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Abstract

Locating hands in sign language video is challenging

due to a number of factors. Hand appearance varies widely

across signers due to anthropometric variations and vary-

ing levels of signer proficiency. Video can be captured un-

der varying illumination, camera resolutions, and levels of

scene clutter, e.g., high-res video captured in a studio vs.

low-res video gathered by a web cam in a user’s home.

Moreover, the signers’ clothing varies, e.g., skin-toned

clothing vs. contrasting clothing, short-sleeved vs. long-

sleeved shirts, etc. In this work, the hand detection prob-

lem is addressed in an appearance matching framework.

The Histogram of Oriented Gradient (HOG) based match-

ing score function is reformulated to allow non-rigid align-

ment between pairs of images to account for hand shape

variation. The resulting alignment score is used within a

Support Vector Machine hand/not-hand classifier for hand

detection. The new matching score function yields improved

performance (in ROC area and hand detection rate) over

the Vocabulary Guided Pyramid Match Kernel (VGPMK)

and the traditional, rigid HOG distance on American Sign

Language video gestured by expert signers. The proposed

match score function is computationally less expensive (for

training and testing), has fewer parameters and is less sen-

sitive to parameter settings than VGPMK. The proposed de-

tector works well on test sequences from an inexpert signer

in a non-studio setting with cluttered background.

1. Introduction

In this paper, we focus on hand detection in American
Sign Language (ASL) video sequences captured in both
controlled and uncontrolled settings. We envision future
systems for ASL gesture recognition and gesture based re-
trieval that enable users to search through sign language
video (videos could be from stories, news media, lectures,
performances, reference sources, and instructional material)
via gestures to a web cam. As an interim goal, we are devel-
oping a query-by-sign ASL lexicon system, where queries
are signs gestured by inexpert signers to assist in their learn-

ing of sign language. Accurate hand location detection is an
essential component for these applications to enable subse-
quent steps such as hand tracking, hand pose estimation,
and hand shape classification.

Linguists have identified approximately 84 distinct hand
shapes commonly employed in ASL [21]. Hand shapes ori-
ented in different directions in space can convey distinct
signs. Linguistic production constraints reduce the possible
range of hand shapes within a single sign and often enforce
hand shape symmetry for two handed signs; we have not
leveraged these constraints in our current work. The rich-
ness and large space of possible hand shapes compounded
with factors listed below make hand analysis in sign lan-
guage video challenging.

• Between signer variations: two signers for the same
sign may use slightly (sometimes significantly) differ-
ent hand shapes and hand orientations, anthropomet-
ric and gender differences are typical, the signers may
have different ASL proficiencies and learning back-
ground.

• Occlusions: hands occlude each other, oftentimes the
hand is in front or close to the face causing ambiguity
between hand and background.

• Changing environment: background clutter, clothing,
illumination, scale and perspective changes are com-
mon issues to contend with. Motion blur and image
sensor noise are magnified in indoor environments.

• Annotation inaccuracies: in our ASL video sets an-
notated with hand locations, there is variation in the
tightness and centering of bounding boxes. Position-
ing boxes accurately is difficult to do when hands are
close or interacting with each other. The algorithm for
hand detection should be robust to these inaccuracies.

Our proposed approach for hand detection reformulates
the Histogram of Oriented Gradient (HOG) [6, 16] repre-
sentation with an explicit alignment step to allow for non-
rigid deformations between pairs of image chips1. HOG
feature descriptors are extracted from overlapping patches

1We use the term image chip to denote a sub-image or a region of in-
terest (ROI) within an image.
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with centers on a regular feature point grid within an im-
age chip. Traditional HOG based distance measures as-
sume a one-to-one spatial correspondence between the fea-
ture points in the two image chips. For instance, Dalal and
Triggs [6] employ a linear kernel for pedestrian detection,
which corresponds to a dot product between the two sets of
HOG features. We propose an aligned distance between a
pair of chips computed using the best matching HOG fea-
ture vector in the local neighborhood for each HOG feature
location.

Approaches robust to large viewpoint changes have been
proposed for the object recognition task. The Pyramid
Match Kernel (PMK) [11] and Proximity Distribution Ker-
nel (PDK) [15] are two approaches that use feature space
partitioning (or discretization) techniques to create a his-
togram representation of all feature vectors from an image
chip. A histogram intersection score gives the similarity
measure between a pair of image chips.

