🗩 CrossMark

Received 15 October 2014 Accepted 11 November 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; low-temperature salt hydrates; chloride hydrates; zinc salts

CCDC references: 1033587; 1033586; 1033585

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Crystal structures of $ZnCl_2 \cdot 2.5H_2O$, $ZnCl_2 \cdot 3H_2O$ and $ZnCl_2 \cdot 4.5H_2O$

Erik Hennings, Horst Schmidt* and Wolfgang Voigt

TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany. *Correspondence e-mail: horst.schmidt@chemie.tu-freiberg.de

The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl₂ solutions is governed by coordination competition of Cl⁻ and H₂O around Zn²⁺. According to the solid-liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl₂·2.5H₂O contains Zn²⁺ both in a tetrahedral coordination with Cl⁻ and in an octahedral environment defined by five water molecules and one Clshared with the $[ZnCl_4]^{2-}$ unit. Thus, these two different types of Zn^{2+} cations form isolated units with composition [Zn₂Cl₄(H₂O)₅] (pentaaqua-µchlorido-trichloridodizinc). The trihydrate {hexaaquazinc tetrachloridozinc, $[Zn(H_2O)_6][ZnCl_4]$, consists of three different Zn^{2+} cations, one of which is tetrahedrally coordinated by four Cl⁻ anions. The two other Zn²⁺ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl₄] tetrahedra and [Zn(H₂O)₆] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H₂O)₆][ZnCl₄]·3H₂O}, consists of isolated octahedral [Zn(H₂O)₆] and tetrahedral [ZnCl₄] units, as well as additional lattice water molecules. $O-H \cdots O$ hydrogen bonds between the water molecules as donor and $ZnCl_4$ tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

1. Chemical context

completing the second s

OPEN d ACCESS

helpful in the understanding of the formation of different complex ion species in solution. The solubility of zinc chloride in water has been investigated by several authors in different concentration areas and at different temperatures (Haghighi et al., 2008; Mylius & Dietz, 1905; Jones & Getman, 1904; Chambers & Frazer, 1900; Biltz, 1902; Dietz, 1899; Etard, 1894). In the literature (Mylius & Dietz, 1905), the 4-, 3-, and 2.5-hydrates have been reported at lower temperatures. We have also found the 2.5-hydrate, the trihydrate and the 4.5hydrate as stable phases along the equilibrium crystallization curves. The 4.5-hydrate crystallizes below 240 K. The crystal structure of the trihydrate reported herein has also been determined by Wilcox (2009) in his thesis, but was never published. While writing the formula of the trihydrate in a more detailed formula as $[Zn(H_2O)_6][ZnCl_4]$, the analogy to other structures like that of $[Mg(H_2O)_6][SO_4]$ (Zalkin et al., 1964) and [Zn(H₂O)₆][SO₄] (Spiess & Gruehn, 1979) becomes obvious. These structures are very similar in the arrangement of octahedral units and anions in the unit cell.

Zinc chloride solutions, especially at lower temperatures, are

Figure 1 The asymmetric unit of ZnCl₂·2.5H₂O. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

Within the crystal structure of the 2.5-hydrate, there are two crystallographic different Zn^{2+} cations, as shown in Fig. 1. The Zn1 cation is octahedrally coordinated by five water molecules and one chloride anion. The Zn2 cation is coordinated by four chloride anions, one shared with the Zn1 cation, leading to the formation of isolated [Zn₂Cl₄(H₂O)₅] units. Since the bond lengths of the bridging Cl atom of the tetrahedron are shorter than to that of the octahedron, the latter becomes more distorted. The crystal structure of zinc chloride trihydrate consists of three crystallographically different Zn²⁺ cations (Fig. 2a). Two (Zn2 and Zn3) are located about an inversion centre and are coordinated octahedrally by six water molecules, forming $[Zn(H_2O)_6]^{2+}$ cations. The third one (Zn1) is tetrahedrally coordinated by chlorine anions, $[ZnCl_4]^{2-}$. The polyhedra are not connected by sharing a single atom like in the 2.5-hydrate, but they are linked by hydrogen bonds (Fig. 2b). The octahedra and tetrahedra are arranged in a CsCl-like arrangement with eight tetrahedra located around

Figure 2

(a) The molecular units and (b) the unit cell in the structure of $ZnCl_2 \cdot 3H_2O$. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z.]

Figure 3

(a) Arrangement of $[ZnCl_4]^{2-}$ -anions and $[Zn(H_2O)_6]^{2+}$ cations in a CsCl-like structure and (b) formation of chains by alternation of different coordination polyhedra in ZnCl₂·3H₂O. Dashed lines indicate hydrogen bonds. Only hydrogen bonds in one chain are shown.

Figure 4

(a) The molecular units in the structure of $ZnCl_2$ ·4.5H₂O and (b) formation of a second coordination shell. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

one octahedron (Fig. 3*a*). As shown in Fig. 4*a*, in the asymmetric unit of $ZnCl_2 \cdot 4.5H_2O$, two different Zn^{2+} cations are present. The Zn1 cation is coordinated octahedrally by six water molecules and the Zn2 cation tetrahedrally by four chloride anions. The three remaining water molecules are hydrogen-bonded to a $[Zn1(H_2O]^{2+}$ octahedron (Fig. 4*b*).

Table 1 Hydrogen-bond geometry (Å, °) for $ZnCl_2 \cdot 2.5H_2O$.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1A \cdots Cl2^i$	0.83(1)	2.43 (1)	3.243 (2)	167 (3)
$O1 - H1B \cdots O5^{ii}$	0.84(1)	2.02(1)	2.853 (3)	178 (4)
$O2-H2A\cdots Cl2^{iii}$	0.83 (1)	2.51(2)	3.299 (2)	158 (3)
$O2-H2B\cdots Cl4^{ii}$	0.84 (1)	2.41 (1)	3.2212 (19)	162 (3)
$O3-H3B\cdots Cl1^{iv}$	0.83 (1)	2.42 (1)	3.225 (2)	164 (3)
$O3-H3A\cdots Cl4^{v}$	0.83 (1)	2.38 (1)	3.205 (2)	171 (3)
$O4-H4B\cdots Cl2^{v}$	0.83 (1)	2.35 (1)	3.181 (2)	177 (3)
$O4-H4A\cdots Cl1^{iii}$	0.83 (1)	2.45 (2)	3.2349 (19)	157 (3)
$O5-H5A\cdots Cl4^{i}$	0.83(1)	2.55 (2)	3.233 (2)	141 (3)
$O5-H5B\cdots Cl1$	0.83 (1)	2.56 (1)	3.359 (3)	163 (3)

