gravitational scalar potential. If we assume the
Lorenz gauge AB

; B = 0, the equations of motion will be
reduced to

�AK = ηBC AK
; BC = 0. (12)

In general, we find that the 5D Faraday tensors expressed in
terms of the LC and Weitzenböck versions are given, respec-
tively, by

(LC)FAB = −→
E A(AB) − −→

E B(AA) + ANC
N
AB,

(W)FAB = −→
E A(AB) − −→

E B(AA) + AN ((W)T N
BA + CN

AB),

(LC)FNB = (W)FNB + ηRN APK B
PR − ηRB APK N

PR . (13)

The 5D-current of gravito-magnetic monopoles is obtained

(still in 5D space–time) from the relation (∗) JAB = (∗)FABC
;C

.
This is motivated by the symmetry of Maxwell equations.7

Thus, ∗ must be LC or W according to the corresponding
derivative operator. Furthermore, FABC is the dual tensor of

7 In a 4D space–time, this symmetry is manifest in the expressions

Fμν
;ν = (e) Jμ,

Fμν
;ν = (m) Jμ. (14)

Here, the labels e and m, identify, respectively, the electrical

and magnetic quantities according to (e)−→J = (ρe,
(e) J1,

(e)

J2,
(e) J3) and (m)−→J = (ρm, (m) J1,

(m) J2,
(m) J3). Furthermore, Fμν

is the Faraday tensor and Fμν is its dual [22,23].
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FAB .8 The resulting currents, 2-forms in the 5D space–time,
are

(LC) J−→−→
=

√|η|
2

εABCDE ηCF ηDG ηEH

×
[

(LC)d

(
(LC) F−→−→

)]

[FGH ]
E−→

A ⊗ E−→
B, (15)

[
(LC)d

(
(LC) F−→−→

)]

[ABC]
=(W) T N

AC
−→
E N (AB)

+(W)T N
BA

−→
E N (AC )+(W)T N

CB
−→
E N (AA)+(W)T n

AC
−→
E B(An)

+(W)T n
CB

−→
E A(An)+(W)T n

BA
−→
E C (An)+−→

E A((W)T n
CD)An

+−→
E B((W)T n

AC )An + −→
E C ((W)T n

AB)An . (16)

The Riemannian (LC) current of the gravito-magnetic
monopole originates in the Weitzenböck torsion (W)T A

BC .9

It must be noticed that once we choose the Lorenz gauge
condition (LC)AN

; N = 0, the same condition is preserved in

the Weitzenböck representation: (W)An
; n = 0.

Once we have established the 5D-currents it is easy to
obtain the 4D-induced currents by applying a constant foli-
ation on the fifth extra dimension: ψ = ψ0. The effective
resulting 4D gravito-magnetic current is the 1-form given by

(∗)4D J−→( ) = (∗)5D J−→−→
(−→n ,

)
∣∣∣∣∣
ψ=ψ0

, (19)

so that ∗ must be LC or W and −→n is a vector pointing to the
extra direction. The vector −→n is normalized and orthogonal
to the 4D tangent sub-space associated with the effective 4D

8 The dual tensor of a 2-form (characterized in this case by (∗)FAB ) in
5D manifold is a 3-form defined by

(∗)FABC = 1

2
εABCDE

(∗)FDE .

Here, ∗ must be LC or W and εABCDE is the antisymmetric Levi-
Civita symbol. We have made use of the fact that

√| η | = 1, η =
Det([η]AB) being the determinant of the metric tensor in the upper case
index representation.
9 We focus our attention on the Riemannian (LC) current, but it is
formally easy to relate the Riemannian (LC) and Weitzenböck currents
of the gravito-magnetic monopole, with the expressions

(LC) JAB − (W) JAB =
√|η|

2
εABCDE

1

4
M [CDE], (17)

where M [CDE] = ηCFηDGηEH M[FGH ], and

M[FGH ] = (AM
(W)T M[FG) ; H ] − 2 (W)T N

[FH |
(W)T M

N |G]AM

− 2 (W)T N
[GH

(W)T M
F]N AM −(W) T N

[FH |
−→
E N (A|G])

+ (W)T N
[GH |

−→
E N (A|F]) +(W) T N

[FH
−→
E G](AN )

− (W)T N
[GH

−→
E F](AN ). (18)

sub-manifold. Such orthogonality is realized with respect to
the complete 5D metric. All expressions must be evaluated
in ψ = ψ0, so that dx5 |ψ=ψ0= dψ |ψ=ψ0= 0 and hence
(∗)4D J−→ must be a cotangent four-vector (i.e., it is a 1-form
in the cotangent 4D space–time).

