
COGNITIVE SCIENCE 6, 101-155 (1982)

A Temporal Logic for Reasoning
About Processes and Plans*

DREW MCDERMOTT

Yale University
Department of Computer Science

Much previous work in artificial intelligence has neglected representing t ime
in all its complexity. In particular, it has neglected continuous change and the
indeterminacy of the future. To rectify this, I have developed a first-order tem-
poral logic, in which it is possible to name and prove things about facts,
events, plans, and world histories. In particular, the logic provides analyses of
causality, continuous change in quantities, the persistence of facts (the frame
problem), and the relationship between tasks and actions. It may be possible
to implement a temporal-inference machine based on this logic, which keeps
track of several "maps" of a t ime line, one per possible history.

I. I N T R O D U C T I O N

A common disclaimer by an AI author is that he has neglected temporal
considerations to avoid complication. The implication is nearly made that
adding a temporal dimension to the research (on engineering, medical diag-
nosis, etc.) would be a familiar but tedious exercise that would obscure the
new material presented by the author. Actually, of course, no one has ever
dealt with time correctly in an AI program, and there is reason to believe
that doing it would change everything.

Because time has been neglected, medical diagnosis programs cannot
talk about the course of a disease. Story understanding programs have trou-
ble with past events. Problem solvers have had only the crudest models of
the future, in spite of the obvious importance of future events.

*This research was supported by NSF grant MCS 8013710.
*Thanks to Ernie Davis for technical assistance and ideas; and to Chris Riesbeck and all

the members of the Yale Learning Group, who came up with problems for a temporal notation
in the field of economics; and to Tony Passera for work on the implementation. I had useful
discussions with James Allen, Eugene Charniak, Patrick Hayes, and Robert Moore. The
referee is responsible for some improvements in intelligibility. I am responsible for residual
confusion and error.

101

102 McDERMOTT

Many researchers have compensated by modeling the course of exter-
nal time with the p rogram ' s own internal time, changing the world model to
reflect changing reality. This leads to a confusion between correcting a
mistaken belief and updating an outdated belief. Most AI data bases have
some sort o f operator for removing formulas. (e.g., ERASE in P L A N N E R ,
Hewitt, 1972) This operator has tended to be used for two quite different
purposes: getting rid of tentative or hypothetical assertions that turned out
not to be true, and noting that an assertion is no longer true. The confusion
is natural, since some of the same consequences must follow in either case.
For example, if " T h e car is dr ivable" follows f rom "There is gas in the
ca r , " then the former statement must be deleted when the latter is, whether
you have discovered there to be no gas after all, or the gas has been used up.

But in many cases, the two behave quite differently, and efforts to
make them the same have resulted in awkward, inextensible programs. For
example, f rom " x is beating his wife ," you are entitled to infer, " x is a bad
m a n . " But if x pauses to catch his breath, only the former statement must
be deleted f rom the data base. Clearly, the proper inference is f rom " I f x
has beat his wife recently, he is a bad m a n , " and " x is beating his wi fe ," to
" F o r the next year or so, x will have beaten his wife recent ly," and hence to
" F o r the next year or so, x is a bad m a n . " (We must allow for reform.) As
far as I know, no AI program has been capable of such inferences.

An even worse flaw than the inability to model present change is the
inability to model future possibility. To make this clear, I will sketch an ex-
ample of where the standard approaches fail.

Say a problem solver is confronted with the classic situation of a hero-
ine, called Nell, having been tied to the tracks while a train approaches. The
problem solver, called Dudley, knows that

" I f Nell is going to be mashed, I must remove her from the tracks."

(He probably knows a more general rule, but let that pass.) When Dudley
deduces that he must do something, he looks for, and eventually executes, a
plan for doing it. This will involve finding out where Nell is, and making a
navigation plan to get to her location. Assume that he knows where she is,
and she is not too far away; then the fact that the plan will be carried out is
added to Dudley's world model. Dudley must have some kind of data-base-
consistency maintainer (Doyle, 1979) to make sure that the plan is deleted if
it is no longer necessary. Unfortunately, as soon as an apparently successful
plan is added to the world model, the consistency maintainer will notice that
"Nell is going to be mashed" is no longer true. But that removes any justifi-
cation for the plan, so it goes, too. But that means "Nell is going to be
mashed" is no longer contradictory, so it comes back in. And so forth.

Exactly what will happen depends on implementat ion. The data base
manager might loop forever, or it might conclude erroneously that Nell is

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 103

safe without any action by Dudley. The problem, however, lies deeper than
the implementation level. The naive logic we used, a non-monotonic first-
order situation calculus (McCarthy, 1968; McDermott , 1980a), is just in-
adequate: no implementation can do the right thing here, because the logic
doesn't specify the right thing. We need to be able to express, "Nell is going
to be mashed unless I save her , " and unless is a non-trivial concept (Good-
man, 1947; Lewis, 1973).

In this paper, I will begin an attempt to rectify these problems, by pro-
viding a robust temporal logic to serve as a framework for programs that
must deal with time. This is in the spirit of Hayes's "naive physics" (Hayes,
1979a), and might be thought of as a "naive theory of t ime." I will sketch
approaches within this framework to what I consider the three most impor-
tant problems of temporal representation: causality, continuous change,
and the logic of problem solving.

One difference between Hayes and me is that I have not been able to
turn my eyes away from implementational details as resolutely as Hayes.
Consequently, later in the paper I will discuss how these ideas might be em-
bodied in a program. Of course, the use of logic does not constrain us to
making the program look like a theorem prover.

So why do I plan to spend any time at all on logic? There are two
reasons:

I.

.

We want to be assured that our special-purpose modules are not
prone to absurd interactions such as the one I just sketched. One
way to guarantee this is to be sure that the modules' actions are
sound with respect to an underlying logic. (It is relatively unimpor-
tant and in practice unattainable that the programs be logically
complete.)
Recently it has become clear that a reasoning system must keep
track of the justifications for its conclusions, in order to update the
data base as assumptions change (Doyle, 1979). For example, a
picture of the future based on the assumption that dinner will be
done at 6:00 must be revised if there is a power failure at 5:30. It
turns out that constructing and maintaining these justification
records, called data dependencies, is not trivial. One useful guide is
that the data dependencies be equivalent to proofs in the under-
lying logic.

Many cognitive scientists will not find these reasons reassuring enough.
On the one hand, many of them will be intimidated by the use of logical
notation. On the other, there is a widespread feeling that psychological ex-
periments have proven that people cannot handle simple syllogisms (see,
e.g., Johnson-Laird, 1980), and that, therefore, people cannot possibly

104 McDERMOTT

operate on logical principles. Together, these considerations cause them to
reject papers like this one out of hand.

Let me be a little more reassuring. There is no difference between
logical notation and notations like those of Schank (1975) or Charniak
(1981), except emphasis. The logical approach alms at expressing the implica-
tions used for inference, as well as providing an ontological framework (or
set of primitives, or vocabulary) for expressing facts. But face it--we're all
talking about computers performing formal operations on data structures
representing beliefs. The only issue is which to nail down first, the organiza-
tion of the information in memory, or the structure of the inferences.

The experimental results on human processing of syllogisms are much
less relevant than they first appear. At best, they show that people have no
natural syllogistic machinery accessible to consciousness. This says nothing
about logics underlying various kinds of thinking. One might as well investi-
gate frequency-domain analysis in the visual system by asking people to do
Fourier transforms in their heads.

In any case, I hope that appreciation of the difficulties raised by time
will cause you to stick with me.

2. ONTOLOGY

We shall be doing logic in the style of Robert Moore (1980). The logic of
time appears at first glance to be like modal logic, with different instants
playing the role of different possible worlds. An expression like "President
of the US" seems to denote an intensional object, with a different denota-
tion in different times (worlds). In fact, historically the exploration of this
relationship has fueled temporal logic (Prior, 1967; Rescher, 1971).

Moore encountered a similar tradition in his study of knowledge.
"Know" had typically been taken as a modal operator. This made it dif-
ficult to handle computationally (Moore, 1980). Moore's contribution was
to work with a first-order, extensional language that described the interpre-
tation of the original modal language. He retained the original modal lan-
guage as a set of objects manipulated by the first-order semantic language.

We will carry this idea one step further and dispense with the object
language altogether, although some of the terminology will hint at vestiges
of it. We will talk about a temporal model using a first-order language. The
resulting enterprise will look like a hybrid of Moore's work and that of
Hayes (1979a).

There are two key ideas to capture in our logic: the "openness" of the
future, and the continuity of time. The first idea is that more than one thing
can happen starting at a given instant. We model this by having many possi-
ble futures. The second idea is that many things do not happen discontinu-
ously. We model this by having a continuum of instances between any two
instants. It will be clear eventually why these features are so important.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 105

To capture these ideas, our language will talk of an infinite collection
of states of the universe. A state is an instantaneous snapshot o f the uni-
verse. States are partially ordered by a relation " = < . " We write (= < sl
s2) to mean that sl comes before or is identical to s2.

I use "Cambr idge Pol ish" notation for logical formulas. Every term,
atomic formula, and combinat ion is o f the form (p . . .) , where p is a func-
tion, predicate, or connective. The rest o f the formula after p will be the
arguments or other subparts. I f p is a quantifier (" fo ra l l " or "exis ts") , then
the subparts are a list of variables and a formula:

(forall (-vars-) fmla)
(exists (-vars-) fmla)

For other connectives, the subparts are formulas, as in

(not fmla)
(if finial fmla2)
(and finial fmla2 . . .)
(or finial fmla2 . ..)
(if f finial fmla2)

I f p is a binary transitive relation, (p w x y . . . z) is an abbreviation for (and
(p w x) (p x y) . . . (p . . . z)). I will generally use lower case for logical con-
stants; upper case for sorts (which I will discuss shortly), for Skolem con-
stants, and for domain-dependent predicates and functions; and italics for
syntactic variables.

Axiom 1: (iff (and (= < ?sl ?s2) (= < ?s2 ?sl)) (= ?sl ?s2))
Off (< ?sl ?s2)(and (= < ?sl ?s2)(not (= ?sl ?s2))))

As usual, if (= < sl s2) and sl and s2 are distinct, we write (< sl s2).

Axiom 2: (Density)
(forall (sl s2)

(if (< sl s2) (exists (s) (< sl s s2))))

Axiom 3: (Transitivity)
(forall (sl s2 s3)

(if (and (= <sl s2) (= <s2 s3))
(= < sl s3)))

Notice that I assume a sorted logic. Variables beginning with s are
states. All this means is that a formula (forall (x) p), where x is a sorted
variable, is an abbreviation for

(forall (x) (if (is sort x) p)),

106 McDERMOTT

where sort is x 's sort, or "da ta type . " Sorts will not appear very often, and
will be capitalized when they do. They are not very important, and will only
save a little typing. We can read (forall (s) . . .) as " fo r all states "
without having to mention explicitly the condition (is STATE s).

Unbound variables (prefixed with " ? ") are universally quantified
with scope equal to the whole formula (after adding the sort conditions).
Anonymous constants of a given sort (used in proofs), so-called "Skolem
constants ," will be written beginning with the appropriate upper-case letter.

Every state has a time of occurrence, a real number called its date. The
function d gives the date of a state, as in (= (d S1) D1). Any real number is a
valid date: time is infinite and noncircular. Of course, no one in the universe
can tell where zero is or what the scale is, so this is harmless. It does mean
that two states will have comparable dates, even when they are not related
by = < . I will use = < and < for ordinary numerical ordering as well as
the partial ordering on states, since the use of sorts will disambiguate. I will
not be rigorous about axiomatizing real numbers, but will just assume
whatever properties I need as I go. Variables beginning with " r " or " t " are
real numbers.

The two orderings are compatible:

Axiom 4: (if (< sl s2) (< (d sl) (d s2)))

States are arranged into chronicles. A chronicle is a complete possible
history of the universe, a totally ordered set of states extending infinitely in
time.

Axiom 5: (Definition of Chronicle)
Off (is CHRONICLE ?x)

(and ;a set of states
(forall (y) (if (elt y ?x) (is STATE y)))
;totally ordered
(forall (sl s2)

Off (and (elt sl ?x) (elt s2 ?x))
(or (< sl s2) (> sl s2) (= sl s2))))

;infinite in time
(forall (t)

(exists (s)
(and (elt s ?x) (= (d s) t))))))

(elt a x) means that a is an element of set x. We won' t need any deep set
theory, but I will feel free to introduce sets of elements previously intro-
duced, including sets of sets of them. (If variables of some sort begin with a
letter " l , " then variables bound to sets of objects of that sort begin " l l . " So
"? s s " is a set of states.)

An immediate consequence of Axiom 5 is that a chronicle is "convex" :

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 107

(if (is CHRONICLE ?x)
(forall (sl s2)

(if (and (elt sl ?x) (elt s2 ?x))
(forall (s)

(if (< sl s s2)
(elt s ?x))))))

Having defined (is CHRONICLE x), we can conceal most uses of it by de-
claring variables beginning " c h " to be of sort " C H R O N I C L E . "

A chronicle is a way events might go. There may be more than one of
them, according to this logic. (See Figure 1.)

Every state is in a chronicle. In fact,

Axiom 6:
(if (= < ?sl ?s2)

(exists (ch) (and (elt ?sl ch) (elt ?s2 ch))))

whence, by convexity, every state between ?sl and ?s2 is in ch.

I
I
I
I
I
I
I
l

(ds ,)

s, • I

!
I
I
I
I
I
,I
I

(d s,) (d s,)

I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
(d s=)

(r - 1 Chronicle

Date Line

(< S l $2 S=)

(< s , s,)

S~' S4
unrelated

$3' $4

but (<(d s,) (d s=) (d s,) (d s=))

Figure 1. A Tree of Chronicles

108 McDERMOTT

Chronicles branch only into the future. (See Figure 1.)

Axiom 7:
(if (and (= < ?sl ?s) (= < s2 ?s))

(or (= < ?sl ?s2) (= < ?s2 ?sl)))

The reason why this is so is that the future is really indeterminate. The
past may be unknown, but there is only one past. By contrast, there may be
more than one future from a given state. The reason for designing the logic
this way is to provide for "free will," in the form of reasoning about ac-
tions that select one future instead of another. If there were only one future,
the most we could do is discover it. Of course, both alternatives have
unpleasant consequences: the one-future account implies that what we are
going to do is unknown but fixed, while the many-futures account implies
that the alternative futures to yesterday are as real as this one. For this
reason, I do not include any reference to "yes terday" or even " n o w " in the
logic, but simply talk about states in the abstract. The application to the
state " n o w , " and the fondness we feel for the " rea l " chronicle, are matters
I defer until the section on implementation.

