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Much previous work in artificial intelligence has neglected representing t ime 
in all its complexity. In particular, it has neglected continuous change and the 
indeterminacy of the future. To rectify this, I have developed a first-order tem- 
poral logic, in which it is possible to name and prove things about facts, 
events, plans, and world histories. In particular, the logic provides analyses of 
causality, continuous change in quantities, the persistence of facts (the frame 
problem), and the relationship between tasks and actions. It may be possible 
to implement a temporal-inference machine based on this logic, which keeps 
track of several "maps" of a t ime line, one per possible history. 

I. I N T R O D U C T I O N  

A common disclaimer by an AI author is that he has neglected temporal 
considerations to avoid complication. The implication is nearly made that 
adding a temporal dimension to the research (on engineering, medical diag- 
nosis, etc.) would be a familiar but tedious exercise that would obscure the 
new material presented by the author. Actually, of course, no one has ever 
dealt with time correctly in an AI program, and there is reason to believe 
that doing it would change everything. 

Because time has been neglected, medical diagnosis programs cannot 
talk about the course of a disease. Story understanding programs have trou- 
ble with past events. Problem solvers have had only the crudest models of 
the future, in spite of the obvious importance of future events. 
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Many researchers have compensated by modeling the course of  exter- 
nal time with the p rogram ' s  own internal time, changing the world model to 
reflect changing reality. This leads to a confusion between correcting a 
mistaken belief and updating an outdated belief. Most AI data bases have 
some sort o f  operator  for removing formulas.  (e.g., ERASE in P L A N N E R ,  
Hewitt, 1972) This operator  has tended to be used for two quite different 
purposes: getting rid of  tentative or hypothetical assertions that turned out 
not to be true, and noting that an assertion is no longer true. The confusion 
is natural,  since some of  the same consequences must follow in either case. 
For example,  if " T h e  car is dr ivable"  follows f rom "There  is gas in the 
ca r , "  then the former statement must be deleted when the latter is, whether 
you have discovered there to be no gas after all, or the gas has been used up. 

But in many cases, the two behave quite differently, and efforts to 
make them the same have resulted in awkward,  inextensible programs.  For 
example, f rom " x  is beating his wife ,"  you are entitled to infer, " x  is a bad 
m a n . "  But if x pauses to catch his breath, only the former  statement must 
be deleted f rom the data base. Clearly, the proper inference is f rom " I f  x 
has beat his wife recently, he is a bad m a n , "  and " x  is beating his wi fe ,"  to 
" F o r  the next year or so, x will have beaten his wife recent ly,"  and hence to 
" F o r  the next year or so, x is a bad m a n . "  (We must allow for reform.)  As 
far as I know, no AI program has been capable of  such inferences. 

An even worse flaw than the inability to model present change is the 
inability to model future possibility. To make this clear, I will sketch an ex- 
ample of  where the standard approaches fail. 

Say a problem solver is confronted with the classic situation of  a hero- 
ine, called Nell, having been tied to the tracks while a train approaches.  The 
problem solver, called Dudley, knows that 

" I f  Nell is going to be mashed, I must remove her from the tracks." 

(He probably knows a more general rule, but let that pass.) When Dudley 
deduces that he must do something, he looks for, and eventually executes, a 
plan for doing it. This will involve finding out where Nell is, and making a 
navigation plan to get to her location. Assume that he knows where she is, 
and she is not too far away; then the fact that the plan will be carried out is 
added to Dudley's  world model. Dudley must have some kind of  data-base- 
consistency maintainer (Doyle, 1979) to make sure that  the plan is deleted if 
it is no longer necessary. Unfortunately,  as soon as an apparently successful 
plan is added to the world model,  the consistency maintainer will notice that  
"Nell  is going to be mashed"  is no longer true. But that removes any justifi- 
cation for the plan, so it goes, too. But that means "Nell  is going to be 
mashed"  is no longer contradictory,  so it comes back in. And so forth.  

Exactly what will happen depends on implementat ion.  The data base 
manager might loop forever, or it might conclude erroneously that  Nell is 
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safe without any action by Dudley. The problem, however, lies deeper than 
the implementation level. The naive logic we used, a non-monotonic first- 
order situation calculus (McCarthy, 1968; McDermott ,  1980a), is just in- 
adequate: no implementation can do the right thing here, because the logic 
doesn't  specify the right thing. We need to be able to express, "Nell  is going 
to be mashed unless I save her , "  and unless is a non-trivial concept (Good- 
man, 1947; Lewis, 1973). 

In this paper, I will begin an attempt to rectify these problems, by pro- 
viding a robust temporal logic to serve as a framework for programs that 
must deal with time. This is in the spirit of  Hayes's "naive physics" (Hayes, 
1979a), and might be thought of  as a "naive theory of t ime."  I will sketch 
approaches within this framework to what I consider the three most impor- 
tant problems of  temporal representation: causality, continuous change, 
and the logic of  problem solving. 

One difference between Hayes and me is that I have not been able to 
turn my eyes away from implementational details as resolutely as Hayes. 
Consequently, later in the paper I will discuss how these ideas might be em- 
bodied in a program. Of course, the use of  logic does not constrain us to 
making the program look like a theorem prover. 

So why do I plan to spend any time at all on logic? There are two 
reasons: 

I. 

. 

We want to be assured that our special-purpose modules are not 
prone to absurd interactions such as the one I just sketched. One 
way to guarantee this is to be sure that the modules'  actions are 
sound with respect to an underlying logic. (It is relatively unimpor- 
tant and in practice unattainable that the programs be logically 
complete.) 
Recently it has become clear that a reasoning system must keep 
track of  the justifications for its conclusions, in order to update the 
data base as assumptions change (Doyle, 1979). For example, a 
picture of  the future based on the assumption that dinner will be 
done at 6:00 must be revised if there is a power failure at 5:30. It 
turns out that constructing and maintaining these justification 
records, called data dependencies, is not trivial. One useful guide is 
that the data dependencies be equivalent to proofs in the under- 
lying logic. 

Many cognitive scientists will not find these reasons reassuring enough. 
On the one hand, many of  them will be intimidated by the use of  logical 
notation. On the other, there is a widespread feeling that psychological ex- 
periments have proven that people cannot handle simple syllogisms (see, 
e.g., Johnson-Laird,  1980), and that, therefore, people cannot possibly 
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operate on logical principles. Together, these considerations cause them to 
reject papers like this one out of hand. 

Let me be a little more reassuring. There is no difference between 
logical notation and notations like those of Schank (1975) or Charniak 
(1981), except emphasis. The logical approach alms at expressing the implica- 
tions used for inference, as well as providing an ontological framework (or 
set of primitives, or vocabulary) for expressing facts. But face it--we're all 
talking about computers performing formal operations on data structures 
representing beliefs. The only issue is which to nail down first, the organiza- 
tion of the information in memory, or the structure of the inferences. 

The experimental results on human processing of syllogisms are much 
less relevant than they first appear. At best, they show that people have no 
natural syllogistic machinery accessible to consciousness. This says nothing 
about logics underlying various kinds of thinking. One might as well investi- 
gate frequency-domain analysis in the visual system by asking people to do 
Fourier transforms in their heads. 

In any case, I hope that appreciation of the difficulties raised by time 
will cause you to stick with me. 

2. ONTOLOGY 

We shall be doing logic in the style of Robert Moore (1980). The logic of 
time appears at first glance to be like modal logic, with different instants 
playing the role of different possible worlds. An expression like "President 
of the US" seems to denote an intensional object, with a different denota- 
tion in different times (worlds). In fact, historically the exploration of this 
relationship has fueled temporal logic (Prior, 1967; Rescher, 1971). 

Moore encountered a similar tradition in his study of knowledge. 
"Know" had typically been taken as a modal operator. This made it dif- 
ficult to handle computationally (Moore, 1980). Moore's contribution was 
to work with a first-order, extensional language that described the interpre- 
tation of the original modal language. He retained the original modal lan- 
guage as a set of objects manipulated by the first-order semantic language. 

We will carry this idea one step further and dispense with the object 
language altogether, although some of the terminology will hint at vestiges 
of it. We will talk about a temporal model using a first-order language. The 
resulting enterprise will look like a hybrid of Moore's work and that of 
Hayes (1979a). 

There are two key ideas to capture in our logic: the "openness" of the 
future, and the continuity of time. The first idea is that more than one thing 
can happen starting at a given instant. We model this by having many possi- 
ble futures. The second idea is that many things do not happen discontinu- 
ously. We model this by having a continuum of instances between any two 
instants. It will be clear eventually why these features are so important. 
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To capture these ideas, our  language will talk of  an infinite collection 
of  states of  the universe. A state is an instantaneous snapshot o f  the uni- 
verse. States are partially ordered by a relation " =  < . "  We write ( =  < sl 
s2) to mean that sl comes before or is identical to s2. 

I use "Cambr idge  Pol ish"  notation for logical formulas.  Every term, 
atomic formula,  and combinat ion is o f  the form ( p . . . ) ,  where p is a func- 
tion, predicate, or connective. The rest o f  the formula  after p will be the 
arguments or other subparts.  I f p  is a quantifier ( " fo ra l l "  or "exis ts") ,  then 
the subparts are a list of  variables and a formula:  

(forall (-vars-) fmla) 
(exists (-vars-) fmla) 

For other connectives, the subparts are formulas,  as in 

(not fmla) 
(if finial fmla2) 
(and finial fmla2 . . . )  
(or finial fmla2 . ..) 
(if f finial fmla2) 

I f  p is a binary transitive relation, (p w x y . . .  z) is an abbreviation for (and 
(p w x) (p x y )  . . .  (p . . .  z)). I will generally use lower case for logical con- 
stants; upper case for sorts (which I will discuss shortly), for Skolem con- 
stants, and for domain-dependent  predicates and functions; and italics for 
syntactic variables. 

Axiom 1: (iff (and (= < ?sl ?s2) (= < ?s2 ?sl)) (= ?sl ?s2)) 
Off (< ?sl ?s2)(and (= < ?sl ?s2)(not (= ?sl ?s2)))) 

As usual, if ( = < sl s2) and sl and s2 are distinct, we write ( <  sl s2). 

Axiom 2: (Density) 
(forall (sl s2) 

(if (< sl s2) (exists (s) (< sl  s s2)))) 

Axiom 3: (Transitivity) 
(forall (sl s2 s3) 

(if (and (= <sl  s2) (= <s2 s3)) 
( = <  sl s3))) 

Notice that I assume a sorted logic. Variables beginning with s are 
states. All this means is that a formula  (forall (x) p),  where x is a sorted 
variable, is an abbreviation for 

(forall (x) (if (is sort x) p)), 
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where sort is x 's sort, or "da ta  type . "  Sorts will not appear very often, and 
will be capitalized when they do. They are not very important,  and will only 
save a little typing. We can read (forall (s) . . . )  as " fo r  all states . . . .  " 
without having to mention explicitly the condition (is STATE s). 

Unbound variables (prefixed with " ? " )  are universally quantified 
with scope equal to the whole formula (after adding the sort conditions). 
Anonymous constants of  a given sort (used in proofs), so-called "Skolem 
constants ,"  will be written beginning with the appropriate upper-case letter. 

Every state has a time of  occurrence, a real number called its date. The 
function d gives the date of  a state, as in ( = (d S1) D1). Any real number is a 
valid date: time is infinite and noncircular. Of  course, no one in the universe 
can tell where zero is or what the scale is, so this is harmless. It does mean 
that two states will have comparable dates, even when they are not related 
by = < .  I will use = < and < for ordinary numerical ordering as well as 
the partial ordering on states, since the use of  sorts will disambiguate. I will 
not be rigorous about axiomatizing real numbers, but will just assume 
whatever properties I need as I go. Variables beginning with " r "  or " t "  are 
real numbers. 

The two orderings are compatible: 

Axiom 4: (if (< sl s2) (< (d sl) (d s2))) 

States are arranged into chronicles. A chronicle is a complete possible 
history of  the universe, a totally ordered set of  states extending infinitely in 
time. 

Axiom 5: (Definition of Chronicle) 
Off (is CHRONICLE ?x) 

(and ;a set of states 
(forall (y) (if (elt y ?x) (is STATE y))) 
;totally ordered 
(forall (sl s2) 

Off (and (elt sl ?x) (elt s2 ?x)) 
(or (< sl s2) (> sl s2) (= sl s2)))) 

;infinite in time 
(forall (t) 

(exists (s) 
(and (elt s ?x) (= (d s) t)))))) 

(elt a x) means that a is an element of  set x. We won' t  need any deep set 
theory, but I will feel free to introduce sets of  elements previously intro- 
duced, including sets of  sets of  them. (If variables of  some sort begin with a 
letter " l , "  then variables bound to sets of  objects of  that sort begin " l l . "  So 
"? s s "  is a set of  states.) 

An immediate consequence of  Axiom 5 is that a chronicle is "convex" :  
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(if (is CHRONICLE ?x) 
(forall (sl s2) 

(if (and (elt sl ?x) (elt s2 ?x)) 
(forall (s) 

(if (< sl s s2) 
(elt s ?x)))))) 

Having defined (is CHRONICLE x), we can conceal most uses of it by de- 
claring variables beginning " c h "  to be of  sort " C H R O N I C L E . "  

A chronicle is a way events might go. There may be more than one of 
them, according to this logic. (See Figure 1.) 