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, $^\circ)$ for $ZnCl_2{\cdot}3H_2O.$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1B \cdots Cl3^i$	0.84(1)	2.42 (1)	3.2520 (14)	168 (4)
$O1-H1A\cdots Cl4^{ii}$	0.84 (1)	2.43 (1)	3.2431 (14)	166 (3)
$O2-H2A\cdots Cl2^{iii}$	0.84 (1)	2.41 (2)	3.2260 (14)	163 (4)
$O2-H2B\cdots Cl3^{iv}$	0.84 (1)	2.54 (2)	3.3264 (15)	157 (3)
$O3-H3B\cdots Cl2^{ii}$	0.84 (1)	2.42 (2)	3.1715 (14)	149 (3)
$O3-H3B\cdots Cl2^{v}$	0.84 (1)	2.81 (3)	3.3159 (14)	120 (2)
$O3-H3A\cdots Cl4^{iv}$	0.83 (1)	2.45 (1)	3.2552 (15)	162 (3)
$O4-H4A\cdots Cl4$	0.84 (1)	2.43 (2)	3.2307 (18)	159 (4)
$O4-H4B\cdots Cl1^{vi}$	0.84 (1)	2.39(1)	3.2114 (17)	167 (4)
$O5-H5B\cdots Cl3^{vii}$	0.84 (1)	2.91 (5)	3.4565 (17)	125 (5)
$O5-H5B\cdots Cl4^{vii}$	0.84 (1)	2.59 (3)	3.3527 (18)	151 (6)
$O5-H5A\cdots Cl1^{ii}$	0.84 (1)	2.48 (1)	3.3159 (18)	170 (5)
$O6-H6A\cdots Cl1$	0.84 (1)	2.52 (2)	3.3142 (18)	158 (4)
$O6-H6B\cdots Cl3^{i}$	0.84 (1)	2.41 (1)	3.2405 (17)	169 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x, -y + 2, -z + 1; (iv) x, y, z + 1; (v) x, y - 1, z + 1; (vi) x, y - 1, z; (vii) -x + 1, -y + 1, -z + 1.

Table 3				
Hydrogen-bond geometry	(Å,	°)	for	$ZnCl_2 \cdot 4.5H_2O$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1-H1B\cdots Cl3^i$	0.84(1)	2.50 (2)	3.300 (3)	161 (6)
$O1-H1A\cdots O3^{ii}$	0.84 (1)	2.00(2)	2.823 (4)	167 (5)
$O2-H2B\cdots O7^{iii}$	0.84 (1)	2.02(2)	2.853 (3)	176 (6)
$O2-H2A\cdots Cl2^{iv}$	0.83 (1)	2.75 (5)	3.347 (2)	130 (5)
$O2-H2A\cdots Cl1$	0.83 (1)	2.68 (4)	3.386 (2)	143 (6)
$O2-H2A\cdots Cl2^{iv}$	0.83 (1)	2.75 (5)	3.347 (2)	130 (5)
$O2-H2B\cdots O7^{iii}$	0.84 (1)	2.02 (2)	2.853 (3)	176 (6)
$O3-H3A\cdots Cl2$	0.84 (1)	2.41 (2)	3.237 (3)	171 (5)
$O3-H3B\cdots Cl3^{v}$	0.84 (1)	2.71 (5)	3.312 (3)	130 (5)
$O3-H3B\cdots Cl4^{v}$	0.84 (1)	2.79 (4)	3.512 (3)	146 (6)
$O4-H4B\cdots O1^{vi}$	0.84 (1)	2.01 (2)	2.831 (4)	167 (5)
$O4-H4A\cdots O3^{vii}$	0.84 (1)	1.99 (2)	2.821 (4)	175 (6)
$O5-H5A\cdots Cl1^{viii}$	0.84 (1)	2.32 (1)	3.157 (2)	180 (6)
$O5-H5B\cdots Cl4^{vii}$	0.84 (1)	2.33 (2)	3.165 (3)	175 (5)
$O6-H6A\cdots Cl4^{viii}$	0.84 (1)	2.32 (1)	3.159 (2)	177 (4)
$O6-H6B\cdots O1^{ix}$	0.84 (1)	1.92 (2)	2.754 (3)	175 (6)
$O7 - H7A \cdot \cdot \cdot O2^{x}$	0.84(1)	1.90(1)	2.739 (3)	176 (5)
$O7-H7B\cdots Cl2^{ix}$	0.84(1)	2.38 (3)	3.181 (2)	160 (6)
$O8-H8A\cdots Cl3^{x}$	0.84 (1)	2.34 (2)	3.155 (3)	164 (5)
$O8-H8B\cdots O2^{iii}$	0.84 (1)	1.91 (2)	2.738 (3)	170 (5)
$O9-H9A\cdots Cl1^{x}$	0.84 (1)	2.39 (1)	3.230 (2)	176 (4)
$O9-H9B\cdots Cl3^{xi}$	0.84 (1)	2.42 (2)	3.236 (2)	167 (5)

 $\begin{array}{l} \text{Symmetry codes: (i) } x,y+1,z; (ii) -x+1,y+\frac{1}{2},-z+\frac{3}{2}; (iii) x-\frac{1}{2},-y+\frac{1}{2},-z+1; (iv) \\ x+1,y,z; (v) -x,y+\frac{1}{2},-z+\frac{3}{2}; (vi) x,y-1,z-1; (vii) -x+\frac{1}{2},-y,z-\frac{1}{2}; (viii) \\ -x+\frac{3}{2},-y,z-\frac{1}{2}; (ix) x+\frac{1}{2},-y+\frac{1}{2},-z+1; (x) x,y,z-1; (xi) x+1,y,z-1. \end{array}$

3. Supramolecular features

In the structure of $ZnCl_2 \cdot 2.5H_2O$, all terminal Cl^- anions are connected to the octahedral parts of neighbouring $[Zn_2Cl_4(H_2O)_5]$ units by three $O-H \cdot \cdot \cdot Cl$ hydrogen bonds per anion (Table 1, Fig. 5). The coordination polyhedra in the trihydrate are arranged in zigzag chains parallel to [001] in the crystal structure. The chains are highlighted in different shades of colors in Fig. 3b. Hydrogen bonds (Table 2) are established within one chain and between neighbouring chains (not shown in the Figure). As can be seen from Fig. 4b, five water molecules in the crystal structure of $ZnCl_2 \cdot 4.5H_2O$ are connected *via* hydrogen bonds to the $[Zn1(H_2O]^{2+}$ octahedron, three of them at the axial coordination sites and two of them at the