States and chronicles are important only because they are the stage
where facts and events are acted out. Facts change in truth value over time.
By the usual mathematical inversion, we will take a fact to be a set of states,
intuitively those in which it is true. For example, (ON A B) denotes the set
of states in which A is on B. ON is a function from pairs of objects to sets of
states, that is, facts; it is not a predicate. 2 This way of looking at facts is
analogous to the logicians' trick of letting propositions denote sets o f pos-
sible worlds (see e.g., Montague, 1974).

I will let variables beginning with " p " and " q " denote facts. The fact
"a lways" is the set of all states. The fact "never" is the empty set.

We indicate that a fact is true in a state by (elt sp) . As syntactic sugar,
we usually write this as (T s p) . (" T " suggests " t rue- in .") So, we have

Axiom 8:
(T ?s always)
(not (T ?s never))

We can think of facts as "proposi t ions" in a Mooresque object lan-
guage. In particular, we can combine them with connectives. For instance,

'I should point out that the logic I am developing is not intended as an analysis of the
truth conditions of English or some other natural language. I doubt that this is at all a good
way to think about natural language, and even if it is I see no reason why the internal represen-
tation should be constrained by the mere presence of words like "now" in natural language.

qt may be considered a predicate in an object language for which this temporal logic is a
metalanguage; see below.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 109

we can write (T s (& p q)), where the " & " is not part of our own logical
notation; instead, it is simply syntactic sugar for set intersection; (&p q) is
just the set of states that are elements of both p and q. Similarly, " V " and
" - " in this context denote union and complement (with respect to the set
"a lways") . Then we have things like

(iff (T ?s ?p) (not (T ?s (- ?p))))
(iff (T ?s (& ?p ?q))

(and (T ?s ?p) (T ?s ?q)))

as trivial set-theory results, after syntactic desugaring.
Events are more difficult to handle than facts. An event is something

happening. In the past, the only kind of events handled by AI researchers
and most philosophers is what might be called a fact change, such as a block
being moved from one place to another (McCarthy, 1968; Rescher, 1971).
The defining feature of an event on this theory are the changes in facts that
the event brings about. This approach suppresses some important features
of events. For instance, they take time. A fact change is just a list o f two
facts; how long it took is not describable. Further, it is meaningless in fact-
change formalisms to ask what happens in the middle of a fact change.

Consider the usual emphasis in studies based on McCarthy's situation
calculus (McCarthy, 1968; Moore, 1980; Fikes, 1971). In this system, an ac-
tion like "moving x to y " is reasoned about in terms of a function MOVE
that maps a block, a place, and an old situation into a new situation;
(MOVE x y s) is the situation resulting from moving x to y in s. The axioms
of the calculus talk entirely about the different facts true in s and (MOVE
x y s). There is no mention of the infinite number of states occurring during
the move.

Some of these problems can be eliminated by simply shifting emphasis,
as I will show shortly. But a deeper problem is that many events are simply
not fact changes. An example due to Davidson (1967) is " J o h n ran around
the track 3 t imes." The only fact change that occurs is that John is more
tired. The amount of fatigue is not terribly different from the amount ensu-
ing on running around 4 times. Besides, surely no one would argue that the
definition of " r un around the track 3 t imes" is "be here t i red." Of course,
John might have a memory of having done it, but even "be here tired with a
memory of having run around 3 t imes" is still not a plausible definition, if
for no other reason than that John might have lost count. Also, this defini-
tion is circular, since John's memory must make reference to the concept to
be analyzed, and hence can only mean " I remember [bringing it about that I
am tired and have a memory of [bringing it about that I am tired and have a
memory of [. . . .]]] "

If you still need to be convinced, consider the (large) class of actions
that are done for their own sake, such as visiting Greece, eating a gourmet

110 McDERMOTT

meal, or having sex. In all these cases, the fact changes are trivial, unappe-
tizing, or only tangentially relevant. One could argue, I suppose, that these
things are done only for the memory of having done them. It is true that
doing them without remembering them would be a little pointless, but
memory fades. Knowing you won ' t remember much of this trip, meal, or
sexual activity 20 years from now is not much of a barrier to doing it now,
and does not entail that doing it is logically impossible.

We need a fresh approach. One idea is that events be identified with a
certain kind of fact, namely the fact that the event is taking place. Facts
occupy time intervals, so we get the ability to talk about what happens
during an event. This seems to be adequate for events that consist of some
aimless thing happening for a while, such as a rooster crowing in the morn-
ing. The rooster-crowing event could just be defined to be the time during
which the rooster is crowing. This event happens in a chronicle if any of its
states are in that chronicle.

But most events do not fit this mold. Running around a track three
times takes time, but cannot be identified with the states during which you
are running on the track. The problem is that a given state may be part of a
"3 times a round" event in one chronicle, and a "2 times a ro u n d " event in
another. But the criterion would have the event happening in both.

We avoid this problem by identifying an event as a set of intervals, in-
tuitively those intervals over which the event happens once, with no time
"left over" on either side. An interval is a totally ordered, convex set of
states. We can think of each interval as an event token, and the whole set as
an event type. So "Fred running around a track 3 t imes" is the set of all in-
tervals in which exactly that 3 happens.

Now we can indicate that an event happens between states sl and s2 by
writing (elt [sl, s2] e). As syntactic sugar for this, I will write (Occ sl s2 e).
Notice that I let variables beginning with " e " stand for events.

Can we always assume that an event occurs over a closed interval? Let
us leave this question unanswered for the time being. In this paper, I will
always used the Occ notation, and hence assume that they are closed, but it
doesn' t seem very important for most events whether they include two extra
instants or not. Since we will want to allow for instantaneous events, at least
some of them must be closed. ' The notion of a fact being true over a period

'The phrase "exactly tha t" is intended to rule out "last Tuesday" as a token of this
event if Fred ran around the track once on Tuesday (unless it took him 24 hr). But I do not
mean to insist that an event happen over an interval only if it happens over no subinterval.
When the event "Fred whistles" happens over an interval, it happens over an infinite number
of subintervals. Incidentally, the idea o f letting events be sets o f intervals was stated by Monta-
gue (somewhat differently) in Montague (1960).

"Notice, by the way, that if we interpret event intervals consistently (as always closed,
always half-open on the right, or whatever), then using them is equivalent to modifying Mc-
Carthy's situation calculus by letting actions be relations on situations (states) instead o f
functions.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 111

of time is still valuable, even though it wouldn ' t carry the full load. This is
written (subset [sl, s2] p), or, syntactically sugared, as (TT s l s2 p).

Certain events and facts are closely related. For example, (sunion S),
for any set S of sets, is the union of all its elements. The (sunion e) is a fact,
true whenever e is " in progress," in the sense that in some possible chronicle
e is in the process of occurring. I will use the syntactic sugaring (in-progress
e) to mean the same thing as (sunion e), and (Tocc s e) to mean (T s (in-
progress e)).

Given a fact, we can work our way back to events in more than one
way. For instance, we can take the set o f maximal intervals during which the
fact is true, or the set of point intervals for all points where the fact is true.

Events can be related to each other in ways similar to those for facts.
For instance, i f p is a subset of q, then it is as i f p implied q: at every state
where p is true, so is q. For events, we write (subset el e2) as (one-way el
e2): el is one way e2 can happen; every occurrence of el is an occurrence o f
e2. For example, being squashed by a meteor is one way of being squashed.

We used boolean connectives like " & " to combine facts. These are not
so useful with events. Instead, we need things like

(seq el e2 . . . eN)
which stands for
{[sO, sN]: (exists (sl . . . sN-1)

(and (Occ sO sl el)
(Occ sl s2 e2)

(Occ sN-I sN eN)))}

Corresponding to "neve r , " the fact that is never true, there is an
event that never happens. This will also be the empty set, so we can call it
"neve r , " too, making this the only thing that is both an event and a propo-
sition. There does not seem to be any useful notion of the event that always
happens.

More such constructs will be introduced as we go.
Remember that this logic takes an Olympian view of states of the uni-

verse. " N o w " is not distinguished, so there is no question about represent-
ing what has already happened versus what may happen. I will talk about
this more in Section 6, below. I should point out, though, that representing
tokens of past or expected events as ordered pairs of states, like (s34, s107),
is not adequate. A given interval is a token of many different events, which
happened to occur at that point. So event tokens must be represented as
ordered pairs of events and intervals, or something equivalent.

I want to stress at this point that devising ontologies like this is not an
empty philosophical enterprise. On the contrary, I am interested in purely
utilitarian ends; I want a way of thinking about time that is useful to a robot.
I am not interested in expressing all possible ways of thinking about time,

112 McDERMOTT

nor am I interested in calculating the truth values of English statements
involving time. It may seem that logic and practicality have little to do with
each other, that the problem for cognitive science is to build a computational
model that reasons about time, and be done with it. Unfortunately, it is not
so straightforward. Any program will be based on s o m e ontology and as-
sumptions about time. The wrong assumptions will mire us in a swamp of
logical conundrums, which much be explicitly faced and conquered. The
best way to do this is to make the logical machinery explicit (cf. McDermott ,
1978a).

This is what I will be doing in the rest of this paper, examining three
major problems that temporal reasoners will face: reasoning about causality
and mechanism, reasoning about continuous change, and planning actions.
There may be others, but these should suffice. They have been difficult in
the past precisely because dangerous assumptions have been made about
time, such as that there is a next moment, or that there is only one future. I
will try to show that a program based on the logic I propose will have a
better chance of avoiding these difficulties.

To illustrate how logical assumptions influence thought, I will try to
prove a theorem about a mechanism, and show the power and weakness of
what we have assumed so far. The theorem goes like this: Let DEV be a
device with two states, DAY and NIGHT. DAY is always followed by N IG H T
and N I G H T by DAY. DAY and NIGHT never overlap. Prove that if it is
ever DAY or NIGHT, it will always be either DAY or NIGHT.

This may seem simple, but it is just the sort of inference that is beyond
the capability of existing reasoning systems. Expressed in our notation, it is

DAY and NIGHT are mutually exclusive (except at boundaries):
(if (and (Occ ?sl 7s2 DAY) (Occ ?s3 ?s4 NIGHT))

(forall (s)
(if (and (= < ?sl s ?s2) (= < ?s3 s ?s4))

(or (= s ?s2 ?s3)
(= s ?sl ?s4)))))

Each takes a nonzero amount of time:
(if (or (Occ ?sl ?s2 DAY) (Occ ?sl ?s2 DAY))

(< ?sl ?s2))

and each follows the other
(follows DAY NIGHT)
(follows NIGHT DAY)

where
(iff (follows Tel ?e2)

(if (Occ ?sl ?s2 Tel)
(forall (ch) (if (elt ?s2 ch)

(exists (s3)
(and (elt s3 ch)

(Occ ?s2 s3 ?e2)))))))

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 113

That is, e2 follows eI if every occurrence of eI is followed immediately by an
occurrence of e2 in every chronicle containing the occurrence of el, i.e., in
every way events might proceed.

Now to prove
(if (Occ SI $2 DAY)

(forall (s) (if (> s $2) (or (Tocc s DAY)
(Toccs NIGHT)))))

This theorem may seem trivial, but in fact it does not follow f rom
what we have assumed so far. I f each succeeding DAY or N I G H T interval is
half as long as the previous one, then an infinite number o f them could go
by in a finite amoun t o f time, after which the state o f DEV could be some-
thing else. However , this is something we wish to rule out .

We do so with the axiom

Axiom 9:
(forall (s p)

(and (exists (sO)
(or (TTopen sO s p))

(TTopen sO s (- p)))
(foraU (ch)

(if (elt s ch)
(exists (s 1)

(and (elt s l ch)
(or (TTopen s sl p)

(TTopen s sl (- p)))))))))

where
(iff (TTopen sl s2 p)

(and (< sl s2)
(forall (s)

(if (< sl s s2) (T s p)))))

This axiom, due to Ernie Davis, assures us that , for every fact and an
arbi t rary state, there is an interval preceding the state dur ing which the fact
is always true or always false; and another one fol lowing the state, in every
chronicle conta in ing it. (See Figure 2.)

The presence o f this axiom rules out any super powerfu l axiom o f
" c o m p r e h e n s i o n , ' ,5 which would allow us to infer that any set o f states was
a fact, such as the set o f states during which the tempera ture in Cleveland is
a ra t ional number . This is not a fact because, assuming the tempera ture is
smooth ly changing, it will change t ru th value infinitely of ten in any finite
interval.

'An axiom or axiom schema of comprehension states that for every property, there is a
set of objects satisfying it. Stating this formally in a way that avoids paradoxes is a major pre-
occupation of set theorists (Mendelson, 1964).

114 McDERMOTT

p --P P --P p --p

• • ° • ° ° • • • e ° ° o i m l ~ o ~ Q t D

P violates Axiom 9 at s

Figure 2. How a Well-Behaved Fact Does Not Behave

t

So we will need special-purpose comprehension axioms for well-
behaved facts. I will just assume these along the way as obvious. For exam-
ple, i f p and q are facts, (& p q) is also. 6 When I introduce a function like
"in-progress," and announce that its values are from a given domain, like
facts, I am implicitly declaring an axiom like

Axiom 10: (In-Progress Comprehension)
(is FACT (in-progress ?e))

So you can take for granted that (in-progress e) satisfies Axiom 9. This
axiom does away with any super powerful comprehension axiom for events,
in case you were wondering.

You may now take it on faith that no further assumptions are required
to prove that it will always be DAY or NIGHT, or you can bear with me
through the following proof. (It is not as arbitrary as it seems; if anyone can
find a simpler or clearer proof, I would like to hear about it.)

First, we need a few definitions. Letting sets of events be denoted by
variables beginning with "ee , " and integers be denoted by variables begin-
ning with " n , " we define

Axiom 11 :
(iff (chain ?ee 0 ?sl ?s2) (= ?sl ?s2))

(iff (chain ?ee (+ ?n l) ?sl ?s3)
(exists (e s2)

(and (elt e ?ee)
(Occ s2 ?s3 e)
(chain ?ee ?n ?sl ?s2)))))

That is, there is an ee chain of length n from sl to s2, if there is a se-
quence of abutting events from the set ee that reaches from sl to s2.