Every state is in a chronicle. In fact, 

Axiom 6: 
(if (= < ?sl ?s2) 

(exists (ch) (and (elt ?sl ch) (elt ?s2 ch)))) 

whence, by convexity, every state between ?sl and ?s2 is in ch. 
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Figure 1. A Tree of Chronicles 
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Chronicles branch only into the future. (See Figure 1.) 

Axiom 7: 
(if (and (= < ?sl ?s) (= < s2 ?s)) 

(or (= < ?sl ?s2) (= < ?s2 ?sl))) 

The reason why this is so is that the future is really indeterminate. The 
past may be unknown, but there is only one past. By contrast, there may be 
more than one future from a given state. The reason for designing the logic 
this way is to provide for "free will," in the form of reasoning about ac- 
tions that select one future instead of  another. If  there were only one future, 
the most we could do is discover it. Of  course, both alternatives have 
unpleasant consequences: the one-future account implies that what we are 
going to do is unknown but fixed, while the many-futures account implies 
that the alternative futures to yesterday are as real as this one. For this 
reason, I do not include any reference to "yes terday"  or even " n o w "  in the 
logic, but simply talk about states in the abstract. The application to the 
state " n o w , "  and the fondness we feel for the " rea l "  chronicle, are matters 
I defer until the section on implementation. 

States and chronicles are important only because they are the stage 
where facts and events are acted out. Facts change in truth value over time. 
By the usual mathematical inversion, we will take a fact to be a set of  states, 
intuitively those in which it is true. For example, (ON A B) denotes the set 
of  states in which A is on B. ON is a function from pairs of  objects to sets of  
states, that is, facts; it is not  a predicate. 2 This way of  looking at facts is 
analogous to the logicians' trick of  letting propositions denote sets o f  pos- 
sible worlds (see e.g., Montague, 1974). 

I will let variables beginning with " p "  and " q "  denote facts. The fact 
"a lways"  is the set of  all states. The fact "never"  is the empty set. 

We indicate that a fact is true in a state by (elt sp) .  As syntactic sugar, 
we usually write this as (T s p ) .  ( " T "  suggests " t rue- in .")  So, we have 

Axiom 8: 
(T ?s always) 
(not (T ?s never)) 

We can think of  facts as "proposi t ions"  in a Mooresque object lan- 
guage. In particular, we can combine them with connectives. For instance, 

'I should point out that the logic I am developing is not intended as an analysis of the 
truth conditions of English or some other natural language. I doubt that this is at all a good 
way to think about natural language, and even if it is I see no reason why the internal represen- 
tation should be constrained by the mere presence of words like "now" in natural language. 

qt may be considered a predicate in an object language for which this temporal logic is a 
metalanguage; see below. 
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we can write (T s (& p q)), where the " & "  is not part of  our own logical 
notation; instead, it is simply syntactic sugar for set intersection; (&p  q) is 
just the set of  states that are elements of  both p and q. Similarly, " V "  and 
" - "  in this context denote union and complement (with respect to the set 
"a lways") .  Then we have things like 

(iff (T ?s ?p) (not (T ?s ( -  ?p)))) 
(iff (T ?s (& ?p ?q)) 

(and (T ?s ?p) (T ?s ?q))) 

as trivial set-theory results, after syntactic desugaring. 
Events are more difficult to handle than facts. An event is something 

happening. In the past, the only kind of  events handled by AI researchers 
and most philosophers is what might be called a fact  change, such as a block 
being moved from one place to another (McCarthy, 1968; Rescher, 1971). 
The defining feature of  an event on this theory are the changes in facts that 
the event brings about.  This approach suppresses some important  features 
of  events. For instance, they take time. A fact change is just a list o f  two 
facts; how long it took is not describable. Further, it is meaningless in fact- 
change formalisms to ask what happens in the middle of  a fact change. 

Consider the usual emphasis in studies based on McCarthy's  situation 
calculus (McCarthy, 1968; Moore,  1980; Fikes, 1971). In this system, an ac- 
tion like "moving x to y "  is reasoned about in terms of  a function MOVE 
that maps a block, a place, and an old situation into a new situation; 
(MOVE x y s) is the situation resulting from moving x to y in s. The axioms 
of  the calculus talk entirely about the different facts true in s and (MOVE 
x y  s). There is no mention of  the infinite number of  states occurring during 
the move. 

Some of  these problems can be eliminated by simply shifting emphasis, 
as I will show shortly. But a deeper problem is that many events are simply 
not fact changes. An example due to Davidson (1967) is " J o h n  ran around 
the track 3 t imes."  The only fact change that occurs is that John is more 
tired. The amount  of  fatigue is not terribly different from the amount  ensu- 
ing on running around 4 times. Besides, surely no one would argue that the 
definition of  " r un  around the track 3 t imes" is "be  here t i red."  Of  course, 
John might have a memory of  having done it, but even "be  here tired with a 
memory of  having run around 3 t imes" is still not a plausible definition, if 
for no other reason than that John might have lost count. Also, this defini- 
tion is circular, since John's  memory must make reference to the concept to 
be analyzed, and hence can only mean " I  remember [bringing it about  that I 
am tired and have a memory of  [bringing it about  that I am tired and have a 
memory of  [ . . . .  ] ] ] "  

If you still need to be convinced, consider the (large) class of  actions 
that are done for their own sake, such as visiting Greece, eating a gourmet 
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meal, or having sex. In all these cases, the fact changes are trivial, unappe- 
tizing, or only tangentially relevant. One could argue, I suppose, that these 
things are done only for the memory of  having done them. It is true that 
doing them without remembering them would be a little pointless, but 
memory fades. Knowing you won ' t  remember much of  this trip, meal, or 
sexual activity 20 years from now is not much of  a barrier to doing it now, 
and does not entail that doing it is logically impossible. 

We need a fresh approach. One idea is that events be identified with a 
certain kind of  fact, namely the fact that the event is taking place. Facts 
occupy time intervals, so we get the ability to talk about what happens 
during an event. This seems to be adequate for events that consist of  some 
aimless thing happening for a while, such as a rooster crowing in the morn- 
ing. The rooster-crowing event could just be defined to be the time during 
which the rooster is crowing. This event happens in a chronicle if any of  its 
states are in that chronicle. 

But most events do not fit this mold. Running around a track three 
times takes time, but cannot be identified with the states during which you 
are running on the track. The problem is that a given state may be part of  a 
"3 times a round"  event in one chronicle, and a "2  times a ro u n d "  event in 
another. But the criterion would have the event happening in both. 

We avoid this problem by identifying an event as a set of  intervals, in- 
tuitively those intervals over which the event happens once, with no time 
"left  over"  on either side. An interval is a totally ordered, convex set of  
states. We can think of  each interval as an event token, and the whole set as 
an event type. So "Fred  running around a track 3 t imes" is the set of  all in- 
tervals in which exactly that 3 happens. 

Now we can indicate that an event happens between states sl  and s2 by 
writing (elt [sl, s2] e). As syntactic sugar for this, I will write (Occ sl  s2 e). 
Notice that I let variables beginning with " e "  stand for events. 

Can we always assume that an event occurs over a closed interval? Let 
us leave this question unanswered for the time being. In this paper, I will 
always used the Occ notation, and hence assume that they are closed, but it 
doesn' t  seem very important  for most events whether they include two extra 
instants or not. Since we will want to allow for instantaneous events, at least 
some of  them must be closed. '  The notion of  a fact being true over a period 

'The phrase "exactly tha t"  is intended to rule out "last  Tuesday" as a token of  this 
event if Fred ran around the track once on Tuesday (unless it took him 24 hr). But I do not 
mean to insist that an event happen over an interval only if it happens over no subinterval. 
When the event "Fred  whistles" happens over an interval, it happens over an infinite number 
of  subintervals. Incidentally, the idea o f letting events be sets o f  intervals was stated by Monta-  
gue (somewhat differently) in Montague (1960). 

"Notice, by the way, that if we interpret event intervals consistently (as always closed, 
always half-open on the right, or whatever), then using them is equivalent to modifying Mc- 
Carthy's  situation calculus by letting actions be relations on situations (states) instead o f  
functions. 
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of  time is still valuable, even though it wouldn ' t  carry the full load. This is 
written (subset [sl, s2] p),  or, syntactically sugared, as (TT s l  s2 p). 

Certain events and facts are closely related. For  example, (sunion S), 
for any set S of  sets, is the union of  all its elements. The (sunion e) is a fact, 
true whenever e is " in  progress," in the sense that in some possible chronicle 
e is in the process of  occurring. I will use the syntactic sugaring (in-progress 
e) to mean the same thing as (sunion e), and (Tocc s e) to mean (T s (in- 
progress e)). 

Given a fact, we can work our  way back to events in more than one 
way. For instance, we can take the set o f  maximal intervals during which the 
fact is true, or the set of  point intervals for all points where the fact is true. 

Events can be related to each other in ways similar to those for facts. 
For instance, i f p  is a subset of  q, then it is as i f p  implied q: at every state 
where p is true, so is q. For events, we write (subset el e2) as (one-way el  
e2): el  is one way e2 can happen; every occurrence of  el is an occurrence o f  
e2. For example, being squashed by a meteor is one way of  being squashed. 

We used boolean connectives like " & "  to combine facts. These are not 
so useful with events. Instead, we need things like 

(seq el e2 . . .  eN) 
which stands for 
{[sO, sN]: (exists (sl . . .  sN-1) 

(and (Occ sO sl el) 
(Occ sl s2 e2) 

(Occ sN-I sN eN)) )} 

Corresponding to "neve r , "  the fact that is never true, there is an 
event that never happens. This will also be the empty set, so we can call it 
"neve r , "  too, making this the only thing that is both an event and a propo- 
sition. There does not seem to be any useful notion of  the event that always 
happens. 

More such constructs will be introduced as we go. 
Remember that this logic takes an Olympian view of  states of  the uni- 

verse. " N o w "  is not distinguished, so there is no question about represent- 
ing what has already happened versus what may happen. I will talk about 
this more in Section 6, below. I should point out,  though, that representing 
tokens of  past or expected events as ordered pairs of  states, like (s34, s107), 
is not adequate. A given interval is a token of  many different events, which 
happened to occur at that point. So event tokens must be represented as 
ordered pairs of  events and intervals, or something equivalent. 

I want to stress at this point that devising ontologies like this is not an 
empty philosophical enterprise. On the contrary,  I am interested in purely 
utilitarian ends; I want a way of  thinking about  time that is useful to a robot.  
I am not interested in expressing all possible ways of  thinking about time, 
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nor am I interested in calculating the truth values of  English statements 
involving time. It may seem that logic and practicality have little to do with 
each other, that the problem for cognitive science is to build a computational  
model that reasons about time, and be done with it. Unfortunately,  it is not 
so straightforward. Any program will be based on s o m e  ontology and as- 
sumptions about time. The wrong assumptions will mire us in a swamp of  
logical conundrums, which much be explicitly faced and conquered. The 
best way to do this is to make the logical machinery explicit (cf. McDermott ,  
1978a). 

This is what I will be doing in the rest of  this paper, examining three 
major  problems that temporal reasoners will face: reasoning about causality 
and mechanism, reasoning about continuous change, and planning actions. 
There may be others, but these should suffice. They have been difficult in 
the past precisely because dangerous assumptions have been made about  
time, such as that there is a next moment,  or that there is only one future. I 
will try to show that a program based on the logic I propose will have a 
better chance of  avoiding these difficulties. 

To illustrate how logical assumptions influence thought,  I will try to 
prove a theorem about a mechanism, and show the power and weakness of  
what we have assumed so far. The theorem goes like this: Let DEV be a 
device with two states, DAY and NIGHT. DAY is always followed by N IG H T 
and N I G H T  by DAY. DAY and NIGHT never overlap. Prove that if it is 
ever DAY or NIGHT,  it will always be either DAY or NIGHT.  

This may seem simple, but it is just the sort of  inference that is beyond 
the capability of  existing reasoning systems. Expressed in our notation, it is 

DAY and NIGHT are mutually exclusive (except at boundaries): 
(if (and (Occ ?sl 7s2 DAY) (Occ ?s3 ?s4 NIGHT)) 

(forall (s) 
(if (and (= < ?sl s ?s2) ( =  < ?s3 s ?s4)) 

(or (= s ?s2 ?s3) 
(= s ?sl  ?s4)))  )) 

Each takes a nonzero amount of time: 
(if (or (Occ ?sl ?s2 DAY) (Occ ?sl ?s2 DAY)) 

(< ?sl ?s2)) 

and each follows the other 
(follows DAY NIGHT) 
(follows NIGHT DAY) 

where 
(iff (follows Tel ?e2) 

(if (Occ ?sl ?s2 Tel) 
(forall (ch) (if (elt ?s2 ch) 

(exists (s3) 
(and (elt s3 ch) 

(Occ ?s2 s3 ?e2))))))) 
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That is, e2 follows eI if every occurrence of  eI is followed immediately by an 
occurrence of  e2 in every chronicle containing the occurrence of el, i.e., in 
every way events might proceed. 