The connection of individual $[Zn_2Cl_4(H_2O)_5]$ units through hydrogen bonds (dashed lines) in the structure of $ZnCl_2\cdot 2.5H_2O$.

equatorial coordination sites. Seven chloride anions from $[Zn2Cl_4]^{2^-}$ tetrahedra contribute to the second coordination sphere of Zn1. Thus, every coordinating water molecule forms two hydrogen bonds. The structural situation in this salt can be compared with the second coordination shells around magnesium in magnesium halide nonahydrates like MgBr₂·9H₂O or MgI₂·9H₂O (Hennings *et al.*, 2013). Each water molecule of the $[Mg(H_2O)_6]^{2+}$ octahedra forms two hydrogen bonds, thus six water molecules and six halide atoms are involved in the second shell. However, in case of the magnesium halide anion and towards a hydrogen bond towards a halide anion and towards another water molecule. The hydrogen-bond geometry in ZnCl₂·4.5H₂O is given inTable 3.

4. Database survey

For crystal structures of other zinc chloride hydrates $(\text{ZnCl}_2 \cdot R\text{H}_2\text{O})$, see: Follner & Brehler (1970; R = 1.33); Wilcox (2009; R = 3). For crystal structures of anhydrous zinc chloride, see: Brehler (1961); Yakel & Brynestad (1978). For similar structural set-ups in comparison with the 3-hydrate, $[\text{Zn}(\text{H}_2\text{O})_6][\text{ZnCl}_4]$, see: Zalkin *et al.* (1964; $[\text{Mg}(\text{H}_2\text{O})_6]$ -[SO₄]); Spiess & Gruehn (1979; $[\text{Zn}(\text{H}_2\text{O})_6][\text{SO}_4]$); Agron & Busing (1985; $[\text{Mg}(\text{H}_2\text{O})_6][\text{Cl}_2]$); Ferrari *et al.* (1967; $[\text{Zn}(\text{H}_2\text{O})_6][\text{NO}_3]_2$).

5. Synthesis and crystallization

Zinc chloride 2.5 hydrate was crystallized from an aqueous solution of 73.41 wt% ZnCl₂ at 280 K after 2 d, zinc chloride

research communications

Table 4Experimental details.

	ZnCl ₂ ·2.5H ₂ O	ZnCl ₂ ·3H ₂ O	ZnCl ₂ ·4.5H ₂ O
Crystal data			
M _r	362.66	380.68	434.72
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$	Orthorhombic, $P2_12_12_1$
Temperature (K)	150	150	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.2909 (5), 9.7971 (5), 15.0912 (10)	6.4339 (5), 6.5202 (5), 14.2769 (11)	6.9795 (3), 12.5421 (6), 18.1849 (11)
α, β, γ (°)	90, 103.375 (5), 90	90.910 (6), 99.146 (6), 95.574 (6)	90, 90, 90
$V(\dot{A}^3)$	1048.72 (12)	588.21 (8)	1591.86 (14)
Z	4	2	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	5.57	4.98	3.70
Crystal size (mm)	$0.27 \times 0.19 \times 0.11$	$0.60 \times 0.42 \times 0.16$	$1.00 \times 0.75 \times 0.09$
Data collection			
Diffractometer	Stoe IPDS 2	Stoe IPDS 2T	Stoe IPDS 2T
Absorption correction	Integration (Coppens, 1970)	Integration (Coppens, 1970)	Integration (Coppens, 1970)
T_{\min}, T_{\max}	0.287, 0.534	0.093, 0.441	0.050, 0.708
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9997, 2923, 2222	13092, 3239, 3120	40776, 4414, 3955
R _{int}	0.043	0.091	0.140
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.628	0.693	0.694
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.035, 1.01	0.029, 0.089, 1.02	0.021, 0.053, 0.99
No. of reflections	2171	3239	4414
No. of parameters	130	161	208
No. of restraints	15	18	27
H-atom treatment	Only H-atom coordinates refined	All H-atom parameters refined	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.44, -0.36	0.95, -0.95	0.77, -0.64
Absolute structure	-	-	Flack x determined using 1730 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons & Flack, 2004)
Absolute structure parameter	_	-	0.089 (8)

Computer programs: X-AREA and X-RED (Stoe & Cie, 2009), SHELXS97 and SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and publcIF (Westrip, 2010).

trihydrate from an aqueous solution of 69.14 wt% ZnCl₂ at 263 K after 2 d and zinc chloride 4.5 hydrate from an aqueous solution of 53.98 wt% ZnCl₂ at 223K after 2 d. For preparing these solutions, zinc chloride (Merck, 99%) was used. The content of Zn²⁺ was analysed by complexometric titration with EDTA. The crystals are stable in their saturated solutions over a period of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray diffraction analysis.

6. Refinement

References

Crystal data, data collection and structure refinement details are summarized in Table 4. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For all three structures, distance restraints were applied for all water molecules, with O–H and H–H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively. For ZnCl₂·2.5H₂O U_{iso} values were set at $1.2U_{eq}$ (O) using a ridingmodel approximation. Biltz, W. (1902). Z. Phys. Chem. 40, 185-221.

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brehler, B. (1961). Z. Kristallogr. 115, 373-402.
- Chambers, V. J. & Frazer, F. C. J. (1900). Am. Chem. J. 23, 512-520.
- Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
- Dietz, R. (1899). Z. Anorg. Chem. 20, 240-263.
- Etard, A. (1894). Ann. Chim. Phys. 7, 503-574.
- Ferrari, A., Braibanti, A., Lanfredi, A. M. M. & Tiripicchio, A. (1967). Acta Cryst. 22, 240–246.
- Follner, H. & Brehler, B. (1970). Acta Cryst. B26, 1679-1682.
- Haghighi, H., Chapoy, A. & Tohidi, B. (2008). Ind. Eng. Chem. Res. 47, 3983–3989.
- Hennings, E., Schmidt, H. & Voigt, W. (2013). Acta Cryst. C69, 1292–1300.
- Jones, H. C. & Getman, F. H. (1904). Z. Phys. Chem. 49, 385-455.
- Mylius, F. & Dietz, R. (1905). Z. Anorg. Chem. 44, 209-220.
- Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spiess, M. & Gruehn, R. (1979). Z. Anorg. Allg. Chem. 456, 222-240.
- Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wilcox, R. J. (2009). PhD thesis, North Carolina State University, Raleigh, USA.