6We could probably recast Axiom 9 as a biconditional and prove these axioms, but set-
theoretic parsimony is not really important.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 115

Now reachability is defined thus

Axiom 12:
Off (reachable Tee ?ch 7sl ?s)

(exists (n s2)
(a n d (> = n0)

(elt s2 ?ch)
(chain ?ee n ?sl s2)
(= < ?sl ?s ?s2))))

We read this "?s is ?ee-reachable in ?ch from ? s l . "
Some corollaries of these definitions (using Peano arithmetic) are"

(if (reachable ?ee ?ch ?sl ?s)
(forall (s')

(if (< ?sl s' ?s)
(reachable ?ee ?ch ?sl s'))))

(if (reachable ?ee ?ch ?sl ?s)
(or (= ?sl ?s)

(exists (e s2 s3 n)
(and (elt e ?ee)

(elt s3 ?ch)
(Occ s2 s3 e)
(= < s2 ?s s3)))))

These state that if ?s is ?ee-reachable from ?sl , then every state between ?sl
and ?s is reachable, and ?s occurs in the middle of some event in ?ee.

Now the proof goes as follows: Assume that S' is a state such that (>
S' $2) and (not (Tocc S' DAY)) and (not (Tocc S' NIGHT)) . Then by Axiom
6, there is a chronicle CH1 containing S' and $2. Clearly, (not (reachable
{DAY, NIGHT} CH1 $2 S')). So, by the properties of real numbers and the
first corollary above, there must be a state S, (< $2 S) and (= < S S'), such
that every state between $2 and S is {DAY, NIGHT}-- reachab le in CHI
from $2, and every state from S on is not {DAY, NIGHT}-- reachab le in
CH1 from $2. But, by Axiom 9, there must be an SD3 before S such that
either DAY is in progress for all states between SD3 and S, or it is not in
progress for all those states. Similarly, there must be an SN3 before S such
that it's N I G H T or it isn't from SN3 to S. Since it can ' t be neither or both,
let $3 be the one for which either it is DAY from $3 to S or N I G H T from $3
to S. Clearly, (< $2 $3) because both DAY and N I G H T occur at least once
after $2. Every state from $3 to S is {DAY, NIGHT}-- reachable , so, by the
second corollary, one of DAY or N I G H T is occurring from $3 to S, and this
occurrence ends in some state $4 in CH1. (See Figure 3.)

116 McDERMOTT

REACHABLE)[
S1 $2 $3 $4 S

< - ? - >

*either DAY or NIGHT in progress throughout this interval

NOT REACHABLE
S '

$4 must come before S, or else S would be reachable, according to the def-
inition, because $4 would end a chain f rom $2. But then starting at $4
N I G H T or DAY must occur, so DAY and N I G H T must coexist for more
than an instant, which is impossible. So there is no such S, and all instants
are reachable - -QED.

Reachable states Unreachable states

s3 s4

~- . . ? - -~ s

*Either DAY or NIGHT is in progress throughout this interval

Figure 3. Proof of Eternal DAY or NIGHT

This may seem quite complicated. But it depended on only one new
axiom, Axiom 9. Everything else came from definitions and arithmetic. Of
course, this p roof is much too complicated to expect a theorem prover to
come up with it, but this was never my goal. My intent is similar to Hayes 's :
to express concepts in a form in which the intuitively plausible inferences
are valid. I f this is achieved, then we can start worrying about a practical
inference program. In fact, I start worrying in Section 6, below. The only
thing to point out here is that such a program has no hope of being complete.

I should also assure you that this paper is not c rammed full o f such
long proofs of obvious results. The main purpose of showing you this was
to let you get a feel for the generality of the ontological assumptions. They
are so general that we have to tame them with Axioms like Axiom 9. But
this is all the taming we will want to do.

Also, this result is not entirely academic. It is easily generalizable to a
system with a finite number of mutually exclusive states which succeed each
other the way DAY and N I G H T do. It gives us the ability to infer infinite
loops in simple machines.

Now, as promised, I will examine three major problem areas f rom the
point of view of this logic, before turning to implementat ion questions.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 117

3. C A U S A L I T Y

Causality is fundamental to a lot o f problem solving. A problem solver
brings things about by causing other things. What I mean by causality here
is that one event (type) always follows another event (type). For example, if
x is a loaded gun, pulling its trigger is followed by its firing.

Unfortunately, there must be more to it than that. For example, an ex-
actly analogous case is, I f a is approaching f rom the direction of the sun,
the arrival of a ' s shadow is followed by the arrival of a. But we would not
want to say that the arrival o f a ' s shadow causes the arrival of a.

I assume that there is no way to get around this problem, and that
there is no way to infer causality merely f rom correlation. So we will not try
to define causality in terms o f something more basic. Instead, we will assume
whatever causal assertions we need, and infer events f rom them.

Events can cause two kinds of things: other events, and facts. The two
cases are quite different, and the first is simpler.

When an event causes another, there is usually a delay. The scale of
the date line attached to the chronicle tree is unknown in the logic, so we
cannot use absolute t ime intervals. Instead, we assume that there are objects
called scales which occupy some constant amount of time. I f " h o u r " is such
a scale, (* 5 hour) is a length of t ime equal to 5 times the size of hour (see
McDermot t 1980b for a fuller explanation). We will never be able to evalu-
ate this, but we don ' t need to; we just need to be able to compare it to other
things measured in hours or seconds. We can do the latter because we have
as an axiom (= (3,600 second) hour). Note the elision of the * when it is
clearly unnecessary.

With this out o f the way, we introduce our basic predicate (ecausep el
e2 rfi), which means that el is always followed by e2, after a delay in the in-
terval i, unless p becomes false before the delay is up. The delay is measured
f rom a point r f through el; if rf=O, this means f rom the start o f el; if
rf= 1, f rom the end.

Axiom 13:
(if (ecause ?p ?el ?e2 ?rf ?i)

(if (Occ ?sl ?s2 ?el)
(forall (ch)

(if (elt ?s2 ch)
(exists (s3)

(and (elt s3 ch)
(within-delay s3 ?rf ?i ?sl ?s2)
(or (not (Tr ?s2 s3 p))

(exists (s4)
(and (elt s4 ch)

(Occ s3 s4 ?e2))))))))))

118 McDERMOTT

where
Off (within-delay ?s ?rf ?i ?sl ?s2)

(elt { (d ?s) }
{ - (1-?rO*(d ?sl) }
{ + ?rf*(d ?s2)} }

?i))

The (within-delay s r f i s l s2) means that state s occurs after s l and s2, with
delay i. An rfis a real number that says what point the delay is to be measured
from. If it is 0, the delay is to be measured starting at sl; if 1, from s2; and
so on for any number between 0 and 1. The i is a real interval, like < (3
min), (5 m i n) > , or [0, (5 hour)]. (An open side of an interval I denote by
the usual angle bracket, as in < 1, 3] or < 1, 3 > . A closed interval on the
reals, while denoted with square brackets [. . .] , is a completely different
sort of thing from a state interval.)

As an example of ecause, we can express the idea that if a Republican
is elected President, science will progress:

(ecause (POLPARTY ?x REPUBLICAN)
(elected ?x)
(INFLUX-MONEY-FOR-DESERVING-RESEARCHERS)
1 [(1 year), (2 year)]))

In these examples, only the parts being illustrated are formalized in a reason-
able way.

If the fuse on a powderkeg is lit, the keg will explode if the powder
stays dry:

(ecause (& (DRY ?keg) (FUSE-OF ?fuse ?keg))
(LIT ?fuse)
(EXPLODE ?keg)
1 [(30 see), (2 min)]))

If a winch is rotated, an object gets hauled up:

(if (is WINCH ?x)
(ecause (LOAD-OF ?x ?y)

(ROTATE ?x)
(RISE ?y)
0
[0, (2 sec)]))

Note that the object might not start rising for a second or two.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 119

We also have the axiom:

Axiom 14:
(if (ecause ?p ?el ?e2 ?rf ?i)

(foraU (s3 s4)
(if (Occ s3 s4 ?e2)

(exists (pc ec sl s2 rfc ic)
(and (ecause pc ec ?e2 rfc ic)

(Occ sl s2 ec)
(within-delay s3 rfc ic sl s2))))))

That is, if an event is ever caused, then each o f its occurrences is preceded
by one of its causes (with the appropriate delay). This might be called the
Principle of Paranoia. Its chief virtue is in enabling us to infer that an event
must have occurred when it is known to be the only cause o f another event
that occurred.

The second kind of causality is the causation of a fact by an event. For
example, if a boulder falls to the bot tom of a mountain, it will be at the bot-
tom of the mountain. This is important in problem solving, where the goal
is often to bring about some fact by causing one or more events.

One approach might be to say that e causes p if, in all chronicles, p is
true for some period of time after e. We could do this, but it would be use-
less. In this sense, shooting a bullet past someone would be a way of achiev-
ing that it was near him.

I must digress here to talk about the speed at which facts change. The
real world doesn't change fast most of the time. Many facts remain true for
long enough to be depended on k For example, that boulder will probably
stay at the bot tom of the m o u n t a ~ for years (or centuries). We normally use
such facts with confidence, for example, when planning to build a house on
the boulder.

On the other hand, we cannot infer with certainty that the boulder will
be there. If we could, then there would be no way to plan confidently to
remove it. Confidence in the plan would just land us in a contradiction be-
tween our belief that the boulder will be gone by next year, and our certainty
that it will be there for many years.

This is a classic example of a non-monotonic reasoning pattern
(McDermott , 1980a; McDermott , 1981a; and Reiter, 1980). The inference
that the boulder will be there is good until you find out that someone is
planning to move it. I have resisted introducing non-monotonici ty into the
logic so far, because it is not that well understood, and what is well under-
stood about it is not all that encouraging. But we are going to need it here.

The problem here is closely related to the frame problem. That was
the problem that arose in McCarthy's situation calculus (McCarthy, 1968)

120 McDERMOTT

of not being able to infer anything about a situation resulting from an ac-
tion in a previous situation, without a large number of axioms of the form
"p doesn' t change in this t ransi t ion." A typical axiom would say, " N o
block's color changes in the transition from s to (MOVE A B s) ." The prob-
lem is even more acute for us, because almost anything could be happening
in an interval. In McCarthy's calculus it was possible to pretend that a situa-
tion (MOVE A B SO) would persist until the next action, so that the situa-
tion after two actions could be denoted by something like (MOVE C A
(MOVE A B SO)). Now the state of the world changes as the problem solver
plans, so there is no term denoting the state of the world when the second
action occurs. The frame problem becomes the problem of inferring what 's
true at the end of an arbitrary interval, given incomplete information about
what happened during it.

Part of my expectation in developing a robust logic of time was that
we could reason about facts " f r o m the side," inferring that they were true
for whole stretches of time. It 's no loss that we can' t work our way from
one state to the " n e x t " any more; that was always a bad idea. But now we
find that in general you cannot infer that a fact is true for a period of time.

Let me distinguish this problem from another one that is often held to
be solvable with non-monotonic notations. Every AI hacker knows that the
example causality axioms I gave earlier are incomplete, and that there is no
way to make them complete. For instance, the keg will not explode if the
fuse is cut, or if all the oxygen is removed from the keg before the spark
reaches it, or the keg is placed in an extremely strong box that can withstand
the explosion, or But you see the point. It seems pointless to try to list
all the ways the rule could fail.

This problem can be solved simply by letting our rules fail now and
then. We can' t hope to avoid errors, and it normally doesn ' t matter if a data
base is "sl ightly" inconsistent. When it does matter, we can edit the rules to
maintain consistency. So in a sense the theory is "approx imate ly" true, and
gets closer to the truth with every edit. Non-monotonic logic could play a
role by letting rules "edit themselves" (McDermott , 1980a), but this hardly
seems necessary.

The rule that a boulder stays put for years is not even approximately
true in this sense. It would be approximately true only if it were used in a
purely passive system. An astronomer observing an uninhabited planet
might use the rule this way. He would simply live with errors caused by im-
probable occurrences like volcanic eruptions that moved boulders. But a
problem solver knows full well both that it is counting on certain things to
be true for a while, and that it could make them false any time it wanted to.
(Other agents could also make them false, but we neglect this possibility.)

To capture these ideas in the logic, I introduce the notion of persis-
tence. A fact p persists from s with a lifetime r, if in all chronicles it remains
true until r has gone by or until it ceases to be true.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 121

Axiom 15: (Definition of Persist)
(iff (persist ?s ?p ?r)

(and (T ?s ?p)
(forall (s')

(if (and (within-lifetime s' ?r ?s)
(not (T s' ?p)))

(Occbetween ?s s' (cease ?p))))))

where
(iff (within-lifetime ?s2 ?r ?sl)

(and (= < ?sl ?s2)
(< (- (d ?s2) (d ?sl)) ?r)))

(iff (Occbetween ?sO ?s3 ?e)
(exists (sl s2)

(and (= < ?sO sl s2 ?s3)
(Occ sl s2 ?e))))

Ceasing does not mean merely that the fact goes from true to false. In fact,
ceasing is so rare that it never happens unless we hear about it:

Axiom 16: (Fundamental Property of Ceasing)
(if (and (persist ?s ?p ?r)

(within-lifetime ?s' ?r ?s)
(M (nocease ?s ?p ?s')))

(not (Occbetween ?s ?s' (cease ?p))))

M is a primitive sentence-forming operator, read "Consis tent . " Intuitively,
if Q cannot be proven false, then (M Q) is true. The (nocease s p s ') means
that no occurrence of (cease p) occurs between s and s '. To conclude that p
actually does not cease, we require only that it be consistent that it not
cease; positive information is necessary to override this. The overriding oc-
curs when other rules allow us to infer (not (nocease s p S1)) for some S1
within the lifetime of the persistence; then the M fails, we cannot infer t h e p
does not cease. But if no such rule applies, then we can make the inference.