We formulate a SVM classifier for hand vs. not-hand
image chip classification using the aligned distance. We
show improved hand detection accuracy (in terms of ROC
area and detection rate) over the rigid match and VGPMK
based classifiers in studio sequences of signs signed by ex-
pert signers. The detector in this experiment is trained on
hand images from a female signer and tested with a male
signer. We show that the approach works well on test web-
cam quality video sequences gestured by an inexpert signer
(the intended group for our ASL lexicon application) wear-
ing low skin tone contrast clothing and with background
clutter. In this case, the detector is trained with hand im-
ages from both expert signers collected in studio.

2. Related work

Several approaches address the problem of hand de-
tection and tracking for general hand gesture recognition:
a 2D graphical model for finger articulation is proposed
in [24] and approaches using a 3D hand model are proposed
in [20, 7]. While there are a wide range of possible hand
shapes and poses in sign language, the hand shapes are also
highly structured and are generated by linguistic rules. This
necessitates approaches specific to the sign language set-
ting.

Farhadi, et al. [9] survey previous work in HMM models
for sign recognition and formulate the sign recognition task
as a transfer learning problem; given a dictionary of sign
videos from one signer and test videos from another signer
for a subset of the dictionary gestures, the authors demon-
strate that sign classifiers can be automatically built for the
remaining set of test gestures. They demonstrate good re-
sults on a test signer wearing a long sleeved shirt against a
plain background (the dictionary sequences were syntheti-
cally generated from a computer graphics avatar). The au-
thors use SIFT descriptors extracted on a regular grid as

appearance descriptors for hand images.

Buehler, et al. [4] are motivated by a similar problem
to ours: handling variations across singers, cluttered back-
ground, two hands often being close or interacting with each
other. They address this problem in a tracking setting using
a pictorial structure model for the upper body. The authors
initialize the model for 5% of frames in the test video. We
model hand appearance for hand detection and do not need
initialization; hence our approach is complementary to their
work.

Ong and Bowden [18] use block difference based fea-
tures chosen via AdaBoost training for hand detection.
These features are suited for high contrast settings (e.g.,
light colored hands that have good contrast against a dark
background and signers wear long sleeved shirts). The
problem of aligning hand shapes between signers of differ-
ent proficiencies is not addressed since weak classifiers cho-
sen during training use difference of image blocks at fixed
locations within the ROI

Derpanis, et al. [8] decompose ASL gestures into 14
phonemic movement elements and derive a mapping be-
tween these elements and hand trajectories in the image
plane. Skin detection and frame-differencing are employed
for hand tracking. Motion signatures derived from time se-
ries of hand trajectories are mapped to phonemes. The au-
thors demonstrate good phonemic recognition rates using
these signatures.

Athitsos and Sclaroff [2] present a method to match lines
extracted from synthetic images of ASL hand shapes to
edges in real hand images with cluttered backgrounds. The
authors demonstrate improved performance over chamfer
distance for static hand shapes. The authors in [1] show
that chamfer distance is not well suited for ASL hand shape
matching. Our application is targeted for hand detection
in ASL sequences; motion blur and large between signer
variations make it infeasible to match with synthetic hand
images.

Hamada, et al. [13] propose a hand contour alignment
approach for hand detection and hand pose estimation.
They show results with the same signer in training and
test sequences wearing long sleeved shirt captured against a
simple background.

Yuan, et al. [25] formulate the hand detection problem
as a function parameterized by hand shape. This allows the
detector for different hand shapes to be trained jointly while
allowing a detector tuned to a specific hand shape to be sam-
pled at test time. The authors use a dot product between
HOG feature vectors.

To cope with occlusions, Fujimura and Xu [10] pro-
pose an algorithm to separate hand blobs when hands are
interacting with each other. The authors use depth im-
ages to segment the hand regions and propose a skeleton
graph partitioning method to separate interacting hands.



Smith, et al. [19] propose a method for resolving hand over
face occlusions by modelling background clutter using an
image force field. They evaluate their approach on non-sign
language gestures.