2 5D Gullstränd–Painlevé (GP) metric

The GP coordinates are commonly presented as a set of coor-
dinates obtained by transformation of the Schwarzschild, or
Reissner–Nordström (RN) ones, in which the static time is
replaced by a GP time t → t̃(t, r), preserving the spherical
symmetry of the problem [24,25]. We shall use a slightly
different method by using the GP cartesian metric and using
the vielbein related to an orthonormal basis. In this case we
obtain the GP cartesian metric from a normalized one, using
a certain vielbein, prescribed in this section. The GP carte-
sian metric must be obtained from the Schwarzschild or RN
BH by doing a space–time transformation. We choose to start
with an orthonormal basis {−→E A}, in which

−→
E A = ēaA

−→e a, (20)

where {−→e a} is some coordinate basis. The vielbein is con-
structed according to

[ēmM ] =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
−βx 1 0 0 0
−β y 0 1 0 0
−βz 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

, (21)

and its inverse is

[eMm ] =

⎛
⎜⎜⎜⎜⎝

1 βx β y βz 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

, (22)

in which β i = βxi , such that xi is the i th coordinate asso-

ciated to the coordinate basis {−→e a}, β =
√

2
(
M− Q2

2r

)

r3 is a
function, M is a mass parameter, and Q is an electric charge
parameter. If Q = 0 we deal with a Schwarzschild BH, but in
the case Q �= 0, we are in presence of a Reissner–Nördstrom

BH. We must remark that M − Q2

2r is the gravito-electric
charge of the BH, and

β iβi = β IβI = −(β2x2 + β2y2 + β2z2) = −β2r2,

so that, by the definition of β, we have

β2 = 2

(
M − Q2

2r

)
1

r3 = − 1

r2

(
2M

r
− Q2

r2

)
.
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Hence

β iβi = −
(

2M

r
− Q2

r2

)
.

The charge of the BH is dominant at small distances, but the
mass dominates at long distances. The metric is

dS2 = ηMN eMm eNn︸ ︷︷ ︸ dxm dxn = ηMN eMm dxm︸ ︷︷ ︸ e
N
n dxn︸ ︷︷ ︸,

gmn EM EN

= dt2 − δi j (dx
i − β idt)(dx j − β jdt) − dψ2. (23)

In the last expression EN = EN
n dxn is an element belonging

to a basis for the cotangent space, which fulfills the duality
relation EN (

−→
E M ) = δNM . Furthermore, gmn is the corre-

sponding GP metric in cartesian 5D GP coordinates, such
that x1 = t , x2 = x , x3 = y, x4 = z, and x5 = ψ .10

Now we must calculate the structure coefficients for
the basis (20). According to the definition [−→E B,

−→
E A] =

CC
AB

−→
E C [27], we obtain

CC
AB = ēmB

∂ ēlA
∂xm

eCl − ēmA
∂ ēlB
∂xm

eCl . (24)

The non-zero elements are C1
21 = −C1

12, C3
32 = −C3

23 =
−

√
1+βiβi√

x2+y2+z2
= −

√
f (r)
r , C4

42 = −C4
24 = −

√
1+βiβi√

x2+y2+z2
=

−
√

f (r)
r , and C4

43 = −C4
24 = − z√

x2+y2
√

x2+y2+z2
=

− cos(θ)
r sin(θ)

, expressed in GP, or in the usual BH coordinates.

Here, f (r) = 1 − 2M
r + Q2

r2 for a Reissner–Nordström
BH. In the case with Q = 0 one obtains a Schwarzschild
BH. On the other hand, if we take the expression (24), will
be easily shown that Cc

ab = 0, which means that {−→e a} is
a coordinate or holonomic basis for 5D tangent space. It
is very interesting to notice that in the upper case index
representation, the torsion tensor is numerically equal to
the structure coefficients, due to the fact that (W)T A

BC =
(W)�A

CB −(W) �A
BC + CA

BC . Since the Weitzenböck connec-
tion extends the trivial null connection in the upper case index
basis, we obtain (W)�A

CB = 0, and hence

(W)T A
BC = CA

BC = −CA
CB , (25)

which is surprising because (W)T A
BC is an intrinsic geometri-

cal property of the manifold andCA
BC is a coefficient depend-

ing on a circumstantially selected basis. In fact, Eq. (25) is
not strange and is due to the selection of the Weitzenböck
connection and particularly to the geometrical properties to

10 For a most extensive treatment the reader could see the notes of
Andrew Hamilton (developed in 4D) [26].

extend a derivative operator linked to a trivial null connec-
tion in the upper case index, to a nontrivial connection in the
lower case index basis.