I hope that this application of non-monotonic logic will not mess
everything up. I am depending on a property of the logic of (McDermott ,
1981a), namely, that from Axiom 16 and an occurrence of a ceasing within
the lifetime of a persistence, we can deduce (not (nocease s p s ')) . If a
weaker logic is used, this should be made explicit in an axiom. However it is
done, it is essential that (Occbetween s s ' (cease p)) kill o f f a persistence
after s ', but leave the persistence " in force" for states between s and s '.
Clearly, if (Occbetween s ? s ' (cease p)) , then (Occbetween s s" (cease p)) for
all states s" between s ' and the end o f the persistence. Then we can infer
(not (nocease s p s '~)for all those states. We c a n n o t infer such a thing for
states b e f o r e s '.

122 McDERMOTT

What this means is that a plan to remove the boulder five years f rom
now cancels a persistence after that time, but leaves intact the inference that
it will be there until then.

By the way, let me make a disclaimer. I try to appeal to non-monotonic
deductions as seldom as possible. This is because the logics they are based
on (McDermott , 1980a; McDermott , 1981a; Reiter, 1980; and McCarthy,
1980) are still rather unsatisfactory. For one thing, even some of the simple
deductions in this paper may not be valid in any existing non-monotonic
system. For example, the problem with existential quantifiers cited in
(McDermott , 198 la) would probably block some of my proofs. (The system
of (Reiter, 1980) avoids this problem, but has others.) For another thing,
such logics do not distinguish between severities of contradictions; they use
the same machinery for "rule edi ts" of the kind I described and for clipping
of f a persistent fact. In the usual terminology of such systems, this leads to
unexpected "fixed poin ts ," or models, in which the wrong assumptions are
retracted.

For the time being, we can view these not a problems with this paper,
but as problems with non-monotonic logic. In at tempting to represent
things, it is helpful to be as formal as we can, but if the formal systems can-
not keep up with the inferences we want to make, so much the worse for the
formal systems. In the long run, I am confident that non-monotonic logics
will be developed that capture the inferences we need. Probably the best
way to see what inferences those are is to try to get along with the fewest
possible non-monotonic inferences, but to feel free to use them when all else
fails. If representation designers make it clear what they need, logicians will
make it work.

Armed with the idea of persistence, we can make some progress on
our original problem. First of all, it seems reasonable that most inferences
of facts are actually about persistence of facts. For one thing, many facts
have characteristic lifetimes. I f x is a boulder, then (AT x location) has a
lifetime measured in scores of years. If x is a cat, then (AT x location) has a
lifetime measured in minutes (if the cat is sleeping) or seconds (if the cat is
awake).

The senses actually tell you about persistences. I was driven to this by
the following problem our logic appears to involve us in. At first blush, we
might want an axiom to the effect that if a boulder is at a location loc in
state SO, then (persist SO (AT Boulder Loc) (50 year)). But then we can infer
that the boulder will be there in 50 years, when another persistence will
start, and so on. We can infer that the boulder will be there for any given
time in the future. I f this seems harmless, think about the cat instead.

The solution is to scrap such axioms. Instead, we normally start with a
persistence and work our way to particular states, not vice versa. This re-
quires that when we see a boulder, our eyes are telling our data base about a

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 123

persistence, not about an instantaneous fact. Otherwise, as soon as we
turned away, we would know nothing about the scene. Once you get used to
this idea, it seems perfectly natural.

This brings us back to causation. Clearly, what events must cause
directly is persistences, not the truth of facts. So our primitive predicate is
(pcause p e q r f i rl), which means that event e is always followed by fact q,
after a delay in the interval i, unless p becomes false before the delay is up.
The delay is measured from a point r f through e; if rf=O, this means from
the start of e; if rf= 1, from the end. When q becomes true, it persists for
lifetime rl. Formally,

Axiom 17:
(if (pcause ?p ?e ?q ?rf ?i ?rl)

(if (Occ ?sl ?s2 ?e)
(forall (ch)

(if (elt ?s2 ch)
(exists (s3)

(and (elt s3 ch)
(within-delay s3 ?rf ?i ?sl ?s2)
(or (not T s3 p))

(persist s3 ?q ?rl))))))))

And we have examples like:

(pcause always)
(KILL ?x)
(DEAD ?x)
1 [0, 0]
FOREVER)

We pick " F O R E V E R " to be a very long time, equal to the largest number
that can be stored on the machine the universe is being simulated on, or the
length of time until the Last Judgement, depending on your religion.

Another example is:

(if (is STOVE ?x)
(pcause (- (BLACKOUT))

(TURN-ON ?x)
(HOT ?x)
1 [(1 min), (2 min)]
(24 hour)))

Notice that the persistence time is picked as the time interval over which it is
reasonable to infer that the state will remain in existence, assuming you

124 McDERMOTT

have no intention of changing it. I pick 24 hours here because within that
time, either one's spouse will find the burner and turn it off, or the house
will burn down. Of course, normally you plan to turn it off sooner. If for
some reason you wanted the burner to stay on longer (say you were cooking
something that took a really long time), you would just need axioms about
putting signs up, or other special tactics. These would say, " I f you put a
sign up telling someone not to alter a state they won' t worry about if they
see a sign, then the state will remain as long as the sign is up. ''7

Notice that not all instances of inferring facts " f rom the side" are
direct instances of persistence. Part of the power of the notion comes from
the fact that persistent facts have consequences. For example, if everyone
in the American embassy is audible (while the embassy is bugged), and the
Henry is in the embassy for 15 minutes, then he is audible during that
period. We don ' t have to come up with a general lifetime for audibility.

There is no Principle of Paranoia (Axiom 14) for pcause. This is
because there are so many ways a fact can come about, including logical
consequence, that it does not seem reasonable to look for a cause every
time. Also, most true facts are " lef t -over" persistences. Most boulders in
the world have been there longer than any lifetime you would use; the life-
time you can count on is much shorter than the times you observe. By the
way, this should make it obvious that the logic does not imply that a per-
sisting fact stops being true after its lifetime; we simply lose information
after that point.

Since persistences, and not facts, are caused, and since there is usually
no persistence that extends back to when a fact became true, there is really
no cause for most facts, at least not in the technical senses I have been devel-
oping. Of course, many facts of interest are the result of observed or inferred
events, and these will be caused. One interesting case is when an occurrence
of (cease p) is inferred using Axiom 15. We can then infer that this ceasing
was caused. In fact, we can call this the Special Principle of Paranoia:

Axiom 18:
(if (Occ ?s3 ?s4 (cease ?p))

(exists (pc ec sl s2 rfc ic)
(and (ecause pc ec (cease ?p) rfc ic)

(Occ sl s2 ec)
(within-delay ?s3 rfc ic sl s2))))))

'Several people (notably Ernie Davis, James Allen, and Ken Forbus) have suggested
that the idea of lifetime should be dropped from persistences. Even though a burner rarely
stays on for more than 24 hr, it wouM if left unattended, and my notation obscures this fact.
My main reason for sticking with limited persistences is to take into account the fact that in
many cases, we simply lose information about a system for moments too far from our last
observation.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 125

pcause and ecause work hand in hand. Consider the event (PUTON A B)
that occurs within minutes after the beginnings of persistences of (CLEAR-
TOP A) and (CLEARTOP B), with lifetimes of several hours. Suppose we
have axioms like:

(pcause (& (CLEARTOP ?x) (CLEARTOP ?y))
(PUTON ?x ?y)
(ON ?x ?y)
1 [0, O]
(10 hour))

and, of course,

(iff (T ?s (CLEARTOP ?X))
(not (exists (y) (T ?s (ON y ?x)))))

We can deduce from the persistence of (CLEARTOP A) and of (CLEAR-
TOP B) that (& (CLEARTOP A) (CLEARTOP B)) will be true for several
hours. Hence it will be true during the PUTON. (We will need an axiom
about how long PUTONs take.) Hence (ON A B) will persist from the end
of the PUTON. Hence (CLEARTOP B), no longer true, must have ceased,
and the rule that it doesn't cease is inapplicable. However, it still can be in-
ferred not to have ceased up to the end of the PUTON, so there is no con-
tradiction. I will say more on the subject of reasoning about plans later.

Before going on to other topics, I should pause to review previous
work on representing causality. Curiously, Hayes (1979a) argues that there
is no isolated body of knowledge about causality. Every branch of "naive
physics" has its own way of accounting for things happening. He also says
he has found no need for non-monotonicity. I envy him. I think the reason
for his good fortune is the "passive" character of his theory. It says how to
reason about physical systems; it takes a Buddhist attitude of resignation
toward bad things. For example, Hayes's Theory of Liquids (Hayes, 1979b)
can be used to infer a flood, in such a way that it is plain contradictory to
suppose the flood can be prevented. (This is a bit unfair, since he would pre-
sumably make the move of changing the axioms, i.e., the physical setup, as
a reflection of the action of the planner. I don't know if this would amount
to letting non-monotonicity in by the back door or not.)

The most obvious competitor to the theory I have presented is that of
Rieger, who developed a graphical notation for what he calls "Common-
Sense Algorithms" (CSA) (Rieger, 1976; Rieger, 1975). This notation in-
cluded devices for representing concepts like continuous causality, "gated
one-shots," thresholds, and much more. There are several problems with
this notation, all stemming from Rieger's refusal to state precisely what the

126 McDERMOTT

links and nodes of his networks mean. Apparently, networks representing
physical devices and plans are written exactly the same, or are freely mixed.
There is a systematic ambiguity about whether a link drawn on a page in-
dicates that i f something is done, something else will follow; or that the
thing is actually done and the consequence actually occurs. For example,
does the " th reshold" link indicate that if the threshold is passed something
will happen, or that the threshold is supposed to be passed eventually? It
seems as if you need to be able to say both. Apparently in the CSA notation
you can only say the latter. It seems somehow perverse to make algorithms
more basic than physics. In my system, algorithms come in later, in a dif-
ferent form (see Section 5).

Besides this major flaw, there are lots o f little places where the CSA
notation fails to be precise. For instance, time delays and lifetimes are not
mentioned. How is it possible to reason about a plan involving several
parallel actions if they are completely unsynchronized?

On the other hand, there is substantial overlap in what he and I have
done. His gated causality, and my provision of a gating fact as the first
argument to ecause and pcause, are both due to realization o f a key fact
about causality, that events' behaviors are modified greatly by background
facts.

4. FLOW

A system cannot reason about time realistically unless it can reason about
continuous change. This has been neglected by all but a handful of people
(Hendrix, 1973; Rieger, 1975). The assumption that actions are instanta-
neous state changes has made it hard to reason about any other kind. If I
am filling a bathtub, how do I describe what happens to the water level dur-
ing (MOVE A B SO)?

I will use the term fluent for things that change continuously over
time. (The term is due to McCarthy (1968), who used it in almost exactly the
same sense.) Actually, the notion of fluent is more general than that. It is in-
tended to do the work that is done by "intensional objects" in other systems.
The President of the United States is a typical intensional object. Unlike
most people, he has lived in the same house for over 150 years. His age
sometimes decreases suddenly. These may seem like strange properties, but
they are necessary (on some theories) to provide the correct truth value for
sentences like "The President lives in the White House" (true), or "In 1955,
the President was a movie ac tor" (false).

In my logic, such objects correspond to fluents. A fluent is a thing
whose value changes with time. The value o f a fluent in a given state s is
written (V s v). I will use " v " for variables ranging over fluents. So, we can
express two different readings for the last example sentence above:

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 127

(T 1955 (ACTOR (V 1955 President)))
(T 1955 (ACTOR (V 1981 President)))

In the first, "Pres iden t" is taken to mean "President at the time o f the
fac t . " In the second, it is taken to mean "President at the time of the ut-
terance (1981). The rules of English make the first reading more likely,
under which the sentence comes out false.

Fluents are valuable, not for this sort of playing around, but because
physical quantities may be thought of as fluents. For example, " the temper-
ature in Cleveland" is a fluent, which takes on values in temperature space.
The changes of the fluent can then be reasoned about. In particular, the
fluent's being in a certain region is a fact which might be helpful in causal
reasoning. All of the fluents I will look at from now on will have numbers as
values. Such fluents I will loosely call "quant i t ies ." Most quantities are
real-valued and vary continuously as well.

At this point a certain abuse of notation will make life simpler. Strictly
speaking, (> vl v2) is meaningless, because > relates numbers or states,
not fluents. What we really need is a function (> * vl v2), which takes two
fluents and returns the fact which is true in all states s for which (V s vl) is
greater than (V s v2). Similarly, (> ! vl r) might take a fluent and a real
number, and return the fact which is true just when the quantity's value is
greater than the number. Clearly, to do this rigorously would be tedious. In-
stead, I will just assume that all o f the red tape can be cleared away, and use
(> alpha beta) freely, where alpha and /o r beta is a fluent, integer, real
number, etc. If either alpha or beta is "po l lu ted" by being a fluent, the re-
sult is a fact; if both are numbers, the result is either true or false. Similarly,
(+ alpha beta) will produce a new fluent, unless both alpha and beta are
numbers, when the result is a number. For safety's sake, I will not do this
for anything but simple arithmetic predicates and functions.

By the way, notice that since things like (> (- V1 V2) (* 5 V3)) are
facts, they must obey Axiom 9. Ernie Davis has shown that this puts some
fairly strong contraints on quantities. A quantity gives rise to a time func-
tion in every chronicle; given the time, the fluent delivers a unique value.
Axiom 9 constrains this function not to jump around wildly, or " > " will
chop it into pieces that disobey the axiom. For instance, we cannot have

(VsV0) = sin
(d s) - tO

in some chronicle, since then (> V0 0) will change truth value infinitely
often around tO. One way to rule this out is to require that any such func-
tion be "finitely piecewise analytic," i.e., that, over any closed interval, the
function consist of finitely many fragments that are analytic when extended
to the complex plane. ("Analy t ic" means "infinitely continuously differen-

128 McDERMOTT

t iable.") This set of functions is closed under arithmetic operations and dif-
ferentiation, and always produce well-behaved facts when compared.
Restricting ourselves to this set allows for all the discontinuities that quan-
tities exhibit in naive physics, and seems to capture the intuition that normal
quantities jump a few times, but basically vary smoothly.

We won't look very hard at requirements like this. We simply let Axiom
9 take its course. But Davis's result is needed to justify the axiom, since
otherwise there might not be interesting models satisfying it.

The fundamental event involving fluents is a "v t r ans . " A (vtrans v r l
r2) denotes the event consisting of all occasions when v changed from rl to
r2.