Yakel, H. L. & Brynestad, J. (1978). Inorg. Chem. 17, 3294-3296.

Zalkin, A., Ruben, H. & Templeton, D. H. (1964). Acta Cryst. 17, 235–240.

Acta Cryst. (2014). E70, 515-518 [doi:10.1107/S1600536814024738]

Crystal structures of ZnCl₂·2.5H₂O, ZnCl₂·3H₂O and ZnCl₂·4.5H₂O

Erik Hennings, Horst Schmidt and Wolfgang Voigt

Computing details

For all compounds, data collection: *X-AREA* (Stoe & Cie, 2009); cell refinement: *X-AREA* (Stoe & Cie, 2009); data reduction: *X-RED* (Stoe & Cie, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(ZnCl2_2halbH2O_150K) Pentaaqua-µ-chlorido-trichloridodizinc

Crystal data	
$[Zn_2Cl_4(H_2O)_5]$	F(000) = 712
$M_r = 362.66$	$D_{\rm x} = 2.297 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.2909(5) Å	Cell parameters from 245 reflections
b = 9.7971(5) Å	$\theta = 3.6 - 29.1^{\circ}$
c = 15.0912 (10) Å	$\mu = 5.57 \text{ mm}^{-1}$
$\beta = 103.375(5)^{\circ}$	T = 150 K
V = 1048.72 (12) Å ³	Prism, colourless
<i>Z</i> = 4	$0.27 \times 0.19 \times 0.11 \text{ mm}$
Data collection	
Stoe IPDS 2	9997 measured reflections
diffractometer	2923 independent reflections
Radiation source: fine-focus sealed tube	2222 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.043$
rotation method scans	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: integration	$h = -10 \rightarrow 10$
(Coppens, 1970)	$k = -13 \rightarrow 13$
$T_{\min} = 0.287, T_{\max} = 0.534$	$l = -19 \rightarrow 20$
Refinement	
Refinement on F^2	Hydrogen site location: difference Fourier map

Refinement on F^2 Hydrogen site location: difference FourierLeast-squares matrix: fullOnly H-atom coordinates refined $R[F^2 > 2\sigma(F^2)] = 0.018$ $w = 1/[\sigma^2(F_o^2) + (0.0151P)^2]$ $wR(F^2) = 0.035$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{max} = 0.001$ 2171 reflections $\Delta\rho_{max} = 0.44$ e Å⁻³130 parameters $\Delta\rho_{min} = -0.36$ e Å⁻³15 restraints $\Delta\rho_{min} = -0.36$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.78704 (3)	0.77180 (3)	0.15458 (2)	0.01517 (6)
Zn2	0.47584 (3)	0.76881 (3)	0.35389 (2)	0.01443 (6)
C13	0.48529 (7)	0.77940 (6)	0.20228 (3)	0.01632 (11)
Cl4	0.31569 (9)	0.95388 (6)	0.38493 (4)	0.02143 (13)
Cl1	0.77848 (8)	0.75449 (6)	0.43488 (4)	0.02454 (13)
Cl2	0.30975 (10)	0.57892 (6)	0.37038 (4)	0.02560 (14)
O3	0.6623 (3)	0.62440 (18)	0.06100 (13)	0.0239 (4)
H3A	0.715 (4)	0.602 (3)	0.0197 (16)	0.029*
H3B	0.553 (2)	0.644 (3)	0.0340 (19)	0.029*
O2	1.0303 (2)	0.76289 (19)	0.10641 (13)	0.0269 (4)
H2A	1.101 (4)	0.831 (2)	0.114 (2)	0.032*
H2B	1.094 (4)	0.691 (2)	0.108 (2)	0.032*
O4	0.6948 (3)	0.92487 (18)	0.06129 (14)	0.0276 (4)
H4A	0.690 (5)	1.0064 (14)	0.076 (2)	0.033*
H4B	0.724 (5)	0.921 (3)	0.0111 (13)	0.033*
01	0.8850 (3)	0.6172 (2)	0.24737 (16)	0.0332 (5)
H1A	0.997 (2)	0.600 (3)	0.272 (2)	0.040*
H1B	0.801 (4)	0.558 (3)	0.245 (2)	0.040*
05	0.8963 (3)	0.9128 (2)	0.25850 (17)	0.0381 (5)
H5A	1.002 (3)	0.948 (3)	0.268 (3)	0.046*
H5B	0.874 (5)	0.891 (4)	0.3079 (14)	0.046*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01214 (12)	0.01726 (12)	0.01619 (12)	0.00135 (11)	0.00343 (9)	-0.00051 (10)
Zn2	0.01283 (11)	0.01446 (12)	0.01622 (12)	-0.00030 (10)	0.00379 (9)	-0.00026 (10)
C13	0.0111 (2)	0.0235 (3)	0.0147 (2)	0.0010 (2)	0.00364 (18)	-0.0011 (2)
Cl4	0.0257 (3)	0.0181 (3)	0.0218 (3)	0.0061 (2)	0.0080 (2)	-0.0005 (2)
Cl1	0.0151 (2)	0.0355 (3)	0.0205 (3)	0.0024 (2)	-0.0011 (2)	0.0020 (2)
Cl2	0.0296 (4)	0.0200 (3)	0.0255 (3)	-0.0110 (2)	0.0030 (3)	0.0015 (2)
O3	0.0209 (10)	0.0246 (9)	0.0287 (10)	-0.0020 (8)	0.0110 (8)	-0.0088 (7)
O2	0.0163 (8)	0.0275 (10)	0.0393 (10)	0.0031 (8)	0.0111 (7)	0.0025 (9)
O4	0.0307 (11)	0.0200 (9)	0.0369 (11)	0.0082 (8)	0.0173 (9)	0.0101 (8)
01	0.0187 (11)	0.0389 (11)	0.0425 (12)	0.0123 (9)	0.0084 (9)	0.0253 (10)
O5	0.0176 (11)	0.0506 (13)	0.0470 (14)	-0.0106 (9)	0.0095 (10)	-0.0309 (11)