Now to prove 
(if (Occ SI $2 DAY) 

(forall (s) (if (>  s $2) (or (Tocc s DAY) 
(Toccs NIGHT)))))  

This theorem may  seem trivial, but  in fact it does not  follow f rom 
what we have assumed so far. I f  each succeeding DAY or N I G H T  interval is 
half  as long as the previous one,  then an infinite number  o f  them could go 
by in a finite amoun t  o f  time, after  which the state o f  DEV could be some- 
thing else. However ,  this is something we wish to rule out .  

We do so with the axiom 

Axiom 9: 
(forall (s p) 

(and (exists (sO) 
(or (TTopen sO s p)) 

(TTopen sO s ( -  p)) ) 
(foraU (ch) 

(if (elt s ch) 
(exists (s 1) 

(and (elt s l ch)  
(or (TTopen s sl p) 

(TTopen s sl ( -  p)))) )) ))) 

where 
(iff (TTopen sl s2 p) 

(and (< sl s2) 
(forall (s) 

(if (<  sl s s2) (T s p)) ))) 

This axiom, due to Ernie Davis, assures us that ,  for  every fact  and an 
arbi t rary  state, there is an interval preceding the state dur ing which the fact 
is always true or  always false; and another  one fol lowing the state, in every 
chronicle conta in ing it. (See Figure 2.) 

The presence o f  this axiom rules out  any  super powerfu l  axiom o f  
" c o m p r e h e n s i o n , '  ,5 which would  allow us to infer that  any set o f  states was 
a fact,  such as the set o f  states during which the tempera ture  in Cleveland is 
a ra t ional  number .  This is not  a fact because,  assuming the tempera ture  is 
smooth ly  changing,  it will change t ru th  value infinitely of ten  in any  finite 
interval. 

'An axiom or axiom schema of comprehension states that for every property, there is a 
set of objects satisfying it. Stating this formally in a way that avoids paradoxes is a major pre- 
occupation of set theorists (Mendelson, 1964). 
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Figure 2. How a Well-Behaved Fact Does Not Behave 

t 

So we will need special-purpose comprehension axioms for well- 
behaved facts. I will just assume these along the way as obvious. For exam- 
ple, i f p  and q are facts, (& p q) is also. 6 When I introduce a function like 
"in-progress," and announce that its values are from a given domain, like 
facts, I am implicitly declaring an axiom like 

Axiom 10: (In-Progress Comprehension) 
(is FACT (in-progress ?e)) 

So you can take for granted that (in-progress e) satisfies Axiom 9. This 
axiom does away with any super powerful comprehension axiom for events, 
in case you were wondering. 

You may now take it on faith that no further assumptions are required 
to prove that it will always be DAY or NIGHT,  or you can bear with me 
through the following proof. (It is not as arbitrary as it seems; if anyone can 
find a simpler or clearer proof,  I would like to hear about it.) 

First, we need a few definitions. Letting sets of  events be denoted by 
variables beginning with "ee , "  and integers be denoted by variables begin- 
ning with " n , "  we define 

Axiom 11 : 
(iff (chain ?ee 0 ?sl ?s2) (= ?sl ?s2)) 

(iff (chain ?ee (+ ?n l) ?sl ?s3) 
(exists (e s2) 

(and (elt e ?ee) 
(Occ s2 ?s3 e) 
(chain ?ee ?n ?sl ?s2)) ))) 

That is, there is an ee chain of length n from sl to s2, if there is a se- 
quence of  abutting events from the set ee that reaches from sl to s2. 

6We could probably recast Axiom 9 as a biconditional and prove these axioms, but set- 
theoretic parsimony is not really important. 
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Now reachability is defined thus 

Axiom 12: 
Off (reachable Tee ?ch 7sl ?s) 

(exists (n s2) 
( a n d ( > =  n0)  

(elt s2 ?ch) 
(chain ?ee n ?sl s2) 
(= < ?sl ?s ?s2)) )) 

We read this "?s  is ?ee-reachable in ?ch from ? s l . "  
Some corollaries of  these definitions (using Peano arithmetic) are" 

(if (reachable ?ee ?ch ?sl ?s) 
(forall (s') 

(if (< ?sl s' ?s) 
(reachable ?ee ?ch ?sl s')) )) 

(if (reachable ?ee ?ch ?sl ?s) 
(or (= ?sl ?s) 

(exists (e s2 s3 n) 
(and (elt e ?ee) 

(elt s3 ?ch) 
(Occ s2 s3 e) 
(= < s2 ?s s3)) ))) 

These state that if ?s is ?ee-reachable from ?sl ,  then every state between ?sl 
and ?s is reachable, and ?s occurs in the middle of  some event in ?ee. 

Now the proof  goes as follows: Assume that S' is a state such that (>  
S' $2) and (not (Tocc S' DAY)) and (not (Tocc S' NIGHT)) .  Then by Axiom 
6, there is a chronicle CH1 containing S' and $2. Clearly, (not (reachable 
{DAY, NIGHT} CH1 $2 S')). So, by the properties of  real numbers and the 
first corollary above, there must be a state S, ( <  $2 S) and ( = < S S'), such 
that every state between $2 and S is {DAY, NIGHT}-- reachab le  in CHI  
from $2, and every state from S on is not {DAY, NIGHT}-- reachab le  in 
CH1 from $2. But, by Axiom 9, there must be an SD3 before S such that 
either DAY is in progress for all states between SD3 and S, or it is not in 
progress for all those states. Similarly, there must be an SN3 before S such 
that it's N I G H T  or it isn't from SN3 to S. Since it can ' t  be neither or both, 
let $3 be the one for which either it is DAY from $3 to S or N I G H T  from $3 
to S. Clearly, ( <  $2 $3) because both DAY and N I G H T  occur at least once 
after $2. Every state from $3 to S is {DAY, NIGHT}-- reachable ,  so, by the 
second corollary, one of  DAY or N I G H T  is occurring from $3 to S, and this 
occurrence ends in some state $4 in CH1. (See Figure 3.) 
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REACHABLE )[ 
S1 $2 $3 $4 S 

< -  ? - >  

*either DAY or NIGHT in progress throughout this interval 

NOT REACHABLE 
S '  

$4 must come before S, or else S would be reachable, according to the def- 
inition, because $4 would end a chain f rom $2. But then starting at $4 
N I G H T  or DAY must occur, so DAY and N I G H T  must coexist for more 
than an instant, which is impossible. So there is no such S, and all instants 
are reachable - -QED.  

Reachable states Unreachable states 

s3 s4 

~- . .  ? - -~  s 

*Either DAY or NIGHT is in progress throughout this interval 

Figure 3. Proof of Eternal DAY or NIGHT 

This may seem quite complicated. But it depended on only one new 
axiom, Axiom 9. Everything else came from definitions and arithmetic. Of  
course, this p roof  is much too complicated to expect a theorem prover to 
come up with it, but this was never my goal. My intent is similar to Hayes 's :  
to express concepts in a form in which the intuitively plausible inferences 
are valid. I f  this is achieved, then we can start worrying about  a practical 
inference program.  In fact, I start worrying in Section 6, below. The only 
thing to point out here is that such a program has no hope of  being complete. 

I should also assure you that this paper  is not c rammed full o f  such 
long proofs of  obvious results. The main purpose of  showing you this was 
to let you get a feel for the generality of  the ontological assumptions.  They 
are so general that we have to tame them with Axioms like Axiom 9. But 
this is all the taming we will want to do. 

Also, this result is not entirely academic. It is easily generalizable to a 
system with a finite number  of  mutually exclusive states which succeed each 
other the way DAY and N I G H T  do. It gives us the ability to infer infinite 
loops in simple machines. 

Now, as promised,  I will examine three major  problem areas f rom the 
point of  view of  this logic, before turning to implementat ion questions. 
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3. C A U S A L I T Y  

Causality is fundamental  to a lot o f  problem solving. A problem solver 
brings things about  by causing other things. What  I mean by causality here 
is that one event (type) always follows another  event (type). For example,  if 
x is a loaded gun, pulling its trigger is followed by its firing. 

Unfortunately,  there must be more  to it than that.  For example,  an ex- 
actly analogous case is, I f  a is approaching f rom the direction of  the sun, 
the arrival of  a ' s  shadow is followed by the arrival of  a. But we would not 
want to say that the arrival o f  a ' s  shadow causes the arrival of  a. 

I assume that there is no way to get around this problem,  and that 
there is no way to infer causality merely f rom correlation. So we will not try 
to define causality in terms o f  something more basic. Instead, we will assume 
whatever causal assertions we need, and infer events f rom them. 

Events can cause two kinds of  things: other events, and facts. The two 
cases are quite different,  and the first is simpler. 

When an event causes another,  there is usually a delay. The scale of  
the date line attached to the chronicle tree is unknown in the logic, so we 
cannot use absolute t ime intervals. Instead, we assume that  there are objects 
called scales which occupy some constant amount  of  time. I f  " h o u r "  is such 
a scale, (* 5 hour) is a length of  t ime equal to 5 times the size of  hour (see 
McDermot t  1980b for a fuller explanation).  We will never be able to evalu- 
ate this, but we don ' t  need to; we just need to be able to compare  it to other 
things measured in hours or seconds. We can do the latter because we have 
as an axiom ( =  (3,600 second) hour).  Note the elision of  the * when it is 
clearly unnecessary. 

With this out o f  the way, we introduce our basic predicate (ecausep el 
e2 rfi), which means that el is always followed by e2, after a delay in the in- 
terval i, unless p becomes false before the delay is up. The delay is measured 
f rom a point r f  through el; if rf=O, this means f rom the start o f  el; if 
rf= 1, f rom the end. 

Axiom 13: 
(if (ecause ?p ?el ?e2 ?rf ?i) 

(if (Occ ?sl ?s2 ?el) 
(forall (ch) 

(if (elt ?s2 ch) 
(exists (s3) 

(and (elt s3 ch) 
(within-delay s3 ?rf ?i ?sl ?s2) 
(or (not (Tr  ?s2 s3 p)) 

(exists (s4) 
(and (elt s4 ch) 

(Occ s3 s4 ?e2)) ))) )) ))) 
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where 
Off (within-delay ?s ?rf ?i ?sl ?s2) 

(elt { (d ?s) } 
{ - (1-?rO*(d ?sl) } 
{ + ?rf*(d ?s2)} } 

?i)) 

The (within-delay s r f  i s l  s2) means that state s occurs after s l  and s2, with 
delay i. An rfis a real number that says what point the delay is to be measured 
from. If  it is 0, the delay is to be measured starting at sl;  if 1, from s2; and 
so on for any number between 0 and 1. The i is a real interval, like < (3 
min), (5 m i n ) > ,  or [0, (5 hour)].  (An open side of  an interval I denote by 
the usual angle bracket, as in < 1, 3] or < 1, 3 > .  A closed interval on the 
reals, while denoted with square brackets [ . . . ] ,  is a completely different 
sort of  thing from a state interval.) 

As an example of  ecause, we can express the idea that if a Republican 
is elected President, science will progress: 

(ecause (POLPARTY ?x REPUBLICAN) 
(elected ?x) 
(INFLUX-MONEY-FOR-DESERVING-RESEARCHERS) 
1 [(1 year), (2 year)])) 

In these examples, only the parts being illustrated are formalized in a reason- 
able way. 

If  the fuse on a powderkeg is lit, the keg will explode if the powder 
stays dry: 

(ecause (& (DRY ?keg) (FUSE-OF ?fuse ?keg)) 
(LIT ?fuse) 
(EXPLODE ?keg) 
1 [(30 see), (2 min)])) 

If a winch is rotated, an object gets hauled up: 

(if (is WINCH ?x) 
(ecause (LOAD-OF ?x ?y) 

(ROTATE ?x) 
(RISE ?y) 
0 
[0, (2 sec) ] )) 

Note that the object might not start rising for a second or two. 
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We also have the axiom: 

Axiom 14: 
(if (ecause ?p ?el ?e2 ?rf ?i) 

(foraU (s3 s4) 
(if (Occ s3 s4 ?e2) 

(exists (pc ec sl s2 rfc ic) 
(and (ecause pc ec ?e2 rfc ic) 

(Occ sl s2 ec) 
(within-delay s3 rfc ic sl s2)) )) )) 

That is, if  an event is ever caused, then each o f  its occurrences is preceded 
by one of  its causes (with the appropriate delay). This might be called the 
Principle of  Paranoia.  Its chief virtue is in enabling us to infer that an event 
must have occurred when it is known to be the only cause o f  another event 
that occurred. 

The second kind of  causality is the causation of  a fact by an event. For 
example, if a boulder falls to the bot tom of  a mountain,  it will be at the bot- 
tom of  the mountain.  This is important  in problem solving, where the goal 
is often to bring about some fact by causing one or more events. 

One approach might be to say that e causes p if, in all chronicles, p is 
true for some period of  time after e. We could do this, but it would be use- 
less. In this sense, shooting a bullet past someone would be a way of  achiev- 
ing that it was near him. 