Axiom 19:
(= (vtrans ?v ?rl ?r2)

{ [sl, s2]: (and (= (V sl ?v) ?rl)
(= (V s2 ?v) ?r2)){)

For example, a winch's rotating corresponds to a vtrans of its phase angle.
An increase in inflation is a vtrans of INFLATION from one value to
another. A change of Presidents is a vtrans of "President of the US" from
one statesman to another.

Knowing that a vtrans occurred tells you nothing about how it oc-
curred, unless the quantity involved is continuous, when we have an inter-
mediate-value axiom:

Axiom 20:
(if (continuous ?v)

(if (Occ ?sl ?s4 (vtrans ?v ?rl ?r4))
(forall (r2 r3)

(exists (s2 s3)
(and (= < ?sl s2 s3 ?s4)

(if(= < ?rl r2 r3 ?r4)
(and (Occ s2 s3 (vtrans ?v r2 r3))

(forall (s)
(i f (= < s2ss3)

(= < r2 (V s ?v) r3)))))
(if (> = ?rl r2 r3 ?r4)

(and (Occ s2 s3 (vtrans ?v r2 r3))
(forall (s)

(i f (= < s2ss3)
(> = r2 (V s ?v) r3))))))))))

In English, if v changes continuously from r l to r4, and r2 and r3 lie be-
tween rl and r4, then there is a time interval in which v changes from r2 to
r3 without going outside the bounds r2 and r3. That is, it spends a certain

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 129

period in every subinterval between r l and r4. (The conclusion of the axiom
has two very similar conjuncts, one for the case when v is increasing, the
other for when it is decreasing.)

Vtranses are normally inferred f rom "po t r anse s . " I f (potrans channel
v r) occurs, that means that " v was augmented through the given channel by
an amount r . " A potrans is a potential vtrans.

Potranses are intended to capture the way we reason about things like
flows into tanks, and other more general changes. Often we know things
like these:

I just poured five gallons of reagent into the vat.
I made 5 thousand dollars consulting today.
Decontrolling oil will tend to increase inflation by 5%.

In all these cases, we are given a fact which all by itself would translate
directly into a vtrans: the vat ' s contents increased by five gallons, my net
worth increased by $5,000, inflation increased by 5°70. But, as we all know,
life is not so simple. I f you know about a leak in the vat, then the increase is
actually 5 gallons MINUS pouring time * rate o f leak. The IRS will make
sure that my net worth doesn ' t go up by the amount I made. The Reagan
administration hopes that other measures will offset the decontrol o f oil.

I adopt a very abstract model o f this kind of situation. Many quantities
may be thought of as fed by various "channe l s . " These may correspond to
physical entities, such as pipes into tanks, but they are never identified with
anything physical. They are there almost as a pure technical device to enable
us to count potranses. We could not have a potrans of r into v be an event by
itself, since then pouring five gallons into the same vat by two different
pipes simultaneously would be just one occurrence of one event.

However, we do assume certain things about channels (which we
denote by variables starting with the letter " h ") . First, there is the fact
(channel-into h v), for which we have the axioms:

Axiom 21:
Off (exists (s)

(and (= < ?sl s ?s2)
(T s (channel-into ?h ?v))))

(exists (r)
(Occ ?sl ?s2 (potrans ?h ?v r))))

(if (and (Occ ?sl ?s2 (potrans ?h ?v ?rl))
(Occ ?sl ?s2 (potrans ?h ?v ?r2)))

(= ?rl ?r2))

That is, that one unique amount " f l o w s " through a given channel into a
given quantity over any interval. No amount at all flows unless the channel
actually " f e d " the quantity at some time during the interval.

130 McDERMOTT

The fundamental fact about potranses and channels is then:

Axiom 22:
(if (real-valued ?v)

(iff (Occ ?sl ?s2 (vtrans ?v ?rl ?r2))
(= (- ?r2 ?rl)

(sumpotrans ?sl ?s2 ?v
{h: (exists (s)

(and (= < ?sl s ?s2)
(T s (channel-into h ?v)))) }))))

where
(= (sumpotrans ?sl ?s2 ?v { }) 0)

and
(if (and (= (sumpotrans ?sl ?s2 ?v ?hh) ?sum)

(Occ ?sl ?s2 (jaotrans ?h ?v ?r)))
(= (sumpotrans ?sl ?s2 ?v

(union ?hh {?h }))
(+ ? sum ?r)))

That is, the change in a real-valued fluent over an interval is the sum of the
potential changes in it. (sumpotrans s l s2 v set-of-channels) is the sum of all
the potranses through the given channels into v from s l to s2.

Taken together, these two axioms enable us to count the contributions
from all channels into a quantity over a given time interval.

Potranses are decomposable:

Axiom 23:
(iff (Occ ?sl ?s2 (potrans ?h ?v ?r))

(forall (s)
(if (= < ?sl s ?s2)

(exists (rl r2)
(and (Occ ?sl s (potrans ?h ?v rl))

(Occ s ?s2 (potrans ?h ?v r2))
(= ?r (+ rl r2)))))))

That is, the potrans through a channel over an interval is the sum of the
potranses over each subinterval in a partition of it.

If a quantity is continuous, we can decompose potranses into it
another way. If a certain amount " f lows" into or out of a quantity, then
for any smaller amount, the flow began with a sub-flow of this smaller
amount. Formally:

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 131

Axiom 24: (An intermediate-value axiom)
(if (continuious ?v)

(if (Occ ?sl ?s2 (potrans ?h ?v ?r))
(forall (r ')

(if (o r (= < 0 r ' ? r)
(> = 0 r ' ? r))

(exists (s)
(and (= < ?sl s ?s2)

(Occ ?sl s (potrans ?h ?v r '))
(Occ s ?s2 (potrans ?h ?v

(- ?r r ')))))))))

Potranses are not instantaneous:

Axiom 25:
(if (T ?s (channel-into ?h ?v))

(Occ ?s ?s (potrans ?h ?v 0)))

For example, let's say that we had:

(continuous (WATER-VOL TANKI))

(persist SO (= {h: (channel-into h (WATER-VOL TANKI)) }
{ (INFLOW TANKI), (OVERFLOW TANK1) })

(6 weeks))

That is, only two channels into TANKI exist. Notice how casually I sneak
new constructs into the fact notation. The {x: p} is the set of all x such that
p; this is, o f course, a fluent. So (= {x:p} {A, B}) is a fact, with an obvious
meaning.

The channels have certain special properties. Nothing ever flows in
through the overflow, and there is no flow out of it while the level is below
some capacity.

(if (Occ ?sl ?s2
(potrans (OVERFLOW TANK1) (WATER-VOL TANK1) ?x))

(= < ?x 0))

(if (TT ?sl ?s2 (< (WATER-VOL TANK1) (CAP TANKI)))
(Occ ?sl ?s2

(potrans (OVERFLOW TANKI) (WATER-VOL TANKI) 0)))

132 McDERMOTT

Notice that the notation allows us to be ambiguous about whether (CAP
TANKI) is a fluent or a number. If we decided on the former, we would
have to talk about its persistence, so let's pretend it's the latter, and the
capacity cannot vary with time. We assume that (> (CAP TANK1) 0).

Nothing ever flows out through the inflow:

(if (Occ ?sl ?s2
(potrans (INFLOW TANK1) (WATER-VOL TANKI) ?x))

(> = ?x 0))

The tank is built so that the capacity is never exceeded:

(= < (V ?s (WATER-VOL TANKI)) (CAP TANK1))

Now, let's say that for some S1 and $3 soon after SO, we have:

(= (V S1 (WATER-VOL TANK1)) 0)

(Occ S1 $3 (potrans (INFLOW TANKI) (WATER-VOL TANK1)
(+ (CAP TANKI) (5 gal))))

Then we can infer that there is a state $2, such that:

(Occ SI $2 (potrans

(Occ $2 $3 (potrans

(Occ $2 $3 (potrans

(INFLOW TANK1) (WATER-VOL TANKI)
(CAP TANK1)))

(INFLOW TANK1) (WATER-VOL TANK1)
(5 gal)))

(OVERFLOW TANKI) (WATER-VOL TANK1)
(- 5 gal)))

Proof: By Axiom 24, there is a flow of (CAP TANK1) through (INFLOW
TANK1), followed by a flow of (5 gal). But during this period, the flow
through (OVERFLOW TANK1) must be zero, because it can' t be positive,
and if it were negative, then by Axiom 22 the volume would never get above
(CAP TANK1) during this interval, so it would always be zero, a contradic-
tion. Therefore, at the end of this period, the volume will be (CAP TANK1).
This is state $2. Now 5 gal flow into the tank. At least 5 gal must flow out,
or the tank capacity would be exceeded at $3. If more than 5 gal flowed out
(i.e., less than - 5 flowed in), then at the end the tank would be less than
full. Then by Axiom 20 there must have been an interval between $2 and $3
during which the volume of water declined from (CAP TANK1) to the final
value. But during this interval, either the flow into INFLOW would have
had to be negative, or the flow into OUTFLOW would have had to be non-
zero, both of which are impossible--QED.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 133

Other examples would be possible, but they would mainly illustrate
reasoning about continuous functions. My main goal is the exploration of a
logical framework, so I will leave this for somebody else.

Continuous quantities do not in general persist at the same value for
very long. For example, the quantity of water in a reservoir will change with
rain, evaporation and use. We could try to handle this by indicating that the
persistence of time (= WATER-LEVEL k) is (say) one day. But this is almost
never right. The level is not likely to stay exactly the same for more than an
instant, but it is not likely to double in one day, either, no matter how hard
it rains.

We need to introduce the " r a t e " predicate:

Axiom 26:
(if (> ?t 0)

(iff (T ?s (rate ?v ?t ?i))
(forall (sO sl)

(if (a n d (= < s0?ss l)
(= (- (d sl) (d sO)) ?t))

?t (elt
(V sl ?v)-(V sO ?v)

?i)))))

(rate v t 0 means that the average rate of change of the quantity v over any
interval of length t is within the given interval. The purpose of t is to smooth
short-term fluctuations, and to allow us to talk of rates of change of non-
continuous quantities. (t is not allowed to be 0, since then we would have to
talk about derivatives, which are hard to define given multiple chronicles,
and which don ' t seem to be necessary for "na ive" reasoning about time.)

We also need to delimit rates o f potransing:

Axiom 27:
(if (> ?t 0)

Off (T ?s (porate ?h ?v ?t ?i))
(forall (sO sl r)

(if (a n d (= < s0?ss l)
(= (- (d sl) (d sO)) ?t)
(Occ sO sl (potrans ?h ?v r)))

(elt (?r / ?t)
?i)))))

Rather than infer persistences o f values of numerical quantities, we
can infer persistences of their rates of change. I will give an example o f such
an inference in the next section.

134 McDERMOTT

5. P L A N N I N G

With what I have talked about so far, we can reason about causal situations,
but only as a spectator. In this section, I will talk about how a program
might reason about its own actions. Part of my motivation in defining time
the way I did was to support reasoning about interesting actions, like
preventing events. The flexibility in my event ontology now carries over to
the world of actions: An action is in this theory an entity, the doing of
which by an agent is an event. Formally, we just need a function (do agent
act), which is used to name events consisting of an agent performing an ac-
tion. In this paper, I will completely neglect multiple-agent situations, so the
first argument to " d o " will be dropped; it will simply map actions into
events. Variables denoting actions will begin with " a . "

In the first subsection below, I will see how far this takes us. Some
actions, like preventing and allowing, just fall out of the ontology. Others,
like protecting facts, are still problematical.

In the second subsection, I will explore the notion of "plan." A plan
is a set of actions, often intended to carry out another action. In one form
or another, this idea has been important to several AI researchers, from
Sacerdoti (1977) to Schank (1977). I will show how the idea gets translated
into my temporal-logic framework.

5.1. The Logic of Action

Many actions are auite straightforward, such as (PUTON x y), which is
done whenever the problem solver, or " r o b o t , " actually puts x on y. These
may correspond to primitive actions the hardware can execute. For each,
there will be axioms giving their typical effects as persistences.

But many actions do not fit this mold, such as preventing, allowing,
proving, observing, promising, maintaining, and avoiding.

Consider the action "Prevent e , " where e is some event. To be con-
crete, let's have e be the event E1 = "Lit t le Nell mashed by train TR1 in the
5 minutes after state SO." E1 will be prevented if it doesn' t happen, assum-
ing it was going to happen if not prevented. (You can' t take credit for pre-
venting an unlikely thing.)

This is the sort of thing that past problem solvers have neglected. In
the present calculus, it is easy to do. First, we need a notion of event depen-
dence.

Axiom 28:
(iff (not-occur-if ?el ?e2)

(and (foraU (ch)
(if (hap ch Tel) (not (hap ch ?e2))))

(exists (ch) (hap ch ?e2))
(exists (ch) (not hap ch ?e2)))))

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 135

where
(iff (hap ?ch ?e)

(exists (sl s2)
(and (subset [sl, s2] ?ch) (Occ sl s2 ?e))))

For instance, (not-occur-if E1 E2), where E2 = " I move Little Nell in
the 5 minutes after SO."

Now it is easy to define prevention:

Axiom 29:
(= (prevent ?e) (one-of {a: (not-occur-if (do ?a) ?e)}))

So one may to prevent Little Nell from being mashed is to move her in the
next 5 minutes.

In this axiom, I have used "event disjunction," written (one-of {el e2
. . . }), although this is just syntactic sugar for " sun ion . " We extend the
notation to actions, with the axiom

Axiom 30:
(= (do (one-of {?al . . . ?aN}))

(one-of { (do ?al) . . . (do ?aN)}))

If there are no actions that E is negatively dependent on, then (do
(prevent E)) is the empty set, "never . " That is, (prevent E) never happens.

Axiom 31:
(= (do (one-of { })) never)

A finer analysis of impossibility appears below.
As an example, let us take another look at TANK1. Suppose that at SO,

(= (V SO (WATER-VOL TANKI)) 0),

and (persist SO (porate (INFLOW TANKI) (WATER-VOL TANKI)
(l sec) [Rl, R21)

TO)

where (> R2 RI 0) and (> TO (/(CAP TANK1) RI)).

A little more terminology: Let (anch s e) stand for { Is, s2]: (Occ s s2
e) }, the set of all occurrences of e starting in s. Let (culm p e) be

{ [sl, s2]: (exists (s)
(a n d (= < sl ss2)

(TT sl s2 p)
(Oct s s2 e))) },

136 McDERMOTT

the set of all intervals in which p is true and then e happens. Let (holds p) be
{ [s, s]: (T s p) }, the set of all point intervals at which p is true.