3 Gravito-magnetic monopoles from WIMT in GP
and RN metrics

If we take the structure coefficients (24) and we employ the
non-zero elements in (25), we obtain the Weitzenböck tor-
sion and we could use it in the expressions (15) and (16), in
order to write the 5D LC 2-form currents in upper case index
basis. After it, we can express such 2-form in the lower case
index representation with the transformation (4) adapted to
a 2 times cotangent object [as we were doing in (3) for the
metric tensor], with the vielbein (22). Notice that we have a
5D LC 2-form current expressed in terms of a Weitzenböck
torsion with lower case indices and vielbeins. Hence, we can
make a constant foliation getting the effective 4D current
from (19). Finally we obtain the expression for the effec-
tive 4D current, which in the usual BH coordinates takes the
form

(LC)(m) J1 |ψ=ψ0= ρm =
= K

{
−

√
f (r)

r

∂A3

∂θ
+

√
f (r)

r sin(θ)

∂A2

∂ϕ
− cos(θ)

r2 sin2(θ)

∂A1

∂ϕ

}
,

(26)

which is the induced static gravito-magnetic monopole
charge density. For the spatial effective 4D currents of
gravito-magnetic monopoles, we obtain

Ji = 0, i = 2, 3, 4, (27)

which is consistent with the magnetic charge conservation
in a scenario in which the monopoles are static. Now we
must study some important invariants of the problem. We
define

(m) J−→−→
( (e)−→J ,

−→
U ) = (e) J A (m) JAB U

B = (m) JA
(e) J A,(28)

(m) J := (m)−→J
(−→
U

)
= (m) JA U

A, (29)

(e) J := (e)−→J
(−→
U

)
= (e) JA U

A, (30)

(gem) J 2 := ((e) J−→ ∧ (m) J−→)((e)
−→
J ∧ (m)−→J )

= (gem) JAB
(gem) J AB . (31)

These expressions must be constructed as a function of the
LC or Weitzenböck currents. The UB are the components
of the penta-velocities of the observers, expressed in the RN
non-coordinate basis. Hence, all the invariants (28), (29) (30),
and (31), defined in 5D, are constructed taking into account
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these penta-velocities and the gravito-electric and gravito-
magnetic currents. From the analysis of the invariant (28) we
see that the current characterized by the expression (m) JA :=
(m) JAB U B comes from the contraction between the (2-form)
magnetic current (m) J−→−→

and the (one-vector) penta-velocity

−→
U . Hence, the complete invariant (28) must be interpreted
as an inner product (m)−→J · (e)−→J = (m) JA (e) J A, which
means that both involved currents must be orthogonal when
(28) is zero. On the other hand, the invariant (31) is a new
2-form, which contains information as regards gravity, elec-
tricity, and magnetism. It is due to the wedge product of the
(1-form) magnetic current (m) J−→ and the (1-form) electric

current (e) J−→. We call such a new 2-form (gem) J−→−→
, in which

the superscript (gem) refers to the gravito-electro-magnetic
nature of the current. In general, (gem) J AB = (e)−→J ∧ (m)−→J
must not be null. The expression (31) is equivalent to
the inner product of two 2-forms, which are expressed by
[(e) J−→ ∧(m) J−→]AB[(e)−→J ∧(m) −→

J ]AB = (gem) J 2.