I must digress here to talk about the speed at which facts change. The 
real world doesn't  change fast most of  the time. Many facts remain true for 
long enough to be depended on k For example, that boulder will probably 
stay at the bot tom of  the m o u n t a ~  for years (or centuries). We normally use 
such facts with confidence, for example, when planning to build a house on 
the boulder. 

On the other hand, we cannot infer with certainty that the boulder will 
be there. If we could, then there would be no way to plan confidently to 
remove it. Confidence in the plan would just land us in a contradiction be- 
tween our belief that the boulder will be gone by next year, and our certainty 
that it will be there for many years. 

This is a classic example of  a non-monotonic reasoning pattern 
(McDermott ,  1980a; McDermott ,  1981a; and Reiter, 1980). The inference 
that the boulder will be there is good until you find out that someone is 
planning to move it. I have resisted introducing non-monotonici ty into the 
logic so far, because it is not that well understood, and what is well under- 
stood about it is not all that encouraging. But we are going to need it here. 

The problem here is closely related to the frame problem. That was 
the problem that arose in McCarthy's  situation calculus (McCarthy, 1968) 
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of  not being able to infer anything about a situation resulting from an ac- 
tion in a previous situation, without a large number of  axioms of  the form 
"p  doesn' t  change in this t ransi t ion."  A typical axiom would say, " N o  
block's color changes in the transition from s to (MOVE A B s) ."  The prob- 
lem is even more acute for us, because almost anything could be happening 
in an interval. In McCarthy's  calculus it was possible to pretend that a situa- 
tion (MOVE A B SO) would persist until the next action, so that the situa- 
tion after two actions could be denoted by something like (MOVE C A 
(MOVE A B SO)). Now the state of  the world changes as the problem solver 
plans, so there is no term denoting the state of  the world when the second 
action occurs. The frame problem becomes the problem of  inferring what 's 
true at the end of  an arbitrary interval, given incomplete information about 
what happened during it. 

Part  of my expectation in developing a robust logic of  time was that 
we could reason about facts " f r o m  the side," inferring that they were true 
for whole stretches of  time. It 's no loss that we can' t  work our way from 
one state to the " n e x t "  any more; that was always a bad idea. But now we 
find that in general you cannot infer that a fact is true for a period of  time. 

Let me distinguish this problem from another one that is often held to 
be solvable with non-monotonic notations. Every AI hacker knows that the 
example causality axioms I gave earlier are incomplete, and that there is no 
way to make them complete. For instance, the keg will not explode if the 
fuse is cut, or if all the oxygen is removed from the keg before the spark 
reaches it, or the keg is placed in an extremely strong box that can withstand 
the explosion, or . . . .  But you see the point. It seems pointless to try to list 
all the ways the rule could fail. 

This problem can be solved simply by letting our rules fail now and 
then. We can' t  hope to avoid errors, and it normally doesn ' t  matter if a data 
base is "sl ightly" inconsistent. When it does matter, we can edit the rules to 
maintain consistency. So in a sense the theory is "approx imate ly"  true, and 
gets closer to the truth with every edit. Non-monotonic  logic could play a 
role by letting rules "edit  themselves" (McDermott ,  1980a), but this hardly 
seems necessary. 

The rule that a boulder stays put for years is not even approximately 
true in this sense. It would be approximately true only if it were used in a 
purely passive system. An astronomer observing an uninhabited planet 
might use the rule this way. He would simply live with errors caused by im- 
probable occurrences like volcanic eruptions that moved boulders. But a 
problem solver knows full well both that it is counting on certain things to 
be true for a while, and that it could make them false any time it wanted to. 
(Other agents could also make them false, but we neglect this possibility.) 

To capture these ideas in the logic, I introduce the notion of  persis- 
tence. A fact p persists from s with a lifetime r, if in all chronicles it remains 
true until r has gone by or until it ceases to be true. 
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Axiom 15: (Definition of Persist) 
(iff (persist ?s ?p ?r) 

(and (T ?s ?p) 
(forall (s') 

(if (and (within-lifetime s' ?r ?s) 
(not (T s' ?p))) 

(Occbetween ?s s' (cease ?p))) ))) 

where 
(iff (within-lifetime ?s2 ?r ?sl) 

(and (= < ?sl ?s2) 
(< ( -  (d ?s2) (d ?sl)) ?r))) 

(iff (Occbetween ?sO ?s3 ?e) 
(exists (sl s2) 

(and (= < ?sO sl s2 ?s3) 
(Occ sl s2 ?e)) )) 

Ceasing does not mean merely that the fact goes from true to false. In fact, 
ceasing is so rare that it never happens unless we hear about  it: 

Axiom 16: (Fundamental Property of Ceasing) 
(if (and (persist ?s ?p ?r) 

(within-lifetime ?s' ?r ?s) 
(M (nocease ?s ?p ?s'))) 

(not (Occbetween ?s ?s' (cease ?p)))) 

M is a primitive sentence-forming operator,  read "Consis tent . "  Intuitively, 
if Q cannot be proven false, then (M Q) is true. The (nocease s p  s ') means 
that no occurrence of  (cease p) occurs between s and s '. To conclude that p 
actually does not cease, we require only that it be consistent that it not 
cease; positive information is necessary to override this. The overriding oc- 
curs when other rules allow us to infer (not (nocease s p S1)) for some S1 
within the lifetime of  the persistence; then the M fails, we cannot infer t h e p  
does not cease. But if no such rule applies, then we can make the inference. 

I hope that this application of  non-monotonic  logic will not mess 
everything up. I am depending on a property of  the logic of  (McDermott ,  
1981a), namely, that from Axiom 16 and an occurrence of  a ceasing within 
the lifetime of  a persistence, we can deduce (not (nocease s p s ' ) ) .  If  a 
weaker logic is used, this should be made explicit in an axiom. However it is 
done, it is essential that (Occbetween s s '  (cease p))  kill o f f  a persistence 
after s ', but leave the persistence " in  force"  for states between s and s '. 
Clearly, if (Occbetween s ? s '  (cease p)) ,  then (Occbetween s s"  (cease p))  for 
all states s"  between s '  and the end o f  the persistence. Then we can infer 
(not (nocease s p s '~)for  all those states. We c a n n o t  infer such a thing for 
states b e f o r e  s '. 
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What  this means is that a plan to remove the boulder five years f rom 
now cancels a persistence after that time, but leaves intact the inference that 
it will be there until then. 

By the way, let me make a disclaimer. I try to appeal to non-monotonic  
deductions as seldom as possible. This is because the logics they are based 
on (McDermott ,  1980a; McDermott ,  1981a; Reiter, 1980; and McCarthy,  
1980) are still rather unsatisfactory. For one thing, even some of  the simple 
deductions in this paper may not be valid in any existing non-monotonic  
system. For example, the problem with existential quantifiers cited in 
(McDermott ,  198 la) would probably block some of  my proofs.  (The system 
of  (Reiter, 1980) avoids this problem, but has others.) For another  thing, 
such logics do not distinguish between severities of  contradictions; they use 
the same machinery for "rule  edi ts"  of  the kind I described and for clipping 
of f  a persistent fact. In the usual terminology of  such systems, this leads to 
unexpected "fixed poin ts ,"  or models, in which the wrong assumptions are 
retracted. 

For the time being, we can view these not a problems with this paper,  
but as problems with non-monotonic  logic. In at tempting to represent 
things, it is helpful to be as formal  as we can, but if the formal  systems can- 
not keep up with the inferences we want to make,  so much the worse for the 
formal systems. In the long run, I am confident that non-monotonic  logics 
will be developed that capture the inferences we need. Probably  the best 
way to see what inferences those are is to try to get along with the fewest 
possible non-monotonic  inferences, but to feel free to use them when all else 
fails. If  representation designers make it clear what they need, logicians will 
make  it work. 

Armed with the idea of  persistence, we can make some progress on 
our original problem. First of  all, it seems reasonable that most inferences 
of  facts are actually about  persistence of  facts. For one thing, many  facts 
have characteristic lifetimes. I f  x is a boulder,  then (AT x location) has a 
lifetime measured in scores of  years. If  x is a cat, then (AT x location) has a 
lifetime measured in minutes (if the cat is sleeping) or seconds (if the cat is 
awake). 

The senses actually tell you about  persistences. I was driven to this by 
the following problem our logic appears to involve us in. At first blush, we 
might want an axiom to the effect that if a boulder is at a location loc in 
state SO, then (persist SO (AT Boulder Loc) (50 year)).  But then we can infer 
that the boulder will be there in 50 years, when another  persistence will 
start, and so on. We can infer that the boulder will be there for any given 
time in the future. I f  this seems harmless, think about  the cat instead. 

The solution is to scrap such axioms. Instead, we normally start with a 
persistence and work our way to particular states, not vice versa. This re- 
quires that when we see a boulder,  our eyes are telling our data base about  a 
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persistence, not about an instantaneous fact. Otherwise, as soon as we 
turned away, we would know nothing about the scene. Once you get used to 
this idea, it seems perfectly natural. 

This brings us back to causation. Clearly, what events must cause 
directly is persistences, not the truth of  facts. So our primitive predicate is 
(pcause p e q r f  i rl),  which means that event e is always followed by fact q, 
after a delay in the interval i, unless p becomes false before the delay is up. 
The delay is measured from a point r f  through e; if rf=O, this means from 
the start of  e; if rf= 1, from the end. When q becomes true, it persists for 
lifetime rl. Formally, 

Axiom 17: 
(if (pcause ?p ?e ?q ?rf ?i ?rl) 

(if (Occ ?sl ?s2 ?e) 
(forall (ch) 

(if (elt ?s2 ch) 
(exists (s3) 

(and (elt s3 ch) 
(within-delay s3 ?rf ?i ?sl ?s2) 
(or (not T s3 p)) 

(persist s3 ?q ?rl))) )) ))) 

And we have examples like: 

(pcause always) 
(KILL ?x) 
(DEAD ?x) 
1 [0, 0] 
FOREVER) 

We pick " F O R E V E R "  to be a very long time, equal to the largest number 
that can be stored on the machine the universe is being simulated on, or the 
length of  time until the Last Judgement, depending on your religion. 

Another example is: 

(if (is STOVE ?x) 
(pcause ( -  (BLACKOUT)) 

(TURN-ON ?x) 
(HOT ?x) 
1 [(1 min), (2 min)] 
(24 hour))) 

Notice that the persistence time is picked as the time interval over which it is 
reasonable to infer that the state will remain in existence, assuming you 
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have no intention of  changing it. I pick 24 hours here because within that 
time, either one's spouse will find the burner and turn it off, or the house 
will burn down. Of course, normally you plan to turn it off  sooner. If for 
some reason you wanted the burner to stay on longer (say you were cooking 
something that took a really long time), you would just need axioms about 
putting signs up, or other special tactics. These would say, " I f  you put a 
sign up telling someone not to alter a state they won' t  worry about if they 
see a sign, then the state will remain as long as the sign is up. ''7 

Notice that not all instances of  inferring facts " f rom the side" are 
direct instances of  persistence. Part of  the power of  the notion comes from 
the fact that persistent facts have consequences. For example, if everyone 
in the American embassy is audible (while the embassy is bugged), and the 
Henry is in the embassy for 15 minutes, then he is audible during that 
period. We don ' t  have to come up with a general lifetime for audibility. 

There is no Principle of  Paranoia (Axiom 14) for pcause. This is 
because there are so many ways a fact can come about,  including logical 
consequence, that it does not seem reasonable to look for a cause every 
time. Also, most true facts are " lef t -over"  persistences. Most boulders in 
the world have been there longer than any lifetime you would use; the life- 
time you can count on is much shorter than the times you observe. By the 
way, this should make it obvious that the logic does not imply that a per- 
sisting fact stops being true after its lifetime; we simply lose information 
after that point. 

Since persistences, and not facts, are caused, and since there is usually 
no persistence that extends back to when a fact became true, there is really 
no cause for most facts, at least not in the technical senses I have been devel- 
oping. Of  course, many facts of  interest are the result of  observed or inferred 
events, and these will be caused. One interesting case is when an occurrence 
of  (cease p) is inferred using Axiom 15. We can then infer that this ceasing 
was caused. In fact, we can call this the Special Principle of  Paranoia:  

Axiom 18: 
(if (Occ ?s3 ?s4 (cease ?p)) 

(exists (pc ec sl s2 rfc ic) 
(and (ecause pc ec (cease ?p) rfc ic) 

(Occ sl s2 ec) 
(within-delay ?s3 rfc ic sl s2)) )) )) 

'Several people (notably Ernie Davis, James Allen, and Ken Forbus) have suggested 
that the idea of lifetime should be dropped from persistences. Even though a burner rarely 
stays on for more than 24 hr, it wouM if left unattended, and my notation obscures this fact. 
My main reason for sticking with limited persistences is to take into account the fact that in 
many cases, we simply lose information about a system for moments too far from our last 
observation. 
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pcause and ecause work hand in hand. Consider the event (PUTON A B) 
that occurs within minutes after the beginnings of persistences of (CLEAR- 
TOP A) and (CLEARTOP B), with lifetimes of several hours. Suppose we 
have axioms like: 

(pcause (& (CLEARTOP ?x) (CLEARTOP ?y)) 
(PUTON ?x ?y) 
(ON ?x ?y) 
1 [0, O] 
(10 hour)) 

and, of course, 

(iff (T ?s (CLEARTOP ?X)) 
(not (exists (y) (T ?s (ON y ?x))))) 

We can deduce from the persistence of (CLEARTOP A) and of (CLEAR- 
TOP B) that (& (CLEARTOP A) (CLEARTOP B)) will be true for several 
hours. Hence it will be true during the PUTON. (We will need an axiom 
about how long PUTONs take.) Hence (ON A B) will persist from the end 
of the PUTON. Hence (CLEARTOP B), no longer true, must have ceased, 
and the rule that it doesn't cease is inapplicable. However, it still can be in- 
ferred not to have ceased up to the end of the PUTON, so there is no con- 
tradiction. I will say more on the subject of reasoning about plans later. 

Before going on to other topics, I should pause to review previous 
work on representing causality. Curiously, Hayes (1979a) argues that there 
is no isolated body of knowledge about causality. Every branch of "naive 
physics" has its own way of accounting for things happening. He also says 
he has found no need for non-monotonicity. I envy him. I think the reason 
for his good fortune is the "passive" character of his theory. It says how to 
reason about physical systems; it takes a Buddhist attitude of resignation 
toward bad things. For example, Hayes's Theory of Liquids (Hayes, 1979b) 
can be used to infer a flood, in such a way that it is plain contradictory to 
suppose the flood can be prevented. (This is a bit unfair, since he would pre- 
sumably make the move of changing the axioms, i.e., the physical setup, as 
a reflection of the action of the planner. I don't know if this would amount 
to letting non-monotonicity in by the back door or not.) 

The most obvious competitor to the theory I have presented is that of 
Rieger, who developed a graphical notation for what he calls "Common- 
Sense Algorithms" (CSA) (Rieger, 1976; Rieger, 1975). This notation in- 
cluded devices for representing concepts like continuous causality, "gated 
one-shots," thresholds, and much more. There are several problems with 
this notation, all stemming from Rieger's refusal to state precisely what the 
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links and nodes of  his networks mean. Apparently,  networks representing 
physical devices and plans are written exactly the same, or are freely mixed. 
There is a systematic ambiguity about whether a link drawn on a page in- 
dicates that i f  something is done, something else will follow; or that the 
thing is actually done and the consequence actually occurs. For  example, 
does the " th reshold"  link indicate that if the threshold is passed something 
will happen, or that the threshold is supposed to be passed eventually? It 
seems as if you need to be able to say both. Apparently in the CSA notation 
you can only say the latter. It seems somehow perverse to make algorithms 
more basic than physics. In my system, algorithms come in later, in a dif- 
ferent form (see Section 5). 

Besides this major  flaw, there are lots o f  little places where the CSA 
notation fails to be precise. For instance, time delays and lifetimes are not 
mentioned. How is it possible to reason about a plan involving several 
parallel actions if they are completely unsynchronized? 

On the other hand, there is substantial overlap in what he and I have 
done. His gated causality, and my provision of  a gating fact as the first 
argument to ecause and pcause, are both due to realization o f  a key fact 
about causality, that events' behaviors are modified greatly by background 
facts. 

4. FLOW 

A system cannot reason about  time realistically unless it can reason about 
continuous change. This has been neglected by all but a handful  of  people 
(Hendrix, 1973; Rieger, 1975). The assumption that actions are instanta- 
neous state changes has made it hard to reason about any other kind. If  I 
am filling a bathtub, how do I describe what happens to the water level dur- 
ing (MOVE A B SO)? 

I will use the term fluent for things that change continuously over 
time. (The term is due to McCarthy (1968), who used it in almost exactly the 
same sense.) Actually, the notion of  fluent is more general than that. It is in- 
tended to do the work that is done by "intensional objects" in other systems. 
The President of  the United States is a typical intensional object. Unlike 
most people, he has lived in the same house for over 150 years. His age 
sometimes decreases suddenly. These may seem like strange properties, but 
they are necessary (on some theories) to provide the correct truth value for 
sentences like "The  President lives in the White House"  (true), or "In 1955, 
the President was a movie ac tor"  (false). 

In my logic, such objects correspond to fluents. A fluent is a thing 
whose value changes with time. The value o f  a fluent in a given state s is 
written (V s v). I will use " v "  for variables ranging over fluents. So, we can 
express two different readings for the last example sentence above: 
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(T 1955 (ACTOR (V 1955 President))) 
(T 1955 (ACTOR (V 1981 President))) 

In the first, "Pres iden t"  is taken to mean "President  at the time o f  the 
fac t . "  In the second, it is taken to mean "President  at the time of  the ut- 
terance (1981). The rules of  English make the first reading more likely, 
under which the sentence comes out false. 

Fluents are valuable, not for this sort of  playing around,  but because 
physical quantities may be thought of  as fluents. For example, " the  temper- 
ature in Cleveland" is a fluent, which takes on values in temperature space. 
The changes of  the fluent can then be reasoned about. In particular, the 
fluent's being in a certain region is a fact which might be helpful in causal 
reasoning. All of  the fluents I will look at from now on will have numbers as 
values. Such fluents I will loosely call "quant i t ies ."  Most quantities are 
real-valued and vary continuously as well. 

At this point a certain abuse of  notation will make life simpler. Strictly 
speaking, ( >  vl v2) is meaningless, because > relates numbers or states, 
not fluents. What we really need is a function (>  * vl v2), which takes two 
fluents and returns the fact which is true in all states s for which (V s vl) is 
greater than (V s v2). Similarly, ( >  ! vl r) might take a fluent and a real 
number, and return the fact which is true just when the quantity's value is 
greater than the number. Clearly, to do this rigorously would be tedious. In- 
stead, I will just assume that all o f  the red tape can be cleared away, and use 
(> alpha beta) freely, where alpha and /o r  beta is a fluent, integer, real 
number, etc. If either alpha or beta is "po l lu ted"  by being a fluent, the re- 
sult is a fact; if both are numbers, the result is either true or false. Similarly, 
(+ alpha beta) will produce a new fluent, unless both alpha and beta are 
numbers, when the result is a number. For safety's sake, I will not do this 
for anything but simple arithmetic predicates and functions. 

By the way, notice that since things like (>  ( -  V1 V2) (* 5 V3)) are 
facts, they must obey Axiom 9. Ernie Davis has shown that this puts some 
fairly strong contraints on quantities. A quantity gives rise to a time func- 
tion in every chronicle; given the time, the fluent delivers a unique value. 
Axiom 9 constrains this function not to jump around wildly, or " > "  will 
chop it into pieces that disobey the axiom. For instance, we cannot have 

(VsV0) = sin 
(d s) - tO 

in some chronicle, since then (>  V0 0) will change truth value infinitely 
often around tO. One way to rule this out is to require that any such func- 
tion be "finitely piecewise analytic,"  i.e., that, over any closed interval, the 
function consist of  finitely many fragments that are analytic when extended 
to the complex plane. ( "Analy t ic"  means "infinitely continuously differen- 
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t iable.")  This set of  functions is closed under arithmetic operations and dif- 
ferentiation, and always produce well-behaved facts when compared. 
Restricting ourselves to this set allows for all the discontinuities that quan- 
tities exhibit in naive physics, and seems to capture the intuition that normal 
quantities jump a few times, but basically vary smoothly. 

We won't  look very hard at requirements like this. We simply let Axiom 
9 take its course. But Davis's result is needed to justify the axiom, since 
otherwise there might not be interesting models satisfying it. 

The fundamental event involving fluents is a "v t r ans . "  A (vtrans v r l  
r2) denotes the event consisting of  all occasions when v changed from rl  to 
r2. 

Axiom 19: 
(= (vtrans ?v ?rl ?r2) 

{ [sl, s2]: (and (= (V sl ?v) ?rl) 
(= (V s2 ?v) ?r2)){) 

For example, a winch's rotating corresponds to a vtrans of  its phase angle. 
An increase in inflation is a vtrans of  INFLATION from one value to 
another. A change of  Presidents is a vtrans of  "President  of  the US"  from 
one statesman to another. 

Knowing that a vtrans occurred tells you nothing about  how it oc- 
curred, unless the quantity involved is continuous, when we have an inter- 
mediate-value axiom: 

Axiom 20: 
(if (continuous ?v) 

(if (Occ ?sl ?s4 (vtrans ?v ?rl ?r4)) 
(forall (r2 r3) 

(exists (s2 s3) 
(and (= < ?sl s2 s3 ?s4) 

( if(= < ?rl r2 r3 ?r4) 
(and (Occ s2 s3 (vtrans ?v r2 r3)) 

(forall (s) 
( i f ( = <  s2ss3) 

(= < r2 (V s ?v) r3)) ))) 
(if (> = ?rl r2 r3 ?r4) 

(and (Occ s2 s3 (vtrans ?v r2 r3)) 
(forall (s) 

( i f ( = <  s2ss3) 
(> = r2 (V s ?v) r3)) )))) )))) 

In English, if v changes continuously from r l  to r4, and r2 and r3 lie be- 
tween rl  and r4, then there is a time interval in which v changes from r2 to 
r3 without going outside the bounds r2 and r3. That  is, it spends a certain 



A TEMPORAL LOGIC FOR REASONING ABOUT PROCESSES AND PLANS 129 

period in every subinterval between r l  and r4. (The conclusion of  the axiom 
has two very similar conjuncts,  one for the case when v is increasing, the 
other for when it is decreasing.) 

Vtranses are normally inferred f rom "po t r anse s . "  I f  (potrans channel 
v r) occurs, that means that  " v  was augmented through the given channel by 
an amount  r . "  A potrans is a potential vtrans. 

Potranses are intended to capture the way we reason about  things like 
flows into tanks, and other more  general changes. Often we know things 
like these: 

I just poured five gallons of reagent into the vat. 
I made 5 thousand dollars consulting today. 
Decontrolling oil will tend to increase inflation by 5%. 

In all these cases, we are given a fact which all by itself would translate 
directly into a vtrans: the vat ' s  contents increased by five gallons, my net 
worth increased by $5,000, inflation increased by 5°70. But, as we all know, 
life is not so simple. I f  you know about  a leak in the vat, then the increase is 
actually 5 gallons MINUS pouring time * rate o f  leak. The IRS will make  
sure that my net worth doesn ' t  go up by the amount  I made.  The Reagan 
administration hopes that other measures will offset  the decontrol o f  oil. 

I adopt a very abstract model o f  this kind of  situation. Many quantities 
may be thought of  as fed by various "channe l s . "  These may correspond to 
physical entities, such as pipes into tanks, but they are never identified with 
anything physical. They are there almost as a pure technical device to enable 
us to count potranses. We could not have a potrans of  r into v be an event by 
itself, since then pouring five gallons into the same vat by two different 
pipes simultaneously would be just one occurrence of  one event. 

However,  we do assume certain things about  channels (which we 
denote by variables starting with the letter " h " ) .  First, there is the fact 
(channel-into h v), for which we have the axioms: 

Axiom 21: 
Off (exists (s) 

(and (= < ?sl s ?s2) 
(T s (channel-into ?h ?v))) ) 

(exists (r) 
(Occ ?sl ?s2 (potrans ?h ?v r)))) 

(if (and (Occ ?sl ?s2 (potrans ?h ?v ?rl)) 
(Occ ?sl ?s2 (potrans ?h ?v ?r2))) 

(= ?rl ?r2)) 

That  is, that one unique amount  " f l o w s "  through a given channel into a 
given quantity over any interval. No amount  at all flows unless the channel 
actually " f e d "  the quantity at some time during the interval. 
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The fundamental fact about  potranses and channels is then: 

Axiom 22: 
(if (real-valued ?v) 

(iff (Occ ?sl ?s2 (vtrans ?v ?rl ?r2)) 
(= ( -  ?r2 ?rl) 

(sumpotrans ?sl ?s2 ?v 
{h: (exists (s) 

(and (= < ?sl s ?s2) 
(T s (channel-into h ?v))) ) })))) 

where 
(= (sumpotrans ?sl ?s2 ?v { }) 0) 

and 
(if (and (= (sumpotrans ?sl ?s2 ?v ?hh) ?sum) 

(Occ ?sl ?s2 (jaotrans ?h ?v ?r))) 
(= (sumpotrans ?sl ?s2 ?v 

(union ?hh {?h })) 
(+ ? sum ?r))) 

That is, the change in a real-valued fluent over an interval is the sum of  the 
potential changes in it. (sumpotrans s l  s2 v set-of-channels) is the sum of  all 
the potranses through the given channels into v from s l  to s2. 

Taken together, these two axioms enable us to count the contributions 
from all channels into a quantity over a given time interval. 

Potranses are decomposable: 

Axiom 23: 
(iff (Occ ?sl ?s2 (potrans ?h ?v ?r)) 

(forall (s) 
(if (= < ?sl s ?s2) 

(exists (rl r2) 
(and (Occ ?sl s (potrans ?h ?v rl)) 

(Occ s ?s2 (potrans ?h ?v r2)) 
(= ?r (+ rl r2 ) ) ) ) ) ) )  

That is, the potrans through a channel over an interval is the sum of  the 
potranses over each subinterval in a partition of  it. 

If  a quantity is continuous, we can decompose potranses into it 
another way. If a certain amount  " f lows"  into or out of  a quantity, then 
for any smaller amount,  the flow began with a sub-flow of  this smaller 
amount.  Formally: 
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Axiom 24: (An intermediate-value axiom) 
(if (continuious ?v) 

(if (Occ ?sl ?s2 (potrans ?h ?v ?r)) 
(forall (r ') 

(if ( o r ( = <  0 r ' ? r )  
( > = 0 r ' ? r ) )  

(exists (s) 
(and (= < ?sl s ?s2) 

(Occ ?sl s (potrans ?h ?v r ' ) )  
(Occ s ?s2 (potrans ?h ?v 

( -  ?r r ')))) )) ))) 

Potranses are not instantaneous: 

Axiom 25: 
(if (T ?s (channel-into ?h ?v)) 

(Occ ?s ?s (potrans ?h ?v 0))) 

For example, let's say that we had: 

(continuous (WATER-VOL TANKI)) 

(persist SO (= {h: (channel-into h (WATER-VOL TANKI)) } 
{ (INFLOW TANKI), (OVERFLOW TANK1) }) 

(6 weeks)) 

That is, only two channels into TANKI exist. Notice how casually I sneak 
new constructs into the fact notation. The {x: p} is the set of  all x such that 
p; this is, o f  course, a fluent. So ( = {x:p} {A, B}) is a fact, with an obvious 
meaning. 

The channels have certain special properties. Nothing ever flows in 
through the overflow, and there is no flow out of  it while the level is below 
some capacity. 

(if (Occ ?sl ?s2 
(potrans (OVERFLOW TANK1) (WATER-VOL TANK1) ?x)) 

(= < ?x 0)) 

(if (TT ?sl ?s2 (< (WATER-VOL TANK1) (CAP TANKI))) 
(Occ ?sl ?s2 

(potrans (OVERFLOW TANKI) (WATER-VOL TANKI) 0))) 
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Notice that the notation allows us to be ambiguous about whether (CAP 
TANKI) is a fluent or a number. If we decided on the former, we would 
have to talk about its persistence, so let's pretend it's the latter, and the 
capacity cannot vary with time. We assume that (>  (CAP TANK1) 0). 

Nothing ever flows out through the inflow: 

(if (Occ ?sl ?s2 
(potrans (INFLOW TANK1) (WATER-VOL TANKI) ?x)) 

(> = ?x 0)) 

The tank is built so that the capacity is never exceeded: 

(= < (V ?s (WATER-VOL TANKI)) (CAP TANK1)) 

Now, let's say that for some S1 and $3 soon after SO, we have: 

(= (V S1 (WATER-VOL TANK1)) 0) 

(Occ S1 $3 (potrans (INFLOW TANKI) (WATER-VOL TANK1) 
(+ (CAP TANKI) (5 gal)))) 

Then we can infer that there is a state $2, such that: 

(Occ SI $2 (potrans 

(Occ $2 $3 (potrans 

(Occ $2 $3 (potrans 

(INFLOW TANK1) (WATER-VOL TANKI) 
(CAP TANK1))) 

(INFLOW TANK1) (WATER-VOL TANK1) 
(5 gal))) 

(OVERFLOW TANKI) (WATER-VOL TANK1) 
( -  5 gal))) 

Proof:  By Axiom 24, there is a flow of  (CAP TANK1) through ( INFLOW 
TANK1), followed by a flow of  (5 gal). But during this period, the flow 
through (OVERFLOW TANK1) must be zero, because it can' t  be positive, 
and if it were negative, then by Axiom 22 the volume would never get above 
(CAP TANK1) during this interval, so it would always be zero, a contradic- 
tion. Therefore,  at the end of  this period, the volume will be (CAP TANK1). 
This is state $2. Now 5 gal flow into the tank. At least 5 gal must flow out, 
or the tank capacity would be exceeded at $3. If more than 5 gal flowed out 
(i.e., less than - 5  flowed in), then at the end the tank would be less than 
full. Then by Axiom 20 there must have been an interval between $2 and $3 
during which the volume of  water declined from (CAP TANK1) to the final 
value. But during this interval, either the flow into INFLOW would have 
had to be negative, or the flow into OUTFLOW would have had to be non- 
zero, both of  which are impossible--QED. 
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Other examples would be possible, but they would mainly illustrate 
reasoning about continuous functions. My main goal is the exploration of  a 
logical framework, so I will leave this for somebody else. 

Continuous quantities do not in general persist at the same value for 
very long. For example, the quantity of  water in a reservoir will change with 
rain, evaporation and use. We could try to handle this by indicating that the 
persistence of  time ( = WATER-LEVEL k) is (say) one day. But this is almost 
never right. The level is not likely to stay exactly the same for more than an 
instant, but it is not likely to double in one day, either, no matter how hard 
it rains. 

We need to introduce the " r a t e "  predicate: 

Axiom 26: 
(if (> ?t 0) 

(iff (T ?s (rate ?v ?t ?i)) 
(forall (sO sl) 

(if ( a n d ( = <  s0?ss l )  
(= ( -  (d sl) (d sO)) ?t)) 

?t (elt 
(V sl ?v)-(V sO ?v) 

?i)) ))) 

(rate v t 0 means that the average rate of  change of  the quantity v over any 
interval of  length t is within the given interval. The purpose of  t is to smooth 
short-term fluctuations, and to allow us to talk of  rates of  change of  non- 
continuous quantities. (t is not allowed to be 0, since then we would have to 
talk about  derivatives, which are hard to define given multiple chronicles, 
and which don ' t  seem to be necessary for "na ive"  reasoning about time.) 

We also need to delimit rates o f  potransing: 

Axiom 27: 
(if (> ?t 0) 

Off (T ?s (porate ?h ?v ?t ?i)) 
(forall (sO sl r) 

(if ( a n d ( = <  s0?ss l )  
(= ( -  (d sl) (d sO)) ?t) 
(Occ sO sl (potrans ?h ?v r))) 

(elt (?r / ?t) 
?i)) ))) 

Rather than infer persistences o f  values of  numerical quantities, we 
can infer persistences of  their rates of  change. I will give an example o f  such 
an inference in the next section. 
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5. P L A N N I N G  

With what I have talked about so far, we can reason about causal situations, 
but only as a spectator. In this section, I will talk about how a program 
might reason about its own actions. Part of  my motivation in defining time 
the way I did was to support reasoning about interesting actions, like 
preventing events. The flexibility in my event ontology now carries over to 
the world of  actions: An action is in this theory an entity, the doing of  
which by an agent is an event. Formally, we just need a function (do agent 
act), which is used to name events consisting of  an agent performing an ac- 
tion. In this paper, I will completely neglect multiple-agent situations, so the 
first argument to " d o "  will be dropped; it will simply map actions into 
events. Variables denoting actions will begin with " a . "  

In the first subsection below, I will see how far this takes us. Some 
actions, like preventing and allowing, just fall out of  the ontology. Others, 
like protecting facts, are still problematical. 

In the second subsection, I will explore the notion of  "plan." A plan 
is a set of  actions, often intended to carry out another action. In one form 
or another, this idea has been important to several AI researchers, from 
Sacerdoti (1977) to Schank (1977). I will show how the idea gets translated 
into my temporal-logic framework. 

5.1. The Logic of Action 

Many actions are auite straightforward, such as (PUTON x y), which is 
done whenever the problem solver, or " r o b o t , "  actually puts x on y. These 
may correspond to primitive actions the hardware can execute. For each, 
there will be axioms giving their typical effects as persistences. 

But many actions do not fit this mold, such as preventing, allowing, 
proving, observing, promising, maintaining, and avoiding. 

Consider the action "Prevent  e , "  where e is some event. To be con- 
crete, let's have e be the event E1 = "Lit t le  Nell mashed by train TR1 in the 
5 minutes after state SO." E1 will be prevented if it doesn' t  happen, assum- 
ing it was going to happen if not prevented. (You can' t  take credit for pre- 
venting an unlikely thing.) 

This is the sort of  thing that past problem solvers have neglected. In 
the present calculus, it is easy to do. First, we need a notion of  event depen- 
dence. 

Axiom 28: 
(iff (not-occur-if ?el ?e2) 

(and (foraU (ch) 
(if (hap ch Tel) (not (hap ch ?e2))) ) 

(exists (ch) (hap ch ?e2) ) 
(exists (ch) (not hap ch ?e2))) )) 
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where 
(iff (hap ?ch ?e) 

(exists (sl s2) 
(and (subset [sl, s2] ?ch) (Occ sl s2 ?e)) )) 

For instance, (not-occur-if E1 E2), where E2 = " I  move Little Nell in 
the 5 minutes after SO." 

Now it is easy to define prevention: 

Axiom 29: 
(= (prevent ?e) (one-of {a: (not-occur-if (do ?a) ?e)})) 

So one may to prevent Little Nell from being mashed is to move her in the 
next 5 minutes. 

In this axiom, I have used "event disjunction," written (one-of {el e2 
. . .  }), although this is just syntactic sugar for " sun ion . "  We extend the 
notation to actions, with the axiom 

Axiom 30: 
(= (do (one-of {?al . . .  ?aN})) 

(one-of { (do ?al) . . .  (do ?aN)})) 

If  there are no actions that E is negatively dependent on, then (do 
(prevent E)) is the empty set, "never . "  That is, (prevent E) never happens. 

Axiom 31: 
(= (do (one-of { })) never) 

A finer analysis of  impossibility appears below. 
As an example, let us take another look at TANK1. Suppose that at SO, 

(= (V SO (WATER-VOL TANKI)) 0), 

and (persist SO (porate (INFLOW TANKI) (WATER-VOL TANKI) 
(l sec) [Rl, R21) 

TO) 

where (> R2 RI 0) and (> TO (/(CAP TANK1) RI)). 

A little more terminology: Let (anch s e) stand for { Is, s2]: (Occ s s2 
e) }, the set of  all occurrences of  e starting in s. Let (culm p e) be 

{ [sl, s2]: (exists (s) 
( a n d ( = <  sl ss2) 

(TT sl s2 p) 
(Oct s s2 e))) }, 
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the set of  all intervals in which p is true and then e happens. Let (holds p) be 
{ [s, s]: (T s p) }, the set of  all point intervals at which p is true. 

What we want to find is an action to prevent 

E0 = (anch SO 
(culm (rate (INFLOW TANK1) WATER-VOL TANKI) 

(1 sec) <0, infinity>) 
(holds (= (WATER-VOL TANKI) (CAP TANK1))))) 

That is, the overflow of  the tank that will occur if the water is allowed to 
run. 

We need the action (TURN-OFF ( INFLOW TANK1)),  defined by this 
axiom: 

Axiom 32: 
(pcause (channel-into ?h ?v) 

(do (TURN-OFF ?h)) 
(porate ?h ?v (1 msec) [0, 01) 
I [0, 01 
(1 day)) 

This says that turning of f  ?h causes the flow through it to become zero. 
(The fourth argument, 1, says that the effect begins when the action is done; 
the fifth, [0, 0], says it happens immediately; and the sixth says it persists 
for one day. See Axiom 17.) 

What we want to prove is that if E1 = 

(do (within-time SO (/(CAP TANKI) R2) 
(TURN-OFF (INFLOW TANKI)))) 

then 
(not-occur-if E1 EO) 

where 
(= (do (within-time ?s ?t ?a)) 

{ [sl, s2]: (and (Occ sl s2 (do ?a)) 
(= < ?s s2) 
(= < ( -  (d s2) (d ?s)) ?t)) }) 

The (within-time s t act) is the action act  done within t o f  state s. 
The proof  that turning of f  the tank in time will prevent the tank from 

filling requires three steps: (1) showing that E0 is possible; (2) showing that 
E0 might not happen; and (3) showing that E0 doesn' t  happen if El  does. 

The first requirement is met by a proof  similar to that o f  Section 4. 
But to make it go, we have to assume there is a chronicle in which the prob- 
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lem solver refrains from El .  It is tempting to devise an "Axiom of  Free 
Will ,"  which states that any action is avoidable; there is always a chronicle 
in which you don ' t  do it. But there are counterexamples. If  A1 = "snap  
your fingers within 1 minute of  SO," and A2 = "keep from snapping your 
fingers for 1 minute after SO," then (one-of {A1, A2}) happens in every 
chronicle containing SO. I will call such an action unavoidable in SO. There 
is no easy way to tell if an action is avoidable or not, so we must just provide 
axioms to tell in every case, which drive: 

Axiom 33: 
(iff (avoidable ?a ?s) 

(exists (ch) 
(and (elt ?s ch) (not (hap ch (do ?a)))) )) 

In the present example, we have (avoidable (TURN-OFF (INFLOW TANK 1)) 
SO). El  is not exactly in this form, but we have the theorem 

(if (avoidable ?a ?s) 
(avoidable (within-time ?s ?t ?a) ?s)) 

If you don ' t  have to do ?a, you don ' t  have to do it within some time. I 
won' t  spend any time on the theory of  avoidable actions, since it is probably 
intricate and essentially trivial. 

So there is a chronicle in which E1 does not occur,  By Axiom 15 and 
Axiom 16, in this chronicle the water keeps running, so we can infer that the 
tank will reach capacity during the lifetime of  the water's being on. 

The third requirement is met by assuming that E1 happens in CH1, 
and showing that the fact required for " c u l m "  will be cut off.  This is pretty 
obvious. 

The second requirement will follow from the third if we can show that 
the robot is able to turn off  this channel. Clearly, we need an axiom to de- 
duce this. For realism, it should be an axiom giving the exact circumstances 
under which a channel of  this sort can be turned off.  (You have to be near 
enough to the tap implementing the channel that you can reach it before 
(CAP TANK1) / R2.) But this is all tangential, so I won' t  give details. 

To talk about allowing, I first introduce a notion complementary to 
not-occur-if: 

Axiom 34: 
(iff (occur-if-not ?el ?e2) 

(and (forall (ch) 
(if (not (hap ch ?el)) (hap ch ?e2)) ) 

(exists (ch) (hap ch ?e2) ) 
(exists (ch) (not (hap ch ?e2))) )) 
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In English, (occur-if-not el e2) means that e2 will occur if el does not, and 
e2 may or may not occur. 

We need a little bit more. First, the concept of "event negat ion,"  
written "nev" :  

Axiom 35: 
(iff (Occ ?sl ?s2 (nev ?e)) 

(and (T ?sl (possible ?e)) 
(T ?s2 (not possible ?e))))) 

where 
(iff (T ?s (possible ?e)) 

(exists (sl s2 ch) 
(and (elt ?s ch) (elt s2 ch) 

(Occ sl s2 ?e)) )) 

That is, the negation of  an event occurs if that event becomes impossible. 
For instance, the negation of "Capitalism collapses by the year 1900" oc- 
curred in the last half of  the nineteenth century. 

Now we can define a related operator on actions, " fo rgo" :  

Axiom 36: 
(iff (Occ ?sl ?s2 (do (forgo ?a))) 

(Occ ?sl ?s2 (nev (do ?a)))) 

Forgoing an action means doing something that makes doing the action im- 
possible, which may mean just procrastinating until you have lost your 
chance. It is hard to forgo an action like "Whistling the Star-Spangled Ban- 
ner"  (except perhaps by having your lips removed), but easy to forgo an 
action like "Move Little Nell within 5 minutes after S0." If you don' t  move 
her within 5 minutes, you've forgone this action. 

Now defining allow is straightforward: 

Axiom 37: 
(iff (Occur-if-not (do ?a) ?e) 

(= (allow ?e) (forgo ?a))) 
(if (not (exists (a) (occur-if-not (do ?a) ?e) )) 

(= (do (allow ?e)) never)) 

Related to allowing and preventing are two other actions, forgoing 
preventing and forgoing allowing. To forgo preventing something is to make 
it impossible to prevent; this differs from allowing in that the thing might 
still fail to happen, whereas according to my definition an event that is 
allowed actually happens. 
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Forgoing allowing an event is more complex. Let A be an action such 
that not doing it would entail that the event (E) occurs. To forgo allowing it 
is to forgo forgoing A. This means doing something that makes it impossi- 
ble not to do A. This differs f rom preventing in that E might still occur. 

Of  course, there is a more  mundane  notion than either preventing or 
allowing, in which you actively work to make something happen.  I will call 
this "b r i ng -abou t . "  It is described by the axiom: 

Axiom 38: 
(= (bring-about ?e) 

(one-of {a: (exists (r i) 
(ecause always (do a) ?e r i)) })) 

Bringing-about e is done by doing an action that (always) causes e. 
James Allen (personal communicat ion)  has raised interesting objec- 

tions to my analysis o f  allowing and preventing, which I will repeat here, 
since they are likely to seem weighty to many  people: 

Since most things are possible, however improbably . . . .  every day I 
allow most of the events that happen in China. If someone was killed 
there, then since I did 'forgo' the action of boarding a plane, sneaking 
through customs, and throwing myself in front of the assailant's bullet, 
I allowed the killing. It gets even worse with prevent. There's probably 
no way I can ever prevent anything in this world. I have so little control 
over what happens that whatever I do, there is always some event (how- 
ever improbable) that is possible and would nullify my efforts. 

The first objection, that too many  things get allowed, is no trouble for me, 
one does in fact allow an infinite number  of  things over any given day, with- 
out intending to allow most of  them. (Note also that " I  allow most of  the 
e v e n t s . . ,  in Ch ina"  is ambiguous;  one certainly does not allow the event 
consisting of  the occurrence of  all the events in China over a day.) 

The second objection, that too few things get prevented, is more seri- 
ous. Of  course, there is a sense in which one could never prove that  it is 
possible to prevent a given event, but this is just another  case of  excessive 
caution on the part  of  formal  systems. A dose of  non-monotonici ty  should 
cure it, one hopes. A deeper problem is that my analysis fails to take proba-  
bilities into account.  We often plan to prevent something, knowing that the 
plan might not work because of  improbable  possibilities. But this point 
applies to all planning, not just prevention. In fact, it applies to a lot o f  
reasoning. As far as I know, there is no theory combining formal  logic with 
probabil i ty theory. 

In McDermot t  (1978b), I discussed a classification scheme for actions, 
used in the NASL problem solver. An important  distinction was between 
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" p r i m a r y "  and " seconda ry"  actions. A secondary action was one that was 
executed correctly when another action was executed in a particular way. 
For instance, in "P ick  up this stick without moving any other s t ick,"  the 
subaction " D o n ' t  move any other s t ick" was a secondary modification of  
the pr imary action "P ick  up this s t ick."  Another  word for a secondary 
action to which the system was committed was policy. 

In the present calculus, the distinction does not get made this way. 
Secondary actions are no weirder than some intuitively pr imary actions. For 
instance, (avoid a), where a is an action, is simply an action which is done 
over any interval in which you don ' t  do a. The key distinction now is be- 
tween composing actions sequentially or in parallel. Before, I defined (seq 
el . . .  eN) to be an event consisting of  all occurrences of  el . . . .  eN in order. 
We can define (seq al  . . .  aN) in a similar way. For policies, we must define 
( p a r a l  . . .  aN): 

Axiom 39: 
(= (par ?el . . .  ?eN) 

{ [sl, s2]: (and (elt [sl, s2] ?el) 
(elt [sl, s2] ?e2) 

• . , 

(elt [sl, s2] ?eN))}) 

So to do A1 while avoiding doing A2, we do (par A1 (avoid A2)). (Here and 
f rom now on, I extend notations defined over events to actions in the obvi- 
ous way without comment . )  

Another  secondary action is "p ro t ec t ion"  Sussman (1975). Intuitively, 
a fact is protected by a problem solver during an interval if it stays true dur- 
ing that interval. However,  I think there is more to protection than this, 
which I do not know how to formalize. There is a distinction between "re-  
s torable"  and "unres to rab le"  protections. For instance, if you are protect-  
ing the fact, "The  fuse (for some keg of  dynamite) is not in contact with an 
open f lame,"  then if the fact becomes false, you have failed. You might try 
to cut the fuse or run, but it is pointless to move the fuse away f rom the 
flame; the damage has been done. In most cases, though, it is worth it to 
reestablish the protected fact. I f  I am baby-sitting a child, I try to protect  
the fact that he is not out o f  my sight. I do not give up once he is invisible. 
So the act "Pro tec t  p "  can often be successful, even i f p  lapsed a few times. 
I do not know how to formalize this. Perhaps you could put a t ime limit on 
how long the lapses are. So in the baby case, I have failed if he eludes me for 
more than 5 minutes, while in the dynamite case the max imum allowable 
lapse is zero. But this seems arbitrary. The only real criteria for success of  
actions like these are teleological. I am successful with the baby if he 's  
around and in one piece when his parents arrive. I am successful with the 
dynamite if there 's  no explosion, and so forth. 
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I have already mentioned several ways of  building new actions out of  
elementary actions, such as seq, par, forgo, and avoid. Another important 
class of  action-building methods are the traditional programming con- 
structs, like loops and conditionals. A complete study of  how these compo- 
sition methods fit together would start to resemble the study o f  program- 
ming-language semantics Milne (1976). I think we should avoid carrying 
this resemblance to an extreme. In particular, I think the ability to do simple 
reasoning about plans would go down the drain if variables and assignment 
were admitted into the plan language. In most loops that people execute, the 
outside world keeps all the state information. When a condition is no longer 
true, it will be false in the world, not in the robot 's  head. 

5.2. The Logic of Problem Solving 

So far in this section, I have analyzed actions, without ever introducing the 
concept of  an action that "should be pe r fo rmed ."  A problem solver may be 
thought of  as a program that takes an action that should be performed, a 
task, and performs it. Hence the notion is o f  some importance. 

I tried once before, in McDermott  (1977; and 1978b), to develop the 
logic o f  tasks. In that system, NASL, the fundamental predicate was (task 
name  act) meaning, name  denotes an action you should do, to wit, act. Un- 
fortunately, the action of  a task was usually underspecified. For instance, 
you might have the tasks: 

(task T1 (PUTON A B)) 
(task T2 (PUTON B C)) 
(successor TI T2) 

This was where (PUTON B C) was an action that should be performed, but 
not at an arbitrary time; the "successor"  formula constrained it to be after 
(PUTON A B). 

The problem with this approach was that it distorted time relations, in 
three ways. First, the time dependence between the two actions was not part 
of  their definition. This made it hard to say what " t a s k "  meant. If  it meant 
"This  action is to be done , "  then a task assertion didn't  describe its action 
precisely, but only gave a generalization of  it. (In the example, (PUTON B 
C) is a generalization o f  " D o  (PUTON B C) after (PUTON A B).")  Sec- 
ond, it wasn't  made clear when something was a task. As with most 
previous AI representations, NASL lived only in the present; there was no 
way to talk about what had been a task or was going to be one. Third, to 
compensate for this, NASL changed the data base to reflect passing time. 
When something was no longer a task, it got erased. Unfortunately,  when 
something had been assumed to be a task erroneously, it also got erased. 
There was no way to distinguish between these two (see Section 1). 
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In short, three notions of  t ime were confused: the time of  an action, 
the time of  a task, and real-world time ( " n o w " ) .  Now that  we have a good 
analysis o f  time, we can untangle these things. 

The correct analysis o f  task and action seems to be this: A task is an 
action to which a problem solver is committed.  The action must be well 
enough specified so that the time of  commitment  is not needed to know 
what it is the solver is committed to. Therefore,  one may have a task like 
"Visit  Greece ,"  satisfiable any time, but usually the action must be more 
specified than that: " P u t  block A on block B within 5 minutes after . . . .  " 

A problem solver 's  being commit ted to an action is itself a fact. One 
may alternately have and not have the task of  Visiting Greece. Entirely inde- 
pendently, one may actually visit Greece. There are several ways these might 
interact: 

I .  You might have the task and not have done the action yet: In this 
situation, a rational problem solver will devote resources to accom- 
plishing the action, unless more urgent tasks intrude. 

2. You might have the task and have already done the action: In this 
case, the task has succeeded, and nothing more need be done. 

3. You might have done the action and not (now) have the task: This 
is quite common;  an example would be insulting or cheering up 
someone yesterday without intending to now (or possibly then 
either). 

4. You might have a task for an impossible action: This is quite com- 
mon too. The action may have been possible when the task began; 
in this case, the task may be said to have failed. I f  it was never 
possible, it is wishful thinking. Philosophers have argued about  
whether it is ever rational to have such a task. I see no reason why 
not, in the case of  task failure. It seems natural  to say that I have a 
task of  meeting that student at 2:30 yesterday as I promised,  but I 
failed to do it. 

The last two categories interact in an interesting way. Often when a 
task fails, there is some other action that was done instead of  the intended 
one. For instance, you have a task of  hitting the golf  ball into the little hole, 
and you actually hit it into the big pond. Here is a combinat ion of  an action 
with no task and a task with no (possible) action. There should probably  be 
a predicate relating the two: (did-instead actl  act2) would mean that  act l  
was a task and act2 was done instead (actl  never occurring). (In the ex- 
ample, actl  would be " H i t  the ball into the hole on stroke 2 of  hole 6 of  the 
golf game played on Tuesday a f t e rnoon , "  and act2 would be " H i t  the ball 
into the pond on stroke 2 of  . . . .  " )  Rather than examine this in detail, I will 
just point out an inadequacy in past representations of  task networks.  Prob-  
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lem solvers that maintain such networks (Sacerdoti, 1977; McDermot t ,  
1978b) have failed to maintain a complementary  behavior network that 
represents what actually happened (or is going to happen).  I f  every task suc- 
ceeds, the two networks would be isomorphic;  where one had "Task a , "  the 
other would have "Did  a . "  But if there was failure, there would be a link 
between the two networks, f rom "Task a , "  to "Did  b . "  This would be more 
useful than simply recording that a task failed or succeeded, and would help 
the system in explaining its actions. 

This is getting ahead of  the story, into implementat ion and away from 
logic. We need to say more about  logic first. 

In both N O A H  (Sacerdoti, 1977) and NASL (McDermott ,  1978b), a 
key notion is that of  one task being a sub-task of  another.  This means that 
the sub-task is part  of  the chosen plan for carrying out the super-task. Every 
task is either immediately executable or reducible to sub-tasks, which are 
executable or reducible, and so on. 

A problem solver t ransforms a task into sub-tasks by choosing a plan 
for the task, and asserting that every element of  the plan is a sub-task. This 
choice mechanism is probably not purely logical. That  is, it seems that the 
solver probably  doesn ' t  infer a set of  sub-tasks, but must actively choose 
them, whatever that means. 8 

The requirement that tasks be reduced to sub-tasks gives rise to a bug. 
In the current formalism, we can talk of  reducing the action A1 to the action 
(seq B1 B2), but this reduces A to a single sub-task. Is there any sense in 
which B1 and B2 are sub-tasks of  A? It makes sense for B1 to be thought of  
as a sub-task, but just any execution of  B2 will cut no ice. We insist that B2 
come after BI.  To make B2 a sub-task would get us right back into the diffi- 
culty I raised at the beginning of  this section, o f  tasks being underspecified. 

The solution is to take as sub-tasks BI and 0ust-after  BI B2), where 
just-after  is defined as 

Axiom 40: 
(= (just-after ?al ?a2) 

{ [s2, s3]: (and (Occ s2 s3 ?a2) 
(exists (sl) (Occ sl s2 ?al)))}) 

The set of  actions {B1, 0ust-af ter  B1 B2) } is such that A is executed in any 
chronicle in which they are executed; in other words, this set is a plan for A. 

'Perhaps I'm wrong on this. But if this relationship really is inferential, it must be an 
inference of the form: if p is the best plan for a, then every element of p is a sub-task of a. 
Unfortunately, it can happen that there are two equally good plans for a. Since we need to in- 
troduce a pure choice here, we may as well accept it in general. Amazingly little has been done 
on the logic of choices in AI. The work on medical diagnosis (e.g., Shortliffe, 1976), and work 
on choices by problem solvers (e.g., McDermott, 1978b; Doyle, 1980) are two examples. 
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Of course, this is not really a solution to the problem, not until we 
provide rules for reducing tasks of  the form (just-after al a2). But at least it 
suggests that what problem solvers do makes some logical sense. That  is, in 
many cases, there is a well-defined plan for a task, each of  whose elements 
must be done in order to carry out the task. 

Another  example is the classic plan for achieving a conjunction of  
facts. To analyze this, we need the action (achieve prop until-prop), which 
means "Bring it about that prop is true from the end of  the achieve until the 
until-prop becomes t rue . "  This is clearly needed, for the reasons discussed 
in Section 3; if you were allowed to achieve things for a single instant, the 
achievement would usually be worthless. So we have: 

Axiom 41: 
(iff (Occ ?sl ?s2 (do (achieve ?p ?q))) 

(and (T ?s2 ?p) 
(forall (s4) 

(if (and (< ?s2 s4) (not (T s4 ?p))) 
(exists (s3) 

(and(< ?s2s3) ( - -<  s3s4) 
(T s3 ?q)) )) ))) 

In English, doing (achieve ?p ?q) amounts to bringing it about that ?p, in 
such a way that if ?p ever becomes false thereafter,  ?q must have become 
false first. 

Historically, tasks of  the form "achieve p "  have been very important.  
Problem solvers like GPS (Ernst, 1969) concentrated on these (in the form 
of  "difference reductions"),  and this concentration has persisted. An espe- 
cially interesting case is where p is a conjunction of  facts (Sussman, 1975; 
Sacerdoti, 1977). The problem is, of  course, that all the facts must be true at 
once, when the task is complete, and all too often the plan for one conjunct 
upsets another. 

I will introduce the standard plan for achieving conjunctions after 
some useful definitions. First, we define " t o - d o "  thus 

Axiom 42: 
(iff (to-do ?al ?a2) 

(one-way (do ?a2) (do ?al))) 

That is, a2 is a way to do al if (do a2) is one way that (do al) can happen. 
Next, we let (plan aa) be the action corresponding to the plan consisting of  
all the actions aa. 

Axiom 43: 
(iff (Occ ?sl ?s2 (do (plan ?aa))) 

(and (forall (a) 
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(if (elt a ?aa) 
(Occbetween ?sl ?s2 a)) ) 

(exists (a s) 
(and (elt a ?aa) (Occ ?sl s a)) ) 

(exists (a s) 
(and (elt a ?aa) (Occ s ?s2 a)) ))) 

That is, a plan is done in any minimal time span in which all of  its elements 
are done. And finally, 

Axiom 44: 
(iff (T ?s (finished ?a)) 

(and (exists (sl s2) 
(and (Occ sl s2 (do ?a)) 

(< s2 ?s)) ) 
(forall (sl s2) 

( i f ( = <  ?ss2) 
(not (Occ sl s2 (do ?a)))) ))) 

That is, an action is finished when its last execution is past. 
The following theorem then states that one way to achieve a conjunc- 

tion is to achieve each of  its conjuncts, in such a way that each conjunct re- 
mains true until the other is achieved. 

(if (and (= ?al (achieve ?pl (& ?q (finished ?a2)))) 
(= ?a2 (achieve ?p2 (& ?q (finished ?al))))) 

(to-do (achieve (& ?pl ?p2) ?q) 
(plan {?al, ?a2}))) 

Proof:  Assume that the task is to achieve PI  and P2 until Q, and let A1 and 
A2 be two actions that satisfy the antecedent. Assume that (do (plan {A1, 
A2})) occurs from SO to $2. I will show that (do (achieve (& P1 P2) Q)) also 
occurs during that interval. According to Axiom 41, we must show that (T 
$2 (& PI  P2)), and that (& P1 P2) remains true until Q. 

To show the first part, without loss of  generality assume that A1 
finishes before A2 (or no later). (See Figure 4.) 

- - - - A I  - > (&Pl P2) Q ( - P I )  
SO S1 $2 $3 $4 

A2 - >  

Then A2 is not finished until at least $2, so P1 must be true from SI to $2. 
But P2 is true at $2, so (T $2 (& P1 P2)). 

To show the second part, let $4 be an arbitrary state after $2 in which 
(& P 1 P2) is false. Then either P 1 or P2 is false there. Assume without loss 
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of  generality that it is P1. By Axiom 41, there must be a state $3 after SI in 
which (& Q (finished A2)) is true, and hence Q is true. This must come after 
$2, since until then A2 is not f inished--QED. 

- - . o o  A1 ~ (&P1P2) ~le Q (--P) 

- ; It l ', O 
sO s 1 s2 s3 s4 

• • o , - - , ,  b ~ ,  - -  \ / -  

Figure 4. Conjunction Proof 

There is one suspicious feature of  this plan for conjunction achieve- 
ment: there is no finite non-circular term for naming either sub-task. This 
rules out certain naive implementations of  a problem solver based on this 
logic. A deeper problem is that there may be cases in which there are no ac- 
tions satisfying the antecedent of  my theorem, for instance if ?pl and ?p2 
contradict each other, or they require large amounts of  a finite resource, or 
any of  several other cases obtains. It is an open problem how one would go 
about proving the feasibility or unfeasibility of  this plan. 

The final problem to be examined in the light of  this logic is the "p lan  
decomposit ion" problem (pointed out by Eugene Charniak, personal com- 
munication). When you are writing a plan, say to paint something (Char- 
niak, 1976), you have a choice whether to represent a step as "Dip  brush in 
pa in t ,"  or "Achieve (paint on brush) ."  The latter is the purpose o f  the 
former, but the former is the most common way of  achieving this purpose, 
so common that it seems wrong not to make it part of  the plan. But if the 
paint in the can is low, the usual step will not work. You will have to tilt the 
can and grope with the brush, or go buy more paint. On the other hand, it 
seems wasteful to make "Achieve (paint on brush)"  the normal plan step, 
and rederive the normal sequence every time. 

The solution seems to be to store two things: the usual plan, and a 
proof  that it works. The proof  in this case would have one fragment that 
said: " I f  you dip the brush in the paint, and there is paint deep enough to be 
dipped into, then you will get paint on the brush. If there is paint on the 
brush, then stroking the wail with it will get paint on the wall . . . .  " The 
proof  is not consulted until the plan fails, that is, until the "dip '~ step fails to 
bring about partial immersion of  the brush. Then the proof  would be con- 
suited to see why this was done. The reason found would mention the bridg- 
ing fact that " there  is paint on the brush ."  The problem solver could then 
look for other ways to bring this about. 

This sketch requires a lot of  work to fill out,  but I doubt that problem 
solvers will be robust and efficient until it is done. One big piece of  work is 
to choose a format for these " p r o o f s "  that enables easy access to the rele- 
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vant fragments. Presumably the proof would be broken into pieces festooned 
over the plan. 

6. SKETCH OF AN IMPLEMENTATION 

Up to now, I have avoided discussing data structures and algorithms. If 
Hayes (1979a) is right, I would be justified in avoiding them for a few more 
years yet. But I have not been able to keep from thinking about how these 
ideas would be expressed in a working program, and I think an occasional 
glimpse in that direction is necessary for even the most dedicated " A I  logi- 
c ian."  We are engaged in notational engineering, not philosophy. 

An implementation must be able to do interesting, useful inferences. 
What is interesting and useful will vary from application to application. The 
one I am most interested in is problem solving. A problem solver must ex- 
ploit the tree of  possible chronicles, since it must reason about consequences 
of  different courses of  action. It must also be able to reason about the inter- 
actions between its actions and inanimate processes, and among its own 
actions. A typical interaction is the detection that a planned action will 
cause a persisting fact to cease. 

Consider an example from (Sacerdoti, 1977). Say a problem solver has 
the tasks of  painting the ladder and painting the ceiling. If  it works on 
"paint  the ceiling" first, it will notice that the ladder must be climbable, and 
that it is currently climbable. Therefore, it will persist in being climbable for 
years. The problem solver concludes that this state will last until the ceiling 
is painted, which will take a few hours. Now it turns to thinking about paint- 
ing the ladder. It realizes that this will cause "ladder climbable" to cease, and 
remain untrue for a day (assuming paint dries this slowly). It then should 
see that it lacks sufficient information to decide if this is a problem, since it 
does not know whether it will paint the ladder before painting the ceiling. 
Since the situation is under its control, it imposes an order that didn' t  exist 
before, and decides to paint the ceiling first. 

This is similar to Sacerdoti's algorithm, but with some important dif- 
ferences. First, the kind of  retrieval that occurs is more generally applicable. 
If we found out someone was coming to repossess the ladder, exactly the 
same reasoning would go on, up to the point where we imposed extra order. 
A different response would be necessary if one of  the events was outside our 
control. But the retrieval problem is the same. 

Second, I do not model an action in terms of simple "addl is ts"  and 
"deletelists," that is, lists of  facts that change in truth value as a result of  
that action. Painting the ladder renders it unclimbable, but only for a while; 
we could always paint the ceiling tomorrow. In fact, there is no guarantee 
that we will catch the problem before we have already painted the ladder. 
Even if we do catch it, there may be some pressing reason why we should 
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paint the ladder first; for instance, we may want to paint the ladder blue, 
and the ceiling green, and the only way to get green may be to mix our blue 
with some yellow we have lying around. 

In fact, there will in general be many factors on each side of  an order- 
ing decision, and I am skeptical that one can casually decide on the basis of  
one of  them how the plan ought to go. Instead, it seems more reasonable to 
try simulating the plan both ways whenever there is an important  uncer- 
tainty as to order or outcome (Wilensky, 1980). 

For this to work, the implementation must recognize the existence of  
multiple chronicles. It might seem that we want to keep a description of  
every relevant chronicle, but, o f  course, there are an infinite number of  
chronicles, each with an infinite description; what we really want is a partial 
description of  the typical element of  an interesting set of  chronicles. For in- 
stance, the set of  all chronicles in which I fail to prevent Little Nell from 
being mashed by the oncoming train would be of  (somewhat morbid) inter- 
est, as would the set of  chronicles in which I succeed. A partial description is 
just a data structure that supports information retrieval, like the action- 
conflict detection I described before. Let us call this kind of  data structure a 
" t ime l ine,"  without reading too much into the phrase. Every set of  chroni- 
cles will be represented by a data structure called a chronset, which consists 
of  a defining characteristic of  the chronicles in the set, plus a time line for 
accessing the events and facts that occur in those chronicles. 

Chronsets are hierarchically organized. When the problem solver 
detects an important  uncertainty in a chronset, it creates two (or more) new 
chronsets which represent the different outcomes. Almost everything true in 
the original chronset is true in the new ones; if I am on my way to visit 
Grandma when I hear Nell's cry for help, then the fact that I will see Grandma 
tonight is still true in both chronsets. Furthermore,  the same chronset can 
be split more than one way. Before getting involved with Nell at all, I might 
have been speculating on whether nuclear war would occur by the year 2000, 
and what that would mean for civilization. The chronsets connected with 
this possibility have nothing to do with Nell. 

Eventually, only one of  a pair o