What we want to find is an action to prevent

E0 = (anch SO
(culm (rate (INFLOW TANK1) WATER-VOL TANKI)

(1 sec) <0, infinity>)
(holds (= (WATER-VOL TANKI) (CAP TANK1)))))

That is, the overflow of the tank that will occur if the water is allowed to
run.

We need the action (TURN-OFF (INFLOW TANK1)), defined by this
axiom:

Axiom 32:
(pcause (channel-into ?h ?v)

(do (TURN-OFF ?h))
(porate ?h ?v (1 msec) [0, 01)
I [0, 01
(1 day))

This says that turning of f ?h causes the flow through it to become zero.
(The fourth argument, 1, says that the effect begins when the action is done;
the fifth, [0, 0], says it happens immediately; and the sixth says it persists
for one day. See Axiom 17.)

What we want to prove is that if E1 =

(do (within-time SO (/(CAP TANKI) R2)
(TURN-OFF (INFLOW TANKI))))

then
(not-occur-if E1 EO)

where
(= (do (within-time ?s ?t ?a))

{ [sl, s2]: (and (Occ sl s2 (do ?a))
(= < ?s s2)
(= < (- (d s2) (d ?s)) ?t)) })

The (within-time s t act) is the action act done within t o f state s.
The proof that turning of f the tank in time will prevent the tank from

filling requires three steps: (1) showing that E0 is possible; (2) showing that
E0 might not happen; and (3) showing that E0 doesn' t happen if El does.

The first requirement is met by a proof similar to that o f Section 4.
But to make it go, we have to assume there is a chronicle in which the prob-

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 137

lem solver refrains from El . It is tempting to devise an "Axiom of Free
Will ," which states that any action is avoidable; there is always a chronicle
in which you don ' t do it. But there are counterexamples. If A1 = "snap
your fingers within 1 minute of SO," and A2 = "keep from snapping your
fingers for 1 minute after SO," then (one-of {A1, A2}) happens in every
chronicle containing SO. I will call such an action unavoidable in SO. There
is no easy way to tell if an action is avoidable or not, so we must just provide
axioms to tell in every case, which drive:

Axiom 33:
(iff (avoidable ?a ?s)

(exists (ch)
(and (elt ?s ch) (not (hap ch (do ?a))))))

In the present example, we have (avoidable (TURN-OFF (INFLOW TANK 1))
SO). El is not exactly in this form, but we have the theorem

(if (avoidable ?a ?s)
(avoidable (within-time ?s ?t ?a) ?s))

If you don ' t have to do ?a, you don ' t have to do it within some time. I
won' t spend any time on the theory of avoidable actions, since it is probably
intricate and essentially trivial.

So there is a chronicle in which E1 does not occur, By Axiom 15 and
Axiom 16, in this chronicle the water keeps running, so we can infer that the
tank will reach capacity during the lifetime of the water's being on.

The third requirement is met by assuming that E1 happens in CH1,
and showing that the fact required for " c u l m " will be cut off. This is pretty
obvious.

The second requirement will follow from the third if we can show that
the robot is able to turn off this channel. Clearly, we need an axiom to de-
duce this. For realism, it should be an axiom giving the exact circumstances
under which a channel of this sort can be turned off. (You have to be near
enough to the tap implementing the channel that you can reach it before
(CAP TANK1) / R2.) But this is all tangential, so I won' t give details.

To talk about allowing, I first introduce a notion complementary to
not-occur-if:

Axiom 34:
(iff (occur-if-not ?el ?e2)

(and (forall (ch)
(if (not (hap ch ?el)) (hap ch ?e2)))

(exists (ch) (hap ch ?e2))
(exists (ch) (not (hap ch ?e2)))))

138 McDERMOTT

In English, (occur-if-not el e2) means that e2 will occur if el does not, and
e2 may or may not occur.

We need a little bit more. First, the concept of "event negat ion,"
written "nev" :

Axiom 35:
(iff (Occ ?sl ?s2 (nev ?e))

(and (T ?sl (possible ?e))
(T ?s2 (not possible ?e)))))

where
(iff (T ?s (possible ?e))

(exists (sl s2 ch)
(and (elt ?s ch) (elt s2 ch)

(Occ sl s2 ?e))))

That is, the negation of an event occurs if that event becomes impossible.
For instance, the negation of "Capitalism collapses by the year 1900" oc-
curred in the last half of the nineteenth century.

Now we can define a related operator on actions, " fo rgo" :

Axiom 36:
(iff (Occ ?sl ?s2 (do (forgo ?a)))

(Occ ?sl ?s2 (nev (do ?a))))

Forgoing an action means doing something that makes doing the action im-
possible, which may mean just procrastinating until you have lost your
chance. It is hard to forgo an action like "Whistling the Star-Spangled Ban-
ner" (except perhaps by having your lips removed), but easy to forgo an
action like "Move Little Nell within 5 minutes after S0." If you don' t move
her within 5 minutes, you've forgone this action.

Now defining allow is straightforward:

Axiom 37:
(iff (Occur-if-not (do ?a) ?e)

(= (allow ?e) (forgo ?a)))
(if (not (exists (a) (occur-if-not (do ?a) ?e)))

(= (do (allow ?e)) never))

Related to allowing and preventing are two other actions, forgoing
preventing and forgoing allowing. To forgo preventing something is to make
it impossible to prevent; this differs from allowing in that the thing might
still fail to happen, whereas according to my definition an event that is
allowed actually happens.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 139

Forgoing allowing an event is more complex. Let A be an action such
that not doing it would entail that the event (E) occurs. To forgo allowing it
is to forgo forgoing A. This means doing something that makes it impossi-
ble not to do A. This differs f rom preventing in that E might still occur.

Of course, there is a more mundane notion than either preventing or
allowing, in which you actively work to make something happen. I will call
this "b r i ng -abou t . " It is described by the axiom:

Axiom 38:
(= (bring-about ?e)

(one-of {a: (exists (r i)
(ecause always (do a) ?e r i)) }))

Bringing-about e is done by doing an action that (always) causes e.
James Allen (personal communicat ion) has raised interesting objec-

tions to my analysis o f allowing and preventing, which I will repeat here,
since they are likely to seem weighty to many people:

Since most things are possible, however improbably every day I
allow most of the events that happen in China. If someone was killed
there, then since I did 'forgo' the action of boarding a plane, sneaking
through customs, and throwing myself in front of the assailant's bullet,
I allowed the killing. It gets even worse with prevent. There's probably
no way I can ever prevent anything in this world. I have so little control
over what happens that whatever I do, there is always some event (how-
ever improbable) that is possible and would nullify my efforts.

The first objection, that too many things get allowed, is no trouble for me,
one does in fact allow an infinite number of things over any given day, with-
out intending to allow most of them. (Note also that " I allow most of the
e v e n t s . . , in Ch ina" is ambiguous; one certainly does not allow the event
consisting of the occurrence of all the events in China over a day.)

The second objection, that too few things get prevented, is more seri-
ous. Of course, there is a sense in which one could never prove that it is
possible to prevent a given event, but this is just another case of excessive
caution on the part of formal systems. A dose of non-monotonici ty should
cure it, one hopes. A deeper problem is that my analysis fails to take proba-
bilities into account. We often plan to prevent something, knowing that the
plan might not work because of improbable possibilities. But this point
applies to all planning, not just prevention. In fact, it applies to a lot o f
reasoning. As far as I know, there is no theory combining formal logic with
probabil i ty theory.

In McDermot t (1978b), I discussed a classification scheme for actions,
used in the NASL problem solver. An important distinction was between

140 McDERMOTT

" p r i m a r y " and " seconda ry" actions. A secondary action was one that was
executed correctly when another action was executed in a particular way.
For instance, in "P ick up this stick without moving any other s t ick," the
subaction " D o n ' t move any other s t ick" was a secondary modification of
the pr imary action "P ick up this s t ick." Another word for a secondary
action to which the system was committed was policy.

In the present calculus, the distinction does not get made this way.
Secondary actions are no weirder than some intuitively pr imary actions. For
instance, (avoid a), where a is an action, is simply an action which is done
over any interval in which you don ' t do a. The key distinction now is be-
tween composing actions sequentially or in parallel. Before, I defined (seq
el . . . eN) to be an event consisting of all occurrences of el eN in order.
We can define (seq al . . . aN) in a similar way. For policies, we must define
(p a r a l . . . aN):

Axiom 39:
(= (par ?el . . . ?eN)

{ [sl, s2]: (and (elt [sl, s2] ?el)
(elt [sl, s2] ?e2)

• . ,

(elt [sl, s2] ?eN))})

So to do A1 while avoiding doing A2, we do (par A1 (avoid A2)). (Here and
f rom now on, I extend notations defined over events to actions in the obvi-
ous way without comment .)

Another secondary action is "p ro t ec t ion" Sussman (1975). Intuitively,
a fact is protected by a problem solver during an interval if it stays true dur-
ing that interval. However, I think there is more to protection than this,
which I do not know how to formalize. There is a distinction between "re-
s torable" and "unres to rab le" protections. For instance, if you are protect-
ing the fact, "The fuse (for some keg of dynamite) is not in contact with an
open f lame," then if the fact becomes false, you have failed. You might try
to cut the fuse or run, but it is pointless to move the fuse away f rom the
flame; the damage has been done. In most cases, though, it is worth it to
reestablish the protected fact. I f I am baby-sitting a child, I try to protect
the fact that he is not out o f my sight. I do not give up once he is invisible.
So the act "Pro tec t p " can often be successful, even i f p lapsed a few times.
I do not know how to formalize this. Perhaps you could put a t ime limit on
how long the lapses are. So in the baby case, I have failed if he eludes me for
more than 5 minutes, while in the dynamite case the max imum allowable
lapse is zero. But this seems arbitrary. The only real criteria for success of
actions like these are teleological. I am successful with the baby if he 's
around and in one piece when his parents arrive. I am successful with the
dynamite if there 's no explosion, and so forth.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 141

I have already mentioned several ways of building new actions out of
elementary actions, such as seq, par, forgo, and avoid. Another important
class of action-building methods are the traditional programming con-
structs, like loops and conditionals. A complete study of how these compo-
sition methods fit together would start to resemble the study o f program-
ming-language semantics Milne (1976). I think we should avoid carrying
this resemblance to an extreme. In particular, I think the ability to do simple
reasoning about plans would go down the drain if variables and assignment
were admitted into the plan language. In most loops that people execute, the
outside world keeps all the state information. When a condition is no longer
true, it will be false in the world, not in the robot 's head.

5.2. The Logic of Problem Solving

So far in this section, I have analyzed actions, without ever introducing the
concept of an action that "should be pe r fo rmed ." A problem solver may be
thought of as a program that takes an action that should be performed, a
task, and performs it. Hence the notion is o f some importance.

I tried once before, in McDermott (1977; and 1978b), to develop the
logic o f tasks. In that system, NASL, the fundamental predicate was (task
name act) meaning, name denotes an action you should do, to wit, act. Un-
fortunately, the action of a task was usually underspecified. For instance,
you might have the tasks:

(task T1 (PUTON A B))
(task T2 (PUTON B C))
(successor TI T2)

This was where (PUTON B C) was an action that should be performed, but
not at an arbitrary time; the "successor" formula constrained it to be after
(PUTON A B).

The problem with this approach was that it distorted time relations, in
three ways. First, the time dependence between the two actions was not part
of their definition. This made it hard to say what " t a s k " meant. If it meant
"This action is to be done , " then a task assertion didn't describe its action
precisely, but only gave a generalization of it. (In the example, (PUTON B
C) is a generalization o f " D o (PUTON B C) after (PUTON A B).") Sec-
ond, it wasn't made clear when something was a task. As with most
previous AI representations, NASL lived only in the present; there was no
way to talk about what had been a task or was going to be one. Third, to
compensate for this, NASL changed the data base to reflect passing time.
When something was no longer a task, it got erased. Unfortunately, when
something had been assumed to be a task erroneously, it also got erased.
There was no way to distinguish between these two (see Section 1).

142 McDERMOTT

In short, three notions of t ime were confused: the time of an action,
the time of a task, and real-world time (" n o w ") . Now that we have a good
analysis o f time, we can untangle these things.

The correct analysis o f task and action seems to be this: A task is an
action to which a problem solver is committed. The action must be well
enough specified so that the time of commitment is not needed to know
what it is the solver is committed to. Therefore, one may have a task like
"Visit Greece ," satisfiable any time, but usually the action must be more
specified than that: " P u t block A on block B within 5 minutes after "

A problem solver 's being commit ted to an action is itself a fact. One
may alternately have and not have the task of Visiting Greece. Entirely inde-
pendently, one may actually visit Greece. There are several ways these might
interact:

I . You might have the task and not have done the action yet: In this
situation, a rational problem solver will devote resources to accom-
plishing the action, unless more urgent tasks intrude.

2. You might have the task and have already done the action: In this
case, the task has succeeded, and nothing more need be done.

3. You might have done the action and not (now) have the task: This
is quite common; an example would be insulting or cheering up
someone yesterday without intending to now (or possibly then
either).

4. You might have a task for an impossible action: This is quite com-
mon too. The action may have been possible when the task began;
in this case, the task may be said to have failed. I f it was never
possible, it is wishful thinking. Philosophers have argued about
whether it is ever rational to have such a task. I see no reason why
not, in the case of task failure. It seems natural to say that I have a
task of meeting that student at 2:30 yesterday as I promised, but I
failed to do it.

The last two categories interact in an interesting way. Often when a
task fails, there is some other action that was done instead of the intended
one. For instance, you have a task of hitting the golf ball into the little hole,
and you actually hit it into the big pond. Here is a combinat ion of an action
with no task and a task with no (possible) action. There should probably be
a predicate relating the two: (did-instead actl act2) would mean that act l
was a task and act2 was done instead (actl never occurring). (In the ex-
ample, actl would be " H i t the ball into the hole on stroke 2 of hole 6 of the
golf game played on Tuesday a f t e rnoon , " and act2 would be " H i t the ball
into the pond on stroke 2 of ") Rather than examine this in detail, I will
just point out an inadequacy in past representations of task networks. Prob-

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 143

lem solvers that maintain such networks (Sacerdoti, 1977; McDermot t ,
1978b) have failed to maintain a complementary behavior network that
represents what actually happened (or is going to happen). I f every task suc-
ceeds, the two networks would be isomorphic; where one had "Task a , " the
other would have "Did a . " But if there was failure, there would be a link
between the two networks, f rom "Task a , " to "Did b . " This would be more
useful than simply recording that a task failed or succeeded, and would help
the system in explaining its actions.