Hierarchical representations with the bag-of-features
model allow for flexible matching between two sets of im-
age features and have shown good performance on object
and category recognition tasks. The Pyramid Match Ker-
nel (PMK) [11] and its extension, the Vocabulary Guided
PMK (VGPMK) [12] represent a set of HOG features from
an image chip as a multi-resolution histogram in the feature
space. HOG feature vectors are augmented with (x, y) co-
ordinates of the corresponding feature point to encode spa-
tial proximity information. We use VGPMK in hand de-
tection experiments for comparison with the proposed ap-
proach since its performance was shown to be better than
PMK for high dimensional features [12].

Ling and Soatto [15] propose a code book representation
of feature vectors extracted from training image chips. A
histogram is constructed to capture the spatial (x, y) prox-
imity for all pairs (or triples) of code book elements within
an image chip. The authors demonstrate performance im-
provement on object category recognition data sets. The
PDK histogram (unlike the PMK representation) only stores
pair-wise (or three-wise) proximity information for image
features; the global spatial structure of the image features is
lost. For hands, we believe it is essential to retain the overall
spatial structure within the hand image.

3. Aligned distance measure for image chips

Given a pair of image chips I1, I2 normalized to a fixed
size, we define an aligned distance score that allows for non-
rigid deformations between the images. This is essential
for matching hand chips due to the flexibility and variance
inherent in hand shape and pose across signers.

Histogram of Oriented Gradient [16, 6] descriptors for
image chips (examples illustrated in Figure 1) are extracted
as follows. We define a 2-D grid of uniformly spaced fea-
ture point locations G = {(xi, yj) : i = 1 . . . G, j =
1 . . . G} within the image chip. In our implementation, im-
age chips are 90× 90 pixels and an 8× 8 feature point grid
is defined at one scale. Image patches of size 20 × 20 pix-
els with centers Gi,j form image regions for HOG feature
extraction. Adjacent patches overlap by 10 pixels to allow
non-rigid alignment computation between a pair of image
chips. The color gradient at a pixel is computed as the max-
imum magnitude gradient vector in the RGB color planes
and a Sobel operator with a Gaussian smoothing filter is
used for gradient computation. Each HOG image patch is
subdivided into 2×2 cells. Gradient magnitudes within each
cell are accumulated into 12 orientation bins over the range
[0, 2π). Feature vectors from cells in a patch are concate-
nated to form a 48 dimensional HOG feature vector. This

accompany             action                across

Figure 1. HOG feature extraction for hand image chips from three

signers for the same signs. Variation in hand shape across signers

necessitates the distance measure between image chips to allow for

non-rigid deformation. The blue circles are the centers for HOG

patches, each HOG patch corresponds to a 2× 2 block of 10× 10

pixel cells shown here with red boxes. Adjacent HOG patches

overlap by one cell width. A 48 dimensional feature vector nor-

malized to unit length is used for each patch. Even though cells

are shared by two or more HOG patches, their contribution to each

HOG feature vector is different due to the normalization step.

vector is then normalized to unit length for robustness to il-
lumination and contrast changes (as was proposed for the
SIFT descriptor in [16]). Thus, we represent a HOG fea-
ture vector for an image patch at grid location (xi, yj) by
Hi,j ∈ R48.

Let Ni,j be the set of feature locations in the spatial
neighborhood of (xi, yj) ∈ G within distance TN ,

Ni,j = {(k, l) : ‖(xi, yj)−(xk, yl)‖ ≤ TN , (xk, yl) ∈ G}.

Our proposed distance function incorporating alignment is
given by,

D(I1 → I2) =
∑

i = 1...G
j = 1...G

min
(k,l)∈Ni,j

∥

∥

∥

HI1
i,j −HI2

k,l

∥

∥

∥

. (1)

Here, ‖ · ‖ is the Euclidean distance between HOG fea-
ture vectors. A symmetric distance measure is obtained by
adding the directed distance scores,

D(I1, I2) = D(I1 → I2) +D(I2 → I1). (2)



Query chip : "africa2" Best aligned DB chip : "appointment1"

Query → DB DB → Query

Figure 2. Alignment vectors computed using Equation 1 between

a query hand image and the top match database image retrieved

using the symmetric distance in Equation 2. The red box in top left

image is the ROI for a HOG patch, the circles represent centers of

ROIs for HOG patches.

Rigid matching without alignment corresponds to TN = 0.
In our implementation, we choose TN such that |Ni,j | ≤ 13
(up to 13 neighbors for each feature location, feature points
near the image chip boundary have fewer neighbors). We
tried 5, 9 and 13 local neighborhood sizes. While each im-
proves results over rigid match, the 13 neighborhood gave
the best results on our data sets.