Zn1—O4	2.0604 (18)	Zn1—Cl3	2.4691 (6)
Zn1—O2	2.0681 (17)	Zn2—Cl4	2.2635 (6)
Zn1—01	2.0742 (19)	Zn2—Cl2	2.2647 (6)
Zn1—O3	2.0767 (18)	Zn2—Cl1	2.2659 (6)
Zn1—05	2.103 (2)	Zn2—Cl3	2.3073 (6)
O4—Zn1—O2	87.79 (8)	O2—Zn1—Cl3	176.40 (6)
O4—Zn1—O1	178.76 (8)	O1—Zn1—Cl3	90.93 (6)
O2—Zn1—O1	90.97 (8)	O3—Zn1—Cl3	86.54 (5)
O4—Zn1—O3	91.09 (8)	O5—Zn1—Cl3	88.40 (6)
O2—Zn1—O3	90.45 (8)	Cl4—Zn2—Cl2	108.71 (2)
O1—Zn1—O3	88.83 (9)	Cl4—Zn2—Cl1	115.00 (3)
O4—Zn1—O5	92.24 (10)	Cl2—Zn2—Cl1	111.63 (3)
O2—Zn1—O5	94.72 (8)	Cl4—Zn2—Cl3	107.72 (2)
01—Zn1—O5	87.95 (9)	Cl2—Zn2—Cl3	106.58 (2)
O3—Zn1—O5	173.95 (8)	Cl1—Zn2—Cl3	106.80 (2)
O4—Zn1—Cl3	90.30 (6)	Zn2—Cl3—Zn1	121.38 (2)

Geometric parameters (Å, °)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
O1—H1A···Cl2 ⁱ	0.83 (1)	2.43 (1)	3.243 (2)	167 (3)
O1—H1 <i>B</i> ···O5 ⁱⁱ	0.84 (1)	2.02 (1)	2.853 (3)	178 (4)
O2—H2A···Cl2 ⁱⁱⁱ	0.83 (1)	2.51 (2)	3.299 (2)	158 (3)
O2—H2B···Cl4 ⁱⁱ	0.84 (1)	2.41 (1)	3.2212 (19)	162 (3)
O3—H3B···Cl1 ^{iv}	0.83 (1)	2.42 (1)	3.225 (2)	164 (3)
O3—H3A···Cl4 ^v	0.83 (1)	2.38 (1)	3.205 (2)	171 (3)
O4—H4 B ···Cl2 ^v	0.83 (1)	2.35 (1)	3.181 (2)	177 (3)
O4—H4A···Cl1 ⁱⁱⁱ	0.83 (1)	2.45 (2)	3.2349 (19)	157 (3)
O5—H5A···Cl4 ⁱ	0.83 (1)	2.55 (2)	3.233 (2)	141 (3)
O5—H5 <i>B</i> ···Cl1	0.83 (1)	2.56 (1)	3.359 (3)	163 (3)

Symmetry codes: (i) x+1, y, z; (ii) -x+3/2, y-1/2, -z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) x-1/2, -y+3/2, z-1/2; (v) x+1/2, -y+3/2, z-1/2.

(zncl2_3H2O_150K) Dexaaquazinc tetrachloridozinc

Crystal data $[Zn(H_2O)_6][ZnCl_4]$ Z = 2 $M_r = 380.68$ F(000) = 376Triclinic, $P\overline{1}$ $D_{\rm x} = 2.149 {\rm Mg m^{-3}}$ a = 6.4339(5) Å Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 16445 reflections b = 6.5202(5) Å $\theta = 2.9 - 29.7^{\circ}$ *c* = 14.2769 (11) Å $\mu = 4.98 \text{ mm}^{-1}$ $\alpha = 90.910 \ (6)^{\circ}$ $\beta = 99.146 \ (6)^{\circ}$ T = 150 K $\gamma = 95.574 \ (6)^{\circ}$ Prism, colourless V = 588.21 (8) Å³ $0.60 \times 0.42 \times 0.16 \text{ mm}$

Data collection

Stoe IPDS 2T	13092 measured reflections
diffractometer	3239 independent reflections
Radiation source: fine-focus sealed tube	3120 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{int} = 0.091$
rotation method scans	$\theta_{max} = 29.5^{\circ}, \theta_{min} = 2.9^{\circ}$
Absorption correction: integration	$h = -8 \rightarrow 8$
(Coppens, 1970)	$k = -8 \rightarrow 8$
$T_{min} = 0.093, T_{max} = 0.441$	$l = 0 \rightarrow 19$
Refinement on F^2	All H-atom parameters refined
Least-squares matrix: full	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0816P)^{2}]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.089$	$(\Delta/\sigma)_{max} = 0.001$
S = 1.02	$\Delta\rho_{max} = 0.95 \text{ e } \text{Å}^{-3}$
3239 reflections	$\Delta\rho_{min} = -0.95 \text{ e } \text{Å}^{-3}$
161 parameters	Extinction correction: <i>SHELXL</i> ,
18 restraints	Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}
Hydrogen site location: difference Fourier map	Extinction coefficient: 0.027 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.11523 (3)	0.89978 (3)	0.24118 (2)	0.01505 (10)
Zn2	0.5000	0.5000	1.0000	0.01412 (10)
Zn3	0.5000	0.5000	0.5000	0.01952 (10)
Cl4	0.11763 (7)	0.54937 (6)	0.21964 (3)	0.01909 (11)
Cl1	0.00446 (7)	0.93575 (7)	0.38328 (3)	0.02259 (12)
Cl2	-0.08727 (7)	1.02596 (6)	0.11685 (3)	0.01956 (11)
C13	0.45614 (6)	1.04172 (7)	0.25090 (3)	0.02155 (12)
01	0.3849 (2)	0.5508 (2)	0.85688 (10)	0.0202 (3)
03	0.2012 (2)	0.3787 (2)	1.01476 (10)	0.0220 (3)
O2	0.4233 (2)	0.7893 (2)	1.04390 (10)	0.0218 (3)
O4	0.1902 (3)	0.4054 (2)	0.43689 (13)	0.0338 (4)
05	0.4216 (3)	0.4000 (3)	0.63059 (11)	0.0316 (3)
06	0.4103 (3)	0.7891 (2)	0.53108 (12)	0.0330 (4)
H3A	0.153 (4)	0.406 (4)	1.0635 (14)	0.027 (7)*
H1A	0.2554 (19)	0.549 (5)	0.837 (2)	0.031 (7)*
H5A	0.324 (6)	0.304 (6)	0.631 (5)	0.099 (19)*
H5B	0.523 (6)	0.365 (9)	0.670 (3)	0.11 (2)*
H3B	0.158 (4)	0.255 (2)	1.001 (2)	0.028 (7)*
H4B	0.150 (6)	0.2781 (19)	0.433 (3)	0.046 (9)*
H1B	0.444 (5)	0.656 (4)	0.835 (3)	0.052 (10)*
H6B	0.430 (6)	0.842 (5)	0.5863 (12)	0.043 (9)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2B	0.469 (5)	0.846 (5)	1.0973 (12)	0.033 (8)*
H4A	0.138 (7)	0.443 (7)	0.3831 (16)	0.068 (13)*
H2A	0.326 (5)	0.848 (6)	1.012 (3)	0.067 (12)*
H6A	0.312 (5)	0.856 (6)	0.505 (3)	0.068 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.01631 (13)	0.01664 (13)	0.01182 (13)	0.00047 (8)	0.00172 (8)	0.00148 (8)
Zn2	0.01421 (15)	0.01364 (15)	0.01422 (15)	0.00026 (10)	0.00197 (10)	0.00211 (10)
Zn3	0.02499 (17)	0.01508 (16)	0.01623 (16)	0.00053 (11)	-0.00294 (12)	0.00295 (11)
Cl4	0.0226 (2)	0.01568 (19)	0.0180 (2)	0.00149 (13)	0.00074 (14)	0.00044 (14)
Cl1	0.0276 (2)	0.0269 (2)	0.0138 (2)	-0.00023 (16)	0.00716 (15)	-0.00085 (15)
Cl2	0.0214 (2)	0.01837 (19)	0.0172 (2)	0.00167 (14)	-0.00233 (15)	0.00332 (14)
Cl3	0.01682 (19)	0.0240 (2)	0.0227 (2)	-0.00282 (15)	0.00277 (15)	0.00254 (15)
01	0.0181 (5)	0.0231 (6)	0.0185 (6)	0.0001 (4)	0.0003 (5)	0.0057 (5)
O3	0.0204 (6)	0.0212 (6)	0.0243 (7)	-0.0047 (5)	0.0081 (5)	-0.0033 (5)
O2	0.0246 (6)	0.0193 (6)	0.0205 (6)	0.0071 (5)	-0.0021 (5)	-0.0003 (5)
O4	0.0339 (8)	0.0262 (7)	0.0336 (8)	-0.0064 (6)	-0.0133 (7)	0.0092 (6)
O5	0.0396 (8)	0.0325 (8)	0.0208 (7)	-0.0004 (6)	0.0011 (6)	0.0091 (6)
06	0.0504 (10)	0.0230 (7)	0.0246 (8)	0.0105 (6)	-0.0011 (7)	0.0001 (6)