The invariants (e) J and (m) J have direct counterparts in
the 4D space–time, defined by

(m) J
∣∣∣
4D

= (m) JA U
A
∣∣∣
fol

, (32)

(e) J
∣∣∣
4D

= (e) JA U
A
∣∣∣
fol

. (33)

On the other hand, the 4D counterpart of (m) JA (e) J A is

(m) JA
(e) J A

∣∣∣
4D

= (m) JA
(e) J A

∣∣∣
fol

. (34)

The invariant (m) JA (e) J A = 0 only makes sense because
we are supposing that the five-vectors (m) J and (e) J are
orthogonal on the 5D Weitzenböck vacuum. All the previ-
ously defined invariants have a clear meaning, which can
easily be explored in a static or stationary case, as the case
of a RN BH, which we shall study. Then we must show that
Eqs. (28–34) reduce to

(m) JA
(e) J A

∣∣∣
fol

= ρmρMU 1 + ρeρmU
5
∣∣∣
fol

= 0, (35)

(m) JAU
A
∣∣∣
fol

= ρm

(
U 1U 5 −U 5U 1

)∣∣∣
fol

= 0, (36)

(e) JAU
A
∣∣∣
fol

= ρe U
1 + ρMU 5

∣∣∣
fol

= 0. (37)

In a static 5D space–time in which the observer is moving
with arbitrary penta-velocity

−→
U = U A−→

E A, their compo-
nents U A can be U 1,Ui ,U 5 �= 0. Hence, one obtains

[(m) JAB] =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −ρm

0 0 0 0 − (m) J2

0 0 0 0 − (m) J3

0 0 0 0 − (m) J4

ρm
(m) J2

(m) J3
(m) J4 0

⎞
⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −ρm

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ρm 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

in which we have made use of the fact that (m) Ji = 0, so that

[(m) JA] = (−ρm U 5, 0, 0, 0, ρm U 1).

In a non-static scenario results that (m) J5 = 0. On the other
hand, using the fact that (e) Ji = 0, we obtain

[(e) JA] = (ρe, 0, 0, 0, (e) J5),

where in general (e) J5 �= 0. All makes sense when we
apply our extended 5D Maxwell equations for (e) J5, so that
F5A

; A = (e) J5, which in the extended version is

(e) J5 = −�
 + (A; A
A ); 5.

If we apply the 5D Lorenz gauge (A; A
A = 0), the last expres-

sion evaluated on the foliation reduces to

(e) J5 |fol= −�
 |fol . (38)

The expression (38) must be interpreted as an effective equa-
tion of the form ρM = −�
, in which 
 is the gravitational
potential for the 4D BH. In this case (e) J5 must be ρM; the
effective density of the gravitational mass. We must remark
that in the present case the operator � does not have a time
related covariant derivative part, due to the static nature of the
problem here considered (we maintain the complete notation
for clarity). We must set

[(e) JA] = (ρe, 0, 0, 0, ρM). (39)

Equation (39) justifies the notation used in Eqs. (35) and (37).
We shall study the case with Ui = 0 and U 5 �= 0. For

such a scenario we assume that the observer is moving with
a penta-velocity

−→
U = U A−→

E A, with U A �= 0. Then we must
set U 5 to an arbitrary non-zero value. The penta-velocity is
defined on a 5D TM and is a penta-vector. The notation used
is:

• The 5D M is the 5D manifold.
• The 5D TM is tangent space associated to 5D M.
• 4D M is the 4D manifold induced by foliation ψ = ψ0

and, of course, a sub-manifold of the 5D M.
• The 4D TM is the tangent space associated to 4D M and,

of course, a sub-space of the 5D TM.
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When we apply a constant foliation ψ = ψ0 on the extra
coordinate, the penta-velocity turns into a four-vector by pro-
jecting it onto the 4D TM. ThenU 1−→E 1+Ui−→E i +U 5−→E 5 →
u1−→e 1 + ui−→e i |ψ=ψ0 , so that {−→E 1,

−→
E i ,

−→
E 5} is a basis of

the 5D TM, and {−→e 1,
−→e i } is a basis of the induced 4D TM.

Due to the static nature of the studied scenario the invariants
(35–37) are not dependent on ui and we must choose the
value of ui preserving the validity of the geodesic equations:
duα

dS +(W) �α
βγ u

βuγ = 0, with the normalization condition

gαβuαuβ = 1. Here, gαβ is the effective induced metric with
the foliation ψ = ψ0 and we must take the RN, or the GP
ordinary 4D form, depending on the employed coordinates.