Aligned distance computation is more expensive than
rigid match by a factor of 2× average(|Ni,j |). The cost in
the inner distance computation loop can be reduced by us-
ing an early stopping criterion keeping track of the current
minimum match score. Larger neighborhood values make
the distance computation expensive to run. During hand de-
tection using a scanning window, it is, for instance, possible
to reuse some computation from adjacent windows to make
the computation more efficient.

4. SVM formulation for hand detection

A distance or similarity measure between pairs of sam-
ples is a natural fit for the Support Vector Machine (SVM)
formulation. PMK, PDK and Intermediate Matching Kernel
[11, 15, 3] are a few examples of approaches that employ
this method for object recognition. We use the aligned dis-
tance (Equation 2) within a SVM framework for hand/not-
hand classification. In our formulation, we consider various
hand shapes and hand poses as the foreground class, image

chips that partly overlap or do not overlap with hands are
considered as the background class. We define the function
K(I1, I2) for use as the kernel function in a SVM,

K(I1, I2) = exp(−γ D(I1, I2)). (3)

We note that semi-definiteness of K is not guaranteed. This
has been observed by authors in the past with other align-
ment based distance functions, for instance the chamfer dis-
tance and the Hausdorff distance. Grauman, et al. [11]
provide an in-depth analysis of various alignment based
kernels. In some cases, approximations that satisfy semi-
definiteness are possible; for instance, Odone, et al. [17]
propose an approximation to the Hausdorff distance and
Boughorbel, et al. [3] show an approximation to a version
of the aligned distance. In practice, we found using K for
hand detection gives stable results, i.e., the quadratic SVM
optimization converges to the desired optimum.

A key advantage of our proposed approach in compar-
ison to other kernels like PMK or PDK is that γ is the
only parameter to specify. The role of γ is similar to the
bandwidth parameter in RBF kernels. The neighborhood
size parameter TN is governed by computational consider-
ations, the expected deformation and image scale. We found
larger neighborhood sizes typically work better and in our
experiments a 13 neighborhood was used. SVM training
converged correctly on our hand detection data sets for var-
ious γ values > 0.03 without additional modifications to
the kernel matrix to enforce semi-definiteness. Using a 13
neighborhood for alignment, γ < 0.02 sometimes yields
incorrect results for SVM training (the optimized classifier
inverts polarity of positive and negative samples). We ob-
served similar behavior with VGPMK for some parameter
settings.

5. Hand detection in cluttered ASL video

Our hand detection pipeline follows the standard image
scan approach. The sequence of steps is illustrated in Fig-
ure 3 for a non-studio sequence from the LAB-F data set.
To reduce the computational expense, we use image scan
Regions of Interest (ROIs) at one scale and prune the ROIs
with the detected skin mask. We run the hand/not-hand
SVM classifier for the reduced set of ROIs and choose the
top N boxes subject to an overlap constraint for detected
hand locations. For all sequences in this set, we used the fol-
lowing parameters for image scan: image scale 82% of orig-
inal size, ROI dimensions 90 × 90 pixels, ROI spacing 12
pixels, skin mask overlap area for each ROI > 30%, over-
lapping area between top N detected hand ROIs < 80%.

6. Image pre-processing

We use skin detection to reduce artifacts of clothing
changes and background clutter. To achieve additional ro-
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Figure 3. Processing pipeline for hand detection in cluttered ASL

video. Results of skin detection and background substitution with

average face skin color on an input frame from the LAB-F set are

shown in the top row. Image scan ROIs pruned to overlap with

the skin mask are shown in the lower left image. HOG features

from the pruned ROIs (approximately 200 boxes) are input to the

aligned distance based hand detector. The top five detected hand

locations are shown in the lower right image. Data used for train-

ing the hand detector is described in Section 7.3.

Dataset Signer gender, ASL proficiency, # ASL # hand

ID video capture location signs chips

STUDIO-F female, native, studio 997 64k

STUDIO-M male, native, studio 680 50k

LAB-F female, two years, computer lab 605 –

Table 1. Statistics for ASL video sets used in our experiments.

The signers sign words from the Gallaudet Dictionary [22]. In the

studio setting, we capture 60fps uncompressed videos, with plain

background, dark clothing and controlled illumination. These

videos have minimal motion blur and good dynamic range. The

non-studio video set was captured with a different camera at 30fps

compressed in MPEG4 format. All videos are 640 × 480 pixels.