Geometric parameters (Å, °)

Zn1—Cl2	2.2460 (5)	Zn2—O2	2.1066 (13)
Zn1—Cl1	2.2706 (5)	Zn2—O2 ⁱ	2.1066 (13)
Zn1—Cl3	2.2785 (5)	Zn3—O4	2.0829 (16)
Zn1—Cl4	2.3024 (5)	Zn3—O4 ⁱⁱ	2.0829 (16)
Zn2—O3	2.0506 (13)	Zn3—O6	2.0852 (16)
Zn2—O3 ⁱ	2.0506 (13)	Zn3—O6 ⁱⁱ	2.0852 (16)
Zn2—O1	2.1027 (13)	Zn3—O5 ⁱⁱ	2.1045 (16)
Zn2—O1 ⁱ	2.1027 (13)	Zn3—O5	2.1045 (16)
Cl2—Zn1—Cl1	115.478 (19)	$O1$ — $Zn2$ — $O2^{i}$	87.84 (5)
Cl2—Zn1—Cl3	109.745 (18)	$O1^{i}$ —Zn2— $O2^{i}$	92.16 (5)
Cl1—Zn1—Cl3	110.036 (19)	$O2$ —Zn2— $O2^i$	180.0
Cl2—Zn1—Cl4	109.947 (18)	O4—Zn3—O4 ⁱⁱ	180.0
Cl1—Zn1—Cl4	104.334 (18)	O4—Zn3—O6	89.91 (7)
Cl3—Zn1—Cl4	106.860 (18)	O4 ⁱⁱ —Zn3—O6	90.09 (7)
O3—Zn2—O3 ⁱ	180.0	O4—Zn3—O6 ⁱⁱ	90.09 (7)
O3—Zn2—O1	88.54 (5)	O4 ⁱⁱ —Zn3—O6 ⁱⁱ	89.91 (7)
O3 ⁱ —Zn2—O1	91.46 (5)	O6—Zn3—O6 ⁱⁱ	180.0
$O3$ —Zn2— $O1^{i}$	91.46 (5)	O4—Zn3—O5 ⁱⁱ	91.29 (7)
$O3^{i}$ —Zn2—O1 ⁱ	88.54 (5)	O4 ⁱⁱ —Zn3—O5 ⁱⁱ	88.71 (7)
$O1$ —Zn2— $O1^i$	180.00 (3)	O6—Zn3—O5 ⁱⁱ	91.31 (7)
O3—Zn2—O2	88.50 (6)	O6 ⁱⁱ —Zn3—O5 ⁱⁱ	88.69 (7)
O3 ⁱ —Zn2—O2	91.50 (6)	O4—Zn3—O5	88.71 (7)
O1—Zn2—O2	92.17 (5)	O4 ⁱⁱ —Zn3—O5	91.29 (7)

O1 ⁱ —Zn2—O2	87.83 (5)	O6—Zn3—O5	88.69 (7)
$O3$ — $Zn2$ — $O2^{i}$	91.50 (6)	O6 ⁱⁱ —Zn3—O5	91.31 (7)
$O3^{i}$ —Zn2— $O2^{i}$	88.50 (6)	O5 ⁱⁱ —Zn3—O5	180.00 (9)