The use of WIMT warrants that the 5D space–time is a
vacuum in the sense of the Weitzenböck geometry, even if
ρm, ρe, ρM �= 0. At this point we choose to establish some
values for the 5D invariants, in order to obtain a realistic
physical behavior in the effective space–time. Hence, we set
(m) JA (e) J A = 0 to find

ρM

ρe
= −U 5

U 1 . (40)

On the another hand, from (e) J = 0, we obtain

ρe

ρM
= −U 5

U 1 , (41)

so that, equating (40) and (41), we obtain

U 5

U 1 = ρM

ρe
= ±1, (42)

which provides us with the quantization law between the
mass density and the electric density charge. In order to
obtain the quantization of charge we must use Eqs. (31) and
(42), with (gem) J 2 = −n2. The resulting expression, which
provides the quantization between the electric and magnetic
density charges, is

ρe ρm = n

2
. (43)

Notice that all these expressions were obtained in the ONB
representation. A very important fact is that the choices
(m) JA (e) J A = 0 and (gem) J 2 = −n2 imply that the duality
of charges ρe and ρm is mutually exclusive, with the constric-
tion (43). This means that one only can “see” the electric ρe or
the magnetic charge ρm = n

2ρe
. This is because Eq. (36) indi-

cates that (m)J and (e)J are orthogonal. Therefore, our model
with these choices is incompatible with a dyonic Reissner–
Nordström BH, except for n = 0. In order to make our the-
ory compatible with a dyonic Reissner–Nordström BH one
should consider (m) JA (e) J A �= 0 and (gem) J 2 = −n2, but
this issue will be studied in a future work.

We shall return to the expression (26), in order to see
the consistency of such an equation for the 4D Wu–Yang
potentials, which describe a localized magnetic monopole
with charge qm [28–30],

−→
A (N) = qm

(1 − cos(θ))

r sin(θ)

−→e ϕ = qm

r
A(N)

3
−→e ϕ, (44)

−→
A (S) = −qm

(1 + cos(θ))

r sin(θ)

−→e ϕ = qm

r
A(S)

3
−→e ϕ. (45)

Here, labels (N) and (S) indicate the North or South hemi-
sphere, on which are valid the potentials. The magnetic
monopole density in the RN metric is

ρ(∗)
m = −K

r

∂A(∗)
3

∂θ
, (46)

in which the asterisk (∗) stands for the labels (N) or (S),
depending on what hemisphere we are dealing with. For
simplicity we choose to integrate the last expression in
the orthonormalized metric, in which the associated vol-
ume element is d V = 1√

f (r)
r2 sin(θ) dθ dϕ dr due to

| g |= 1. In the orthonormalized basis gαβ = ηαβ = ±1.
Then | g |= 1 and the basis of the cotangent space is
E−→1 = √

f (r)dt−→, E−→2 = 1√
f (r)

dr−→, E−→3 = rdθ−→, E−→4 =
r sin(θ)dϕ−→. Therefore

d V = 1√
f (r)

r2 sin(θ) dθ dϕ dr.

On the other hand, the current is

(m)−→J = (m) J (ON)0︸ ︷︷ ︸
1√
f (r)

−→
∂

∂ t
⇒

orthonormalized basis
(m) J (RN)0︸ ︷︷ ︸ = 1√

f (r)
(m) J (ON)0.

RNbasis,

Therefore, by integrating on the North and South hemi-
spheres we find that the magnetic charge in the BH is given
by

q(∗)
m = −K

∫ ∫ ∫

(∗)

∂ A(∗)
3

∂ θ
sin(θ) dθ dϕ dr,

in which q(∗)
m is the total magnetic charge on the correspond-

ing hemisphere. Of course, the total BH magnetic charge will
be qm = q(N)

m + q(S)
m , and the integral on the volume for the

total magnetic charge of the BH takes the form
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qm =
∫ ∫ ∫ (N)

ρ(N)
m d V +

∫ ∫ ∫ (S)

ρ(S)
m d V

= −K

(∫ ∫ ∫ (N) ∂A(N)
3

∂θ
sin(θ) dθ dϕ dr

+
∫ ∫ ∫ (S) ∂A(S)

3

∂θ
sin(θ) dθ dϕ dr

)
, (47)

which leads to
∫ ∫ ∫

BH
ρm d V = −2π K rintqm, (48)

rint = M − √
M2 − Q2 being the interior radius of the RN

BH. We assume that Q < M , so that for consistence we
shall require that K = − 1

2π rint
. Then to the effective RN

BH, in which our WIMT induces a gravito-magnetic cur-
rent, belongs a density of monopole charge ρm, which is not
uniform (ρm �= qm

4
3 πrint

3 ), but compatible with a total magnetic

charge qm, over the BH, which is the origin of the Wu–Yang
potentials.