Hand location annotations are not available for the LAB-F data

set.

bustness to clutter in HOG feature extraction, we substitute
background pixels with the average face skin color for all
video sequences (this helps since we use color gradients
as described in Section 3). We use the Viola Jones detec-
tor [23] to detect faces. Histograms in RGB space trained
with skin color from STUDIO sequences and background
color from a lab background sequence are used to model
foreground and background color distributions. A pixel-
wise likelihood ratio test is used as the skin color classi-
fier. In frames where a face is not detected, we use average
skin segment color to substitute for background pixels. Fig-
ures 3, 4 show the results of pre-processing on images from
STUDIO and LAB sequences.
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Figure 4. Images in first two rows are from STUDIO-F and

STUDIO-M sequences. Results of skin detection based pre-

processing are shown in the second row. Magenta boxes are the

detected face locations, green boxes are annotated hand locations,

red boxes are hand locations resized to ensure uniform scale for

hands across the data set. Hand image chips extracted from STU-

DIO signers are used as foreground samples to train the hand de-

tector. Image chips chosen to overlap > 20% with detected skin

region but overlap < 60% with hand ROIs are background sam-

ples shown here by yellow boxes. Additional background samples

are extracted from a rest pose sequence of our test signer and from

a lab video sequence. These are shown in the third row.

7. Experiments and performance evaluation

In the first experiment, we compare performance of the
aligned distance measure with the rigid match distance and
VGPMK [12] for hand detection on STUDIO datasets. In
the second experiment, we show hand detection results on
video sequences collected with cluttered background from
the LAB-F dataset.

7.1. Training and test sets for hand detection

We captured ASL video from three signers; two sets
(STUDIO-F and STUDIO-M) were collected from native
male and female signers in a photographic studio and one
set (LAB-F) was collected from an inexpert signer in the
computer lab. The statistics are summarized in Table 1. Our
procedure to extract training image chips for hand detection
is illustrated in Figure 4.



7.2. Hand detection performance comparison

We use the studio data sets for detector training and
testing to quantify improvement in hand detection perfor-
mance using the aligned distance based detector (hand lo-
cation annotations are not yet available for the computer
lab sequences). To measure generalization performance
across signers, we use the STUDIO-F set for training and
STUDIO-M set for testing. The training and test sets each
contain 4, 000 foreground (hand) and 8, 000 background
image chips. Foreground class samples for both hands are
sampled from STUDIO-F set in training and STUDIO-M
set in testing. Background class samples are extracted from
the corresponding foreground sequences, from a test signer
sequence and a lab sequence as summarized in Figure 4. All
image chips are normalized to 90× 90 pixels.

For rigid and aligned distance functions, we use an 8× 8
grid of HOG patches as illustrated in Figure 1. In the case
of VGPMK, we use a 14 × 14 grid of HOG patches with
other HOG parameters the same as for the rigid distance. A
larger set of feature vectors is needed to have sufficient sam-
ples to build the VGPMK histogram. Spatial information in
VGPMK is encoded by appending the within-image chip
feature location (x, y) ∈ [0, 1] to the normalized HOG fea-
ture vector. We used the LIBPMK [14] package to build the
VGPMK pyramid and kernel matrices. The bin weights are
set as BIN WEIGHT INPUT SPECIFIC and kernel nor-
malization with the diagonal is enabled. VGPMK perfor-
mance is linked to the parameters used for hierarchical K-
means clustering to construct the space partitioning; we
tried the following set of parameters, {number of levels ∈
[5, 7]} × {branching factor ∈ [8, 50]}. We found that the
optimal VGPMK parameters were specific to a data set.

SVM training and test details for the hand detection task
are as follows. We use the two-class ν-SVM implementa-
tion from the LIBSVM [5] package to train the hand detec-
tor. We fix ν = 0.005 in all the experiments. γ in Equa-
tion 3 is the only parameter for rigid and aligned distance
functions (we use a 13 neighborhood for aligned distance).
We sample γ in the range [0.015, 0.026] for the rigid match
distance and in the range [0.04, 0.046] for the aligned dis-
tance function. The performance of both approaches is not
very sensitive to choice of γ (for aligned distance γ should
be > 0.03). The results shown in Figure 5 demonstrate
that the aligned distance based detector performs better in
both ROC area and hand detection rate than rigid match and
VGPMK. The best detection rate for VGPMK at 2% false
positive rate was obtained with branching factor = 42, #
levels = 5 and yields a detection rate of 94.1% and ROC
area = 0.9937.

The training and test times for the three algorithms are
shown in Table 2. VGPMK needs ≈ 5.6Gb of memory
for training and testing compared to < 2Gb for rigid and
aligned match detectors.
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Figure 5. Hand detection ROC curves comparing performance of

the aligned distance based classifier with rigid match distance ker-

nel and VGPMK. Training image chips for this experiment are

from the STUDIO-F set and test chips are from the STUDIO-M

set. ROC area denotes area under the ROC curve. The plot shows

ROCs with the top two parameter settings in terms of ROC area for

each approach. Detection rates are measured at 2% false positive

rate. #levels and #branch are the number of levels and branching

factor parameters used to construct the pyramid representation in

VGPMK.

Distance measure Training time Testing time # Support

/ kernel (12k samples) (per sample) vectors

Rigid match 555s 0.0454s 4521

Aligned match 7,020s 0.5532s 5900

VGPMK 22,460s 0.6179s 3140

Table 2. The training time for VGPMK includes construction of

the pyramid representation using K-means clustering. LIBSVM

was used to train the SVMs for all algorithms. The HOG feature

extraction time is not included for all three approaches.

7.3. Hand detection results in cluttered ASL video

To demonstrate hand detection performance using the
aligned distance function for the ASL lexicon retrieval ap-
plication, we use the LAB-F video set of an inexpert signer
wearing low skin tone contrast clothing collected in a com-
puter lab. We sample 4, 000 hand chips from STUDIO-F
and STUDIO-M sets as foreground examples. We sample
8, 000 background chips from the STUDIO sequences, from
a rest pose sequence of our test signer and a lab background
sequence as illustrated in Figure 3. We follow the steps
as in the previous experiment to extract HOG features and
train the SVM based hand detector using a 13 neighborhood
aligned distance function. We choose γ = 0.042 in training
the SVM based on results from the previous experiment.

We follow the steps described in Section 5 to detect hand
locations in test video sequences. We detect a fixed number



of hand candidates in each frame; three candidates are cho-
sen for one handed signs and five candidates are chosen for
two handed signs. With ≈ 200 image scan ROIs after skin
mask based pruning (Figure 3), 3 and 5 detected hand candi-
dates correspond to false positive rates of 2/200 and 3/200
for one and two handed signs respectively. Results of hand
detection on example video frames are shown in Figure 6.
The total detection time is ≈ 100s per frame. Approaches
to make the detector more efficient are discussed in the next
section.

8. Conclusions and future work

A distance measure is proposed to compute a non-rigid
alignment between pairs of hand chips to accommodate
hand shape variations for each signer and among different
signers. The distance measure is incorporated into a SVM
based foreground/background classifier for hand detection.
The proposed approach shows better hand detection rates
than rigid matching and VGPMK on ASL video of gestures
signed by experts. The proposed approach has fewer and
easier to tune parameters while being less computationally
expensive than VGPMK. Robustness of the proposed ap-
proach is demonstrated on video of ASL gestures signed by
an inexpert signer in an unconstrained setting with cluttered
background.

Techniques to further improve performance of hand de-
tection and part of our future work include,

• ASL constraints: The range of hand shapes within a
sign are constrained by ASL production rules. For
instance, not every hand shape co-occurs with every
other hand shape, and many two handed signs either
have symmetric hand shapes or a limited set of hand
shapes for the non-dominant hand.

• Clutter model: The signer’s face is the most significant
contribution to background variation in hand chips,
Smith, et al. [19] propose a relevant approach to model
facial clutter.

• Forearm detector: A forearm detector can be used to
further prune the ROI set for input to the hand detector.

• Regularization term in alignment: A simple mesh
model can be used to constrain the non-rigid alignment
and smooth the deformation field.
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Figure 6. We show hand detection results using the 13 neighborhood aligned distance based detector on gestures with interacting hands

from the LAB-F set. The training and test setup for this experiment is described in Section 7.3. The detection scores (i.e., SVM outputs)

for top five hand ROIs are displayed for each frame sorted in decreasing order.