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1 <i>B</i> ····Cl3 ⁱⁱⁱ	0.84 (1)	2.42 (1)	3.2520 (14)	168 (4)
O1—H1A···Cl4 ^{iv}	0.84 (1)	2.43 (1)	3.2431 (14)	166 (3)
O2— $H2A$ ···Cl2 ^v	0.84 (1)	2.41 (2)	3.2260 (14)	163 (4)
O2—H2B···Cl3 ^{vi}	0.84 (1)	2.54 (2)	3.3264 (15)	157 (3)
O3—H3 <i>B</i> ···Cl2 ^{iv}	0.84 (1)	2.42 (2)	3.1715 (14)	149 (3)
O3—H3 <i>B</i> ···Cl2 ^{vii}	0.84 (1)	2.81 (3)	3.3159 (14)	120 (2)
O3—H3A····Cl4 ^{vi}	0.83 (1)	2.45 (1)	3.2552 (15)	162 (3)
O4—H4A···Cl4	0.84 (1)	2.43 (2)	3.2307 (18)	159 (4)
O4—H4 <i>B</i> ···Cl1 ^{viii}	0.84 (1)	2.38 (1)	3.2114 (17)	167 (4)
O5—H5 <i>B</i> ···Cl3 ⁱⁱ	0.84 (1)	2.91 (5)	3.4565 (17)	125 (5)
O5—H5 <i>B</i> ····Cl4 ⁱⁱ	0.84 (1)	2.59 (3)	3.3527 (18)	151 (6)
O5—H5A···Cl1 ^{iv}	0.84 (1)	2.48 (1)	3.3159 (18)	170 (5)
O6—H6A…Cl1	0.84 (1)	2.52 (2)	3.3142 (18)	158 (4)
O6—H6B····Cl3 ⁱⁱⁱ	0.84 (1)	2.41 (1)	3.2405 (17)	169 (3)

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+1, -z+1; (v) -x, -y+2, -z+1; (vi) x, y, z+1; (vii) x, y-1, z+1; (viii) x, y-1, z-1, z-1; (viii) x, y-1, z-1; (viii) x, y-1; z-1; z-1; (viii) x, y-1; z-1; z-1; (viii) x, y-1; z-1; z

(ZnCl2_4halbH2O_120K) Hexaaquazinc tetrachloridozinc trihydrate

$D_{\rm x} = 1.814 { m Mg} { m m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 33650 reflections
$\theta = 1.8 - 29.6^{\circ}$
$\mu = 3.70 \text{ mm}^{-1}$
T = 120 K
Prism, colourless
$1 \times 0.75 \times 0.09 \text{ mm}$
40776 measured reflections
4414 independent reflections
3955 reflections with $I > 2\sigma(I)$
$R_{\rm int}=0.140$
$\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
$h = -9 \rightarrow 9$
$k = -17 \rightarrow 17$
$l = -25 \rightarrow 25$
$wR(F^2) = 0.053$
S = 0.99
4414 reflections

208 parameters 27 restraints Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0379P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

Special details

$$\begin{split} &\Delta\rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3} \\ &{\rm Absolute \ structure: \ Flack \ x \ determined \ using \\ 1730 \ quotients \ [(I^+)-(I^-)]/[(I^+)+(I^-)] \ ({\rm Parsons \ \& } \\ &{\rm Flack, \ 2004)} \\ &{\rm Absolute \ structure \ parameter: \ 0.089 \ (8)} \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.77065 (5)	0.00714 (2)	0.06201 (2)	0.01250 (7)	
Zn2	0.31706 (5)	0.03464 (3)	0.81771 (2)	0.01309 (7)	
C13	0.27768 (11)	-0.08062 (5)	0.91458 (4)	0.01637 (13)	
Cl4	0.22957 (11)	-0.06620 (6)	0.71906 (4)	0.01873 (14)	
C11	0.62302 (10)	0.09178 (6)	0.80989 (4)	0.01949 (14)	
Cl2	0.11859 (11)	0.17633 (6)	0.83407 (4)	0.01869 (14)	
05	0.7005 (4)	0.0248 (2)	0.17173 (12)	0.0221 (4)	
06	1.0486 (3)	-0.03761 (19)	0.08567 (14)	0.0194 (4)	
O4	0.6863 (4)	-0.15048 (17)	0.05792 (14)	0.0230 (5)	
O7	0.8639 (3)	0.17112 (16)	0.06267 (13)	0.0155 (4)	
O2	0.7609 (3)	0.27476 (16)	0.93613 (13)	0.0180 (4)	
O3	0.0251 (4)	0.25556 (19)	0.66850 (15)	0.0233 (5)	
01	0.6408 (4)	0.75102 (19)	0.91896 (15)	0.0216 (5)	
08	0.5001 (3)	0.05893 (19)	0.03098 (15)	0.0216 (5)	
09	0.8442 (3)	-0.00564 (19)	-0.04927 (12)	0.0193 (4)	
H6A	1.106 (7)	-0.008 (3)	0.1205 (18)	0.027 (12)*	
H1A	0.732 (5)	0.761 (4)	0.890 (2)	0.030 (12)*	
H4B	0.681 (8)	-0.188 (3)	0.0199 (16)	0.031 (12)*	
H7A	0.829 (8)	0.201 (4)	0.0235 (16)	0.033 (13)*	
H9A	0.784 (6)	0.017 (4)	-0.0860 (17)	0.029 (12)*	
H5A	0.747 (7)	-0.006 (4)	0.2084 (19)	0.043 (15)*	
H5B	0.586 (3)	0.032 (4)	0.184 (3)	0.041 (14)*	
H8A	0.433 (6)	0.015 (3)	0.008 (2)	0.031 (13)*	
H7B	0.816 (9)	0.204 (4)	0.099 (2)	0.054 (18)*	
H8B	0.423 (6)	0.106 (3)	0.045 (3)	0.028 (12)*	
H6B	1.069 (8)	-0.1034 (13)	0.084 (3)	0.038 (15)*	
H9B	0.959 (3)	-0.014 (5)	-0.061 (3)	0.050 (16)*	
H4A	0.629 (7)	-0.181 (4)	0.092 (2)	0.035 (14)*	
H2A	0.780 (9)	0.239 (4)	0.8979 (19)	0.049 (17)*	
H3A	0.046 (8)	0.228 (4)	0.7098 (15)	0.040 (15)*	
H1B	0.550 (6)	0.791 (4)	0.906 (3)	0.047 (17)*	
H2B	0.645 (3)	0.292 (4)	0.939 (4)	0.050 (17)*	