4 Final remarks

We have employed WIMT over the 5D GP and RN metrics
in order to obtain the Weitzenböck torsion in the ONB repre-
sentation, which must be transformed with the vielbein (21)
and (22) to the GP representation. The matrix which rep-
resents the vielbein has an antisymmetric part, with which
we obtained an effective non-zero gravito-magnetic current
originating in the Weitzenböck torsion. The effective current
in the RN representation gives rise to a non-zero magnetic
monopole density without any time dependence. We have
confirmed that it is compatible with the Wu–Yang potentials
for a localized magnetic charge of magnitude qm. In our case
the magnetic density ρm must be seen as a magnetic charge
distribution over the BH, where the θ -dependence (which
is a manifestation of an anisotropic distribution of charge),
represents the total magnetic charge, qm, of the BH. We ana-
lyze various invariants which make it possible to interpret
the physical magnitudes of our problem (ρm, ρM, ρe) as ele-
ments coming from such invariants; this highlights the corre-
spondence between such magnitudes and the geometry of the
space–time. In particular, the quantization condition arises as
an effective manifestation of the current expression between
the components of the penta-velocity of the observer. Finally,
we have obtained an induced gravito-magnetic monopole in
the framework of WIMP, which is compatible with the Wu–
Yang fields, with the same magnitude of charge and quanti-
zation of charge included. This is a very important result that
manifests the power of our formalism.
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5 Appendix A: Connecting ONB, GP, and RN

Here we try to order the different representations of space–
time and the relationship between them:

• ONB representation: in 5D the orthonormal basis of
5D TM is {−→E A}, which is non-holonomic with structure
coefficients given in (24) and the subsequent expressions.
In this case the matrix of the metric tensor is ηAB with−→
E A · −→

E B = ηAB = ±1. With a constant foliation we
must obtain ηαβ = ±1, for the basis {−→E α}. In this con-
text the Weitzenböck torsion is specially easy to obtain
according to (25), and we can transform it to other rep-
resentations using the corresponding vielbein.

• GP representation: The 5D GP cartesian metric (23) is

linked to the coordinate basis −→e a = −→
∂

∂ xa associated to
xa , with x1 = tGP , x2 = x , x3 = y, x4 = z, x5 = l, in
which tGP = t + h(r), where h(r) is an arbitrary (C∞)
function. Using a constant foliation we must obtain the
familiar 4D GP cartesian metric [26].

• RN representation: The usual 5D RN metric associated
to an effective 4D charged black hole which in 5D is
characterized by a length element dS2 = f (r)dt2 −
f (r)−1dr2 − d�2 − dl2, with f (r) = 1 − 2M

r + Q2

r2

expressed for the coordinate basis {−→e ′
a′ = −−→

∂

∂ x ′a′ }, associ-

ated to x ′a′
, where x ′1 = tRN, x ′2 = r , x ′3 = θ , x ′4 = ϕ,

x ′5 = l. The 4D RN metric must be obtained by a con-
stant foliation.

• Tensorial objects: in the ONB representation must be
transformed to the GP representation using the vielbein
(21) and (22), and vice versa.
To obtain the vielbein connecting GP and RN, we must
use the fact that both bases are coordinate (holonomic).
Then −→e ′

a′ = eaa′
−→e a with eaa′ = ∂xa

∂x ′a′ and vice versa.
The non-zero vielbeins relating the ONB with RN,
according to

−→
E A = ea

′
A
−→e a′ , are ea

′=1
A=1 = 1√

f (r)
, ea

′=2
A=2 =

√
f (r), ea

′=3
A=3 = 1

r , ea
′=4
A=4 = 1

r sin(θ)
, ea

′=5
A=5 = 1, and there-

fore they comply with the expressions ea
′
A e

A
b′ = δa

′
b′ and

ea
′
A e

B
a′ = δBA .
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• Constant foliation: must be viewed as the application of
a vielbein eaα = δaα , e5

α = 0 to the tensor objects plus a
specialization to a certain value for ψ = ψ0. Then, for
example, Fa

b → Fα
β = eα

a e
b
βF

a
b |ψ=ψ0 . This idea must

be extended to another more general kind of foliation
(dynamic foliation) varying the vielbein as required.

Using the previous concepts and formulas we must relate
ONB, GP, and RN representations and the effective 4D
space–time, tensor objects, and invariants.
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