This is getting ahead of the story, into implementat ion and away from
logic. We need to say more about logic first.

In both N O A H (Sacerdoti, 1977) and NASL (McDermott , 1978b), a
key notion is that of one task being a sub-task of another. This means that
the sub-task is part of the chosen plan for carrying out the super-task. Every
task is either immediately executable or reducible to sub-tasks, which are
executable or reducible, and so on.

A problem solver t ransforms a task into sub-tasks by choosing a plan
for the task, and asserting that every element of the plan is a sub-task. This
choice mechanism is probably not purely logical. That is, it seems that the
solver probably doesn ' t infer a set of sub-tasks, but must actively choose
them, whatever that means. 8

The requirement that tasks be reduced to sub-tasks gives rise to a bug.
In the current formalism, we can talk of reducing the action A1 to the action
(seq B1 B2), but this reduces A to a single sub-task. Is there any sense in
which B1 and B2 are sub-tasks of A? It makes sense for B1 to be thought of
as a sub-task, but just any execution of B2 will cut no ice. We insist that B2
come after BI. To make B2 a sub-task would get us right back into the diffi-
culty I raised at the beginning of this section, o f tasks being underspecified.

The solution is to take as sub-tasks BI and 0ust-after BI B2), where
just-after is defined as

Axiom 40:
(= (just-after ?al ?a2)

{ [s2, s3]: (and (Occ s2 s3 ?a2)
(exists (sl) (Occ sl s2 ?al)))})

The set of actions {B1, 0ust-af ter B1 B2) } is such that A is executed in any
chronicle in which they are executed; in other words, this set is a plan for A.

'Perhaps I'm wrong on this. But if this relationship really is inferential, it must be an
inference of the form: if p is the best plan for a, then every element of p is a sub-task of a.
Unfortunately, it can happen that there are two equally good plans for a. Since we need to in-
troduce a pure choice here, we may as well accept it in general. Amazingly little has been done
on the logic of choices in AI. The work on medical diagnosis (e.g., Shortliffe, 1976), and work
on choices by problem solvers (e.g., McDermott, 1978b; Doyle, 1980) are two examples.

144 McDERMOTT

Of course, this is not really a solution to the problem, not until we
provide rules for reducing tasks of the form (just-after al a2). But at least it
suggests that what problem solvers do makes some logical sense. That is, in
many cases, there is a well-defined plan for a task, each of whose elements
must be done in order to carry out the task.

Another example is the classic plan for achieving a conjunction of
facts. To analyze this, we need the action (achieve prop until-prop), which
means "Bring it about that prop is true from the end of the achieve until the
until-prop becomes t rue . " This is clearly needed, for the reasons discussed
in Section 3; if you were allowed to achieve things for a single instant, the
achievement would usually be worthless. So we have:

Axiom 41:
(iff (Occ ?sl ?s2 (do (achieve ?p ?q)))

(and (T ?s2 ?p)
(forall (s4)

(if (and (< ?s2 s4) (not (T s4 ?p)))
(exists (s3)

(and(< ?s2s3) (- -< s3s4)
(T s3 ?q)))))))

In English, doing (achieve ?p ?q) amounts to bringing it about that ?p, in
such a way that if ?p ever becomes false thereafter, ?q must have become
false first.

Historically, tasks of the form "achieve p " have been very important.
Problem solvers like GPS (Ernst, 1969) concentrated on these (in the form
of "difference reductions"), and this concentration has persisted. An espe-
cially interesting case is where p is a conjunction of facts (Sussman, 1975;
Sacerdoti, 1977). The problem is, of course, that all the facts must be true at
once, when the task is complete, and all too often the plan for one conjunct
upsets another.

I will introduce the standard plan for achieving conjunctions after
some useful definitions. First, we define " t o - d o " thus

Axiom 42:
(iff (to-do ?al ?a2)

(one-way (do ?a2) (do ?al)))

That is, a2 is a way to do al if (do a2) is one way that (do al) can happen.
Next, we let (plan aa) be the action corresponding to the plan consisting of
all the actions aa.

Axiom 43:
(iff (Occ ?sl ?s2 (do (plan ?aa)))

(and (forall (a)

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 145

(if (elt a ?aa)
(Occbetween ?sl ?s2 a)))

(exists (a s)
(and (elt a ?aa) (Occ ?sl s a)))

(exists (a s)
(and (elt a ?aa) (Occ s ?s2 a)))))

That is, a plan is done in any minimal time span in which all of its elements
are done. And finally,

Axiom 44:
(iff (T ?s (finished ?a))

(and (exists (sl s2)
(and (Occ sl s2 (do ?a))

(< s2 ?s)))
(forall (sl s2)

(i f (= < ?ss2)
(not (Occ sl s2 (do ?a)))))))

That is, an action is finished when its last execution is past.
The following theorem then states that one way to achieve a conjunc-

tion is to achieve each of its conjuncts, in such a way that each conjunct re-
mains true until the other is achieved.

(if (and (= ?al (achieve ?pl (& ?q (finished ?a2))))
(= ?a2 (achieve ?p2 (& ?q (finished ?al)))))

(to-do (achieve (& ?pl ?p2) ?q)
(plan {?al, ?a2})))

Proof: Assume that the task is to achieve PI and P2 until Q, and let A1 and
A2 be two actions that satisfy the antecedent. Assume that (do (plan {A1,
A2})) occurs from SO to $2. I will show that (do (achieve (& P1 P2) Q)) also
occurs during that interval. According to Axiom 41, we must show that (T
$2 (& PI P2)), and that (& P1 P2) remains true until Q.

To show the first part, without loss of generality assume that A1
finishes before A2 (or no later). (See Figure 4.)

- - - - A I - > (&Pl P2) Q (- P I)
SO S1 $2 $3 $4

A2 - >

Then A2 is not finished until at least $2, so P1 must be true from SI to $2.
But P2 is true at $2, so (T $2 (& P1 P2)).

To show the second part, let $4 be an arbitrary state after $2 in which
(& P 1 P2) is false. Then either P 1 or P2 is false there. Assume without loss

146 McDERMOI-r

of generality that it is P1. By Axiom 41, there must be a state $3 after SI in
which (& Q (finished A2)) is true, and hence Q is true. This must come after
$2, since until then A2 is not f inished--QED.

- - . o o A1 ~ (&P1P2) ~le Q (--P)

- ; It l ', O
sO s 1 s2 s3 s4

• • o , - - , , b ~ , - - \ / -

Figure 4. Conjunction Proof

There is one suspicious feature of this plan for conjunction achieve-
ment: there is no finite non-circular term for naming either sub-task. This
rules out certain naive implementations of a problem solver based on this
logic. A deeper problem is that there may be cases in which there are no ac-
tions satisfying the antecedent of my theorem, for instance if ?pl and ?p2
contradict each other, or they require large amounts of a finite resource, or
any of several other cases obtains. It is an open problem how one would go
about proving the feasibility or unfeasibility of this plan.

The final problem to be examined in the light of this logic is the "p lan
decomposit ion" problem (pointed out by Eugene Charniak, personal com-
munication). When you are writing a plan, say to paint something (Char-
niak, 1976), you have a choice whether to represent a step as "Dip brush in
pa in t ," or "Achieve (paint on brush) ." The latter is the purpose o f the
former, but the former is the most common way of achieving this purpose,
so common that it seems wrong not to make it part of the plan. But if the
paint in the can is low, the usual step will not work. You will have to tilt the
can and grope with the brush, or go buy more paint. On the other hand, it
seems wasteful to make "Achieve (paint on brush)" the normal plan step,
and rederive the normal sequence every time.

The solution seems to be to store two things: the usual plan, and a
proof that it works. The proof in this case would have one fragment that
said: " I f you dip the brush in the paint, and there is paint deep enough to be
dipped into, then you will get paint on the brush. If there is paint on the
brush, then stroking the wail with it will get paint on the wall " The
proof is not consulted until the plan fails, that is, until the "dip '~ step fails to
bring about partial immersion of the brush. Then the proof would be con-
suited to see why this was done. The reason found would mention the bridg-
ing fact that " there is paint on the brush ." The problem solver could then
look for other ways to bring this about.

This sketch requires a lot of work to fill out, but I doubt that problem
solvers will be robust and efficient until it is done. One big piece of work is
to choose a format for these " p r o o f s " that enables easy access to the rele-

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 147

vant fragments. Presumably the proof would be broken into pieces festooned
over the plan.

6. SKETCH OF AN IMPLEMENTATION

Up to now, I have avoided discussing data structures and algorithms. If
Hayes (1979a) is right, I would be justified in avoiding them for a few more
years yet. But I have not been able to keep from thinking about how these
ideas would be expressed in a working program, and I think an occasional
glimpse in that direction is necessary for even the most dedicated " A I logi-
c ian." We are engaged in notational engineering, not philosophy.

An implementation must be able to do interesting, useful inferences.
What is interesting and useful will vary from application to application. The
one I am most interested in is problem solving. A problem solver must ex-
ploit the tree of possible chronicles, since it must reason about consequences
of different courses of action. It must also be able to reason about the inter-
actions between its actions and inanimate processes, and among its own
actions. A typical interaction is the detection that a planned action will
cause a persisting fact to cease.

Consider an example from (Sacerdoti, 1977). Say a problem solver has
the tasks of painting the ladder and painting the ceiling. If it works on
"paint the ceiling" first, it will notice that the ladder must be climbable, and
that it is currently climbable. Therefore, it will persist in being climbable for
years. The problem solver concludes that this state will last until the ceiling
is painted, which will take a few hours. Now it turns to thinking about paint-
ing the ladder. It realizes that this will cause "ladder climbable" to cease, and
remain untrue for a day (assuming paint dries this slowly). It then should
see that it lacks sufficient information to decide if this is a problem, since it
does not know whether it will paint the ladder before painting the ceiling.
Since the situation is under its control, it imposes an order that didn' t exist
before, and decides to paint the ceiling first.

This is similar to Sacerdoti's algorithm, but with some important dif-
ferences. First, the kind of retrieval that occurs is more generally applicable.
If we found out someone was coming to repossess the ladder, exactly the
same reasoning would go on, up to the point where we imposed extra order.
A different response would be necessary if one of the events was outside our
control. But the retrieval problem is the same.

Second, I do not model an action in terms of simple "addl is ts" and
"deletelists," that is, lists of facts that change in truth value as a result of
that action. Painting the ladder renders it unclimbable, but only for a while;
we could always paint the ceiling tomorrow. In fact, there is no guarantee
that we will catch the problem before we have already painted the ladder.
Even if we do catch it, there may be some pressing reason why we should

148 McDERMOTT

paint the ladder first; for instance, we may want to paint the ladder blue,
and the ceiling green, and the only way to get green may be to mix our blue
with some yellow we have lying around.

In fact, there will in general be many factors on each side of an order-
ing decision, and I am skeptical that one can casually decide on the basis of
one of them how the plan ought to go. Instead, it seems more reasonable to
try simulating the plan both ways whenever there is an important uncer-
tainty as to order or outcome (Wilensky, 1980).

For this to work, the implementation must recognize the existence of
multiple chronicles. It might seem that we want to keep a description of
every relevant chronicle, but, o f course, there are an infinite number of
chronicles, each with an infinite description; what we really want is a partial
description of the typical element of an interesting set of chronicles. For in-
stance, the set of all chronicles in which I fail to prevent Little Nell from
being mashed by the oncoming train would be of (somewhat morbid) inter-
est, as would the set of chronicles in which I succeed. A partial description is
just a data structure that supports information retrieval, like the action-
conflict detection I described before. Let us call this kind of data structure a
" t ime l ine," without reading too much into the phrase. Every set of chroni-
cles will be represented by a data structure called a chronset, which consists
of a defining characteristic of the chronicles in the set, plus a time line for
accessing the events and facts that occur in those chronicles.

Chronsets are hierarchically organized. When the problem solver
detects an important uncertainty in a chronset, it creates two (or more) new
chronsets which represent the different outcomes. Almost everything true in
the original chronset is true in the new ones; if I am on my way to visit
Grandma when I hear Nell's cry for help, then the fact that I will see Grandma
tonight is still true in both chronsets. Furthermore, the same chronset can
be split more than one way. Before getting involved with Nell at all, I might
have been speculating on whether nuclear war would occur by the year 2000,
and what that would mean for civilization. The chronsets connected with
this possibility have nothing to do with Nell.

Eventually, only one of a pair o f alternative chronsets turns out to
correspond to reality. This one becomes the new basis for further planning.

So, however time lines are implemented, they will have to be able to
inherit properties from "superl ines" belonging to higher chronsets. A flexi-
ble model of this kind of inheritance is the "da ta poo l " model, developed in
Sussman (1972) and McDermott (1981b). This allows a distributed data
structure to be labeled so that different parts are "vis ible" in different data
pools. Each data pool will correspond to a chronset. So, rather than have
different time lines, we can have one big time line, with some parts invisible
in some chronsets.

The next question is how time lines are implemented. The idea I am
currently pursuing is that they are modeled "spat ia l ly ," that is, using much

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 149

the same machinery as in a spatial reasoner like that o f McDermot t (1980b),
Davis (1981), and McDermot t (1981c).

In our spatial reasoner, every entity is modeled as a " f r o b " - - a f rame
of reference attached to an object. The frobs are arranged in a graph. I f the
position of an object is known (fairly precisely) with respect to another
object, its position with respect to that object ' s f rame is stored explicitly;
otherwise, it is computed when needed. Questions such as, How far is it
f rom A to B? are answered by computat ion on the coordinates of A and B.
Questions such as, What object is near A? are answered by searching through
a discrimination tree of objects stored with respect to A (McDermott ,
1981c, d).

Our working hypothesis is that events and facts can be modeled as
frobs. The reason this approach may fail is that the frob graphs may just be
too complicated; however, it is hard to think of a more promising approach.
(But see Allen, 1981.)