					supporting	g information
H3B	-0.041 (7	7) 0.31	.0 (3)	0.676 (4)	0.047 (16)*	
Atomic	c displacement par	cameters (Ų)				
	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01058 (15)	0.01326 (13)	0.01365 (14)	0.00118 (11)	-0.00037 (11)	0.00004 (10)
Zn2	0.00971 (15)	0.01571 (13)	0.01386 (14)	-0.00083 (11)	-0.00053 (11)	-0.00135 (11)
C13	0.0161 (3)	0.0176 (3)	0.0154 (3)	-0.0007 (2)	-0.0006 (2)	0.0012 (2)
Cl4	0.0175 (3)	0.0241 (3)	0.0146 (3)	-0.0049 (3)	-0.0008(3)	-0.0039(2)
Cl1	0.0108 (3)	0.0288 (3)	0.0189 (3)	-0.0047 (2)	0.0008 (3)	-0.0050 (3)
Cl2	0.0137 (3)	0.0185 (3)	0.0239 (4)	0.0027 (2)	-0.0013 (3)	-0.0032 (2)
05	0.0198 (11)	0.0340 (11)	0.0126 (9)	0.0063 (10)	0.0007 (8)	0.0015 (8)
06	0.0161 (10)	0.0193 (10)	0.0227 (11)	0.0046 (9)	-0.0063 (8)	-0.0035 (9)
04	0.0319 (13)	0.0176 (10)	0.0195 (11)	-0.0053 (9)	0.0026 (11)	-0.0007 (8)
07	0.0147 (10)	0.0154 (9)	0.0164 (10)	0.0004 (7)	0.0007 (8)	-0.0009 (8)
02	0.0170 (11)	0.0175 (9)	0.0194 (10)	-0.0004 (8)	0.0005 (9)	-0.0012 (8)
03	0.0220 (12)	0.0236 (11)	0.0245 (13)	0.0060 (9)	-0.0043 (10)	-0.0005 (9)
01	0.0189 (12)	0.0199 (10)	0.0260 (12)	-0.0012 (9)	0.0012 (9)	-0.0014 (9)
08	0.0122 (10)	0.0244 (11)	0.0281 (13)	0.0056 (8)	-0.0062 (9)	-0.0088(9)
09	0.0157 (10)	0.0294 (11)	0.0127 (9)	0.0038 (9)	0.0025 (8)	0.0012 (8)

Geometric parameters (Å, °)

Zn1—O4	2.064 (2)	Zn1—O7	2.157 (2)
Zn1—O6	2.065 (2)	Zn2—Cl1	2.2570 (8)
Zn1—O5	2.066 (2)	Zn2—Cl2	2.2728 (8)
Zn1—08	2.075 (2)	Zn2—Cl4	2.2783 (8)
Zn1—09	2.094 (2)	Zn2—Cl3	2.2953 (8)
O4—Zn1—O6	90.86 (10)	O6—Zn1—O7	88.54 (9)
O4—Zn1—O5	94.02 (10)	O5—Zn1—O7	87.92 (10)
O6—Zn1—O5	92.91 (10)	O8—Zn1—O7	88.72 (9)
O4—Zn1—O8	91.75 (10)	O9—Zn1—O7	90.25 (9)
O6—Zn1—O8	175.34 (10)	Cl1—Zn2—Cl2	109.67 (3)
O5—Zn1—O8	90.76 (10)	Cl1—Zn2—Cl4	112.35 (3)
O4—Zn1—O9	87.81 (10)	Cl2—Zn2—Cl4	111.95 (3)
O6—Zn1—O9	87.15 (9)	Cl1—Zn2—Cl3	111.20 (3)
O5—Zn1—O9	178.17 (10)	Cl2—Zn2—Cl3	108.60 (3)
O8—Zn1—O9	89.09 (10)	Cl4—Zn2—Cl3	102.86 (3)
O4—Zn1—O7	178.00 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1B····Cl3 ⁱ	0.84 (1)	2.50 (2)	3.300 (3)	161 (6)
O1—H1A···O3 ⁱⁱ	0.84 (1)	2.00 (2)	2.823 (4)	167 (5)
O2—H2B···O7 ⁱⁱⁱ	0.84 (1)	2.02 (2)	2.853 (3)	176 (6)
$O2$ — $H2A$ ···· $C12^{iv}$	0.83 (1)	2.75 (5)	3.347 (2)	130 (5)

O2—H2A···Cl1	0.83 (1)	2.68 (4)	3.386 (2)	143 (6)
O2—H2A····Cl2 ^{iv}	0.83 (1)	2.75 (5)	3.347 (2)	130 (5)
O2—H2 <i>B</i> ···O7 ⁱⁱⁱ	0.84 (1)	2.02 (2)	2.853 (3)	176 (6)
O3—H3 <i>A</i> ···Cl2	0.84 (1)	2.41 (2)	3.237 (3)	171 (5)
O3—H3 <i>B</i> ···Cl3 ^v	0.84 (1)	2.71 (5)	3.312 (3)	130 (5)
O3—H3 <i>B</i> ···Cl4 ^v	0.84 (1)	2.79 (4)	3.512 (3)	146 (6)
O4— $H4B$ ···O1 ^{vi}	0.84 (1)	2.01 (2)	2.831 (4)	167 (5)
O4—H4A···O3 ^{vii}	0.84 (1)	1.99 (2)	2.821 (4)	175 (6)
O5—H5A···Cl1 ^{viii}	0.84 (1)	2.32 (1)	3.157 (2)	180 (6)
O5—H5 <i>B</i> ···Cl4 ^{vii}	0.84 (1)	2.33 (2)	3.165 (3)	175 (5)
O6—H6A····Cl4 ^{viii}	0.84 (1)	2.32 (1)	3.159 (2)	177 (4)
O6—H6 <i>B</i> ⋯O1 ^{ix}	0.84 (1)	1.92 (2)	2.754 (3)	175 (6)
O7— $H7A$ ···O2 ^x	0.84 (1)	1.90(1)	2.739 (3)	176 (5)
O7— $H7B$ ···Cl2 ^{ix}	0.84 (1)	2.38 (3)	3.181 (2)	160 (6)
O8—H8A····Cl3 ^x	0.84 (1)	2.34 (2)	3.155 (3)	164 (5)
O8— $H8B$ ···O2 ⁱⁱⁱ	0.84 (1)	1.91 (2)	2.738 (3)	170 (5)
O9—H9A···Cl1 ^x	0.84 (1)	2.39(1)	3.230 (2)	176 (4)
O9—H9 <i>B</i> ···Cl3 ^{xi}	0.84 (1)	2.42 (2)	3.236 (2)	167 (5)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) *x*-1/2, -*y*+1/2, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*, *y*+1/2, -*z*+3/2; (vi) *x*, *y*-1, *z*-1; (vii) -*x*+1/2, -*y*, *z*-1/2; (viii) -*x*+3/2, -*y*, *z*-1/2; (ix) *x*+1/2, -*y*+1/2, -*z*+1; (x) *x*, *y*, *z*-1; (xi) *x*+1, *y*, *z*-1.