In general, a f rob 's position and other features are " f u z z y , " that is,
known only to within an interval. Hence we call the aggregation of frobs a
fuzzy map. The fuzziness is entirely due to uncertainty. The position of the
object in the real world is assumed definite. (Objects are not quantum
mechanical.) I f an event is to be thought of as a frob, there must be a sense
in which it is a definite object with uncertain attributes. Of course, this is
not what an event is at all. Instead, it is an infinite collection of time inter-
vals. The time during which I sang the Star Spangled Banner is a meaning-
less quantity, unless you mean the fuzzy interval o f all dates f rom my first
singing of it to my last. But this interval will never be reduced to a point by
further information.

On the other hand, there does seem to be a notion of temporary uncer-
tainty that gets resolved. I am not sure what time the plumber is coming
tomorrow; after she had been here, I am sure. This notion is completely
outside the realm of the logic I developed in Sections 1 through 5. Consider
a problem solver at state SO, with a time line including tomorrow, and an
event "P lumbe r comes . " It is simply wrong to say that there is uncertainty
in what time the plumber is going to come in the day following SO, because
there are lots o f 24-hour periods following SO, one per chronicle. Twenty-
four hours later, there will be an infinite number o f problem solvers, in an
infinite number of incomparable states following SO, each with a slightly
different idea of when the plumber came.

So for its own sanity, a problem solver is going to need the notion of
the real chronicle, the one that is actually going to happen. Actually, for
completeness, we will have every chronset contain a unique realest chronicle,
which must be the real chronicle if the chronset contains it. The uncertainty
surrounding the exact t ime of an event in a given chronset is then the uncer-
tainty about the occurrence of the event in the realest chronicle in the set.
And this only makes sense for events that happen at most once in a chroni-

150 McDERMOTT

cle. We will call an event or fact being modeled in a time line in this way an
occurrence.

With these restrictions, it makes sense to apply techniques for map-
ping time. The existence of chronsets merely forces there to be many com-
peting maps.

Before I discuss time lines in more detail, let me issue a warning about
the " r ea l " chronicle and its relatives. I am convinced that no hint of this
concept must appear in the logic, because it would lead to some serious
paradoxes and a breakdown of the system. (I thank Ernie Davis for discus-
sions leading to this conclusion.) For instance, how do you represent that
something is inevitable? In the logic so far, you must say that it will happen
in all chronicles. It seems tempting to explore the alternative way of putting
this, that the thing will happen in the real chronicle. After all, what can it
matter that something happens in an unreal chronicle? But then everything
that actually happens was inevitable.

The only conclusion is that the logic we use makes some extreme as-
sumptions about time, which our implementation resolutely ignored. If this
bothers you because you think logic ought to encompass everything that
goes on in a robot, then this should convince you that it can' t . If this bothers
you because you want to know who is right, the logic or the implementation,
my guess is that the implementation is right, but so what? Neither alterna-
tive is very palatable, but neither can be neglected. A system that accepted
the idea of many futures would have no grounds for any decision; but
neither woul~d a system that accepted the idea of one future. The trick is to
resonate between them, betting that there is one real future that matters,
relying on a logic that presupposes the opposite.

One other topic falls under the " Implementa t ion" heading. A data
dependency is a note of the support that an assertion has, expressed as a list
of other assertions (Doyle, 1979). In the implementation I am describing,
there will be two kinds of dependency: the support for the contention that
an occurrence will take place in a chronset; and the support for the time
when it occurs in that chronset. The former is relatively straightforward. A
cause will be linked to its effect. A bad occurrence will be linked to the task
that prevents it. The only complication is that these links may have to cross
chronset boundaries; for example, a task might be there because in another
chronset, something bad will happen.

The second kind is more problematic. Times of occurrence are not
asserted, but constrained. As constraints accumulate, they become more
precisely known, just as in McDermott (1980b). How to erase such con-
straints is still an open problem in the spatial domain, and may also be a
problem in the temporal domain.

Consider how this data-dependency system would solve the "Lit t le
Nell" problem I started with. Once the system (Dudley) has reasoned out
the causal sequence involving the train and Nell, and sees that a bad event is

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 151

going to happen, it looks for a plan to prevent it. Assuming it finds a candi-
date, it sets up an alternative chronset in which this plan is successfully ex-
ecuted. (See Figure 5.) It does an analysis of feasibility, and decides that this
chronset probably corresponds to reality more closely than the one it started
with. However, the data dependency supporting the assertion that "Mo v e
Nell" is a task specifies that the occurrence of "Nell is mashed" in the other,
original chronset as the justification of the task. It is irrelevant that this
chronset is not expected to be realized.

It is relevant that in the alternative chronset, she gets mashed. This
assertion will be supported by a record of the causal argument (inv,~lving
the persistence of being tied up, the train schedule, and so on) that led to
Dudley's alarm in the first place. If this argument is upset, say by a new
assertion that Dick Daring is planning to free Nell in two minutes (thus ter-
minating a crucial persistence), then it is no longer true, even in the alterna-
tive chronicle, that Nell is in danger, and the assertion " I have the task of
moving Nell" will disappear from Dudley's data base.

supports Physical laws,
plausible inferences

Nell mashed j~" *~

supp°rts , / f
Task: Move Nell - -... J ~'-- ... supports

~ N e l l not mashed

Figure 5. Tree of Chronsets for the Dudley-Nell Problem

Chronsets:

. 4-" I do not
move Nell

I do move
Nell

4--
(EXPECTED)

As another illustration, let me sketch how this system would handle
one straightforward kind of inference--system simulation. This kind of in-
ference is the result of applying ecause and pcause rules to see how a system
will behave. That is, starting in some state, we use these rules to predict
future states, then start from there to predict more states, and so forth.
Each application of a rule creates a new frob, corresponding to the caused
effect. This frob will represent a persistence or event. It is also a frame of
reference for further simulation; its effects will be frobs fuzzily located in its
frame, and so on. Figure 6 shows how each occurrence is located more or less
fuzzily, at some offset in the frame of its cause. Each effect then serves as a
frame for the next round. Once the structure is built, it can serve to answer
queries, like " H o w soon after F1 will F3 occur?" This requires translating
F3's fuzzy coordinates back into frame F0 for comparison. The more steps
of translation, the fuzzier the coordinates get.

152

FO
- > > F I

FI

McDERMOTT

> >F2

F2
>

Fuzzy interval:
> >

Offset of direct from cause:

> F3
. . ,

In frame FO:
F1

Fuzzy Position of Object: I I I I I I I I

In frame F1 :

F2

I ;;;;::

In frame F2:
F3

Net Position of F3 in F0:

F3

| r ~::;~;:; t t : .7 .-~:- ' . : ' . : : ' . :~-'~

Figure 6. Each Frob is a Frame for the Next Occurrence

Just storing the coordinates does not suffice for answering questions
such as "What ' s the first occurrence o f . . . a f t e r F l ? " This requires other
sorts of indexing. (McDermott, 1981d)

This sketch is intended only to suggest what one might do. I feel that
raw simulation of this sort is actually of little value, except for simple loop-
free systems. If a loop is encountered, the unwary simulator will itself go
into a loop. Instead, it should be on the lookout for " l o o p y " patterns, such
as a quantity increasing twice, and try to step back and draw more interest-
ing conclusions. I can only point at this problem here, and not hope to solve
i t . 9

'I have implemented a preliminary version of a program for reasoning about simple
mechanisms, including some with loops, and will report on it in a later paper.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 153

7. CONCLUSIONS

I set out to develop a temporal logic which captured the openness and con-
tinuity of time. To this end, the basic ontology had to include states arranged
into a branching set o f continua, the "chronicle t ree ." Doing this enabled
us to state facts about causes and effects, continuous change, and plans. In
many cases, we could make useful deductions about the course of events.
Here is a list of some of the situations considered:

• Causal sequences, including infinite loops
• Continuous change up to some threshold
• Actions taken to prevent the operation of causal systems
• Conflicts among actions done in the wrong order (cf. Sacerdoti,

1977)
• Changes in one's plans forced (or not forced) by changing circum-

stances

I look at some of these systems more formally than others, for which I em-
phasized implementational considerations.

I have found that logic and implementation fertilize each other. One
often has a vague notion of what he wants a program to do, plus a pile of
special cases that don ' t fit together too well. Sometimes one goes ahead and
implements the special cases. I urge consideration of the alternative: tempo-
rarily to ignore hard-nosed programming issues, and try to achieve an ele-
gant synthesis of the special cases in the logical domain. If you fail, it is
likely that the logical bugs holding you up would have caused the program
to exhibit bizarre behavior anyway. If you succeed, the results can often be
transferred back to the programming domain. The ontology of the logic will
be reflected in the data structures of the program (as chronicles gave rise to
chronsets); the commonly encountered proofs will give rise to inference
algorithms, and records of them become data dependencies, which help to
make the program robust and less opaque. Of course, the program will fail
to make inferences the logic allows (and hence, via non-monotonicity, jump
to conclusions the logic forbids), but humans have these limitations too.

REFERENCES

Allen, J. Maintaining knowledge about temporal intervals (Technical Report TR86). Unit'ersity
of Rochester, Department of Computer Science, 1981.

Charniak, E. A framed PAINTING: the representation o f a common sense knowledge frag-
ment. Working Paper 28, Fondazione Dalle Molle, 1976.

Charniak, E. A common representation for problem-solving and language-comprehension
information. Artificial Intelligence, 1981 16 (3), 225-255.

154 McDERMOTT

Davidson, D. In Rescher (Ed.), The logical form o f action sentences. Pittsburgh, PA: Pitts-
burgh University Press, 1967.

Davis, E. Organizing Spatial Knowledge (Technical Report 193). Yale University, Computer
Science Department, 1981.

Doyle, J. A truth maintenance system (Memo 521). MIT AI Laboratory, 1979.
Doyle, J. A model for deliberation, action, and introspection (TR 581). MIT AI Laboratory,

1980.
Ernst, G. W. & Newell, A. GPS: A Case Study in Generality and Problem Solving. New York:

Academic Press, 1969.
Fikes, R. & Nilsson, N. J. STRIPS: A new approach to the application of theorem proving to

problem solving. Artificial Intelligence, 1971 2, 189-208.
Goodman, N. The problem of counterfactual conditionals. Journal of Philosophy, 1947, 44,

113-128.
Hayes, P. The Naive Physics Manifesto. Unpublished, 1979.
Hayes, P. Ontology for Liquids. Unpublished, 1979.
Hendrix, G. Modeling simultaneous actions and continuous processes. Artificial Intelligence,

1973, 4, 145-180.
Hewitt, C. Description and theoretical analysis (using schemata) o f PLANNER: a language for

proving theorems and manipulating models in a robot (Technical Report 258). MIT, At
Laboratory, 1972.

Johnson-Laird, P. N. Mental models in cognitive science. Cognitive Science, 1980, 4 (1),
71-115.

Lewis, D. K. Counterfactuals. Oxford: Basil Blackwell, 1973.
McCarthy, J. Programs with common sense. In Minsky (Ed.), 1968.
McCarthy, J. Circumscription: a non-monotonic inference rule. Artificial Intelligence, 1980,

13 (1, 2).
McDermott, D. V. Flexibility and efficiency in a computer program for designing circuits

(Technical Report 402). MIT, AI Laboratory, 1977.
McDermott, D. V. Tarskian semantics or, no notation without denotation!. Cognitive Science,

1978, 2 (3). (a)
McDermott, D. V. Planning and acting. Cognitive Science, 1978, 2 (2), 71-109. (b)
McDermott, D. V. & Doyle, J. Non-monotonic logic I. Artificial Intelligence, 1980, 13 (1, 2).

(a)
McDermott, Drew V. Spatial inferences with ground, metric formulus on simple objects (Tech-

nical Report 173). Yale University, Computer Science Department, 1980. (b)
McDermott, D. V. Non-monotonic logic It: non-monotonic modal theories. Journal o f ACM,

1981. (Also Yale CS TR 174). (a)
McDermott, D. V. Contexts and data dependencies: a synthesis. Submitted to IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 1981. (b)
McDermott, D. V. & Davis, E. Planning and executing routes through uncertain territory.

Submitted to Artificial Intelligence, 1981. (c)
McDermott, D. V. Finding objects with given spatialproperties. (Technical Report 195). Yale

University, Computer Science Department, 1981. (d)
Mendelson, E. Introduction to Mathematical Logic. Van Nostrand, 1964.
Milne, R. & Strachey, C. A Theory of Programming Language Semantics. Halsted Press, 1976.
Minsky, M. (Ed.). Semantic Information Processing. Cambridge, MA: The MIT Press, 1968.
Montague, R. On the nature of certain philosophical entities. The Monist, 1960, 53, 159-194.

(Also in Montague, 1974.)
Montague, R. In R. Thomason, (Ed.), Formal Philosophy. New Haven, CT: yale University

Press, 1974.
Moore, R. Reasoning about knowledge and action (Technical Report 191). SRI AI Center,

1980.

A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 155

Prior, A. Past, Present, and Future. Oxford University Press, 1967.
Reiter, R. A logic for default reasoning. Artificial Intelligence, 1980, 13 (1, 2).
Rescher, N. The Logic of Decision and Action. Pittsburgh, PA: Pittsburgh University Press,

1967.
Rescher, N. & Urquhart, A, Temporal Logic. New York: Springer-Verlag, 1971.
Rieger, C. The commonsense algorithm as a basis for computer models of human memory,

inference, belief and contextual language comprehension. Proc. Theoretical Issues in
Nat. Lang. Processing Workshop. Boston, MA, 1975.

Rieger, C. An organization of knowledge for problem solving and language comprehension.
Artificial Intelligence, 1976, 1.

Sacerdoti, E. A Structure for Plans and Behavior. American Elsevier Publishing Company,
Inc., 1977.

Schank, R. C. Conceptual Information Processing. American Elsevier Publishing Company,
1975.

Schank, R. C. & Abelson, R. P. Scripts, Plans, Goals, and Understanding. HiUsdale, N J:
Lawrence Erlbaum Associates, 1977.

Shortliffe, E. H. Computer-Based Medical Consultations--MYCIN. American Elsevier, 1976.
Sussman, G. J. & McDermott, D. V. From planning to conniving--a genetic approach. Proc.

FJCC 41, 1171. IFIPS, 1972.
Sussman, G. J. A Computer Model of Skill Acquisition. American Elsevier Publishing Com-

pany, Inc., 1975.
Wilensky, R. Metaplanning. (Memo UCB/ERL M80/33). Berkeley Department of Computer

Science, 1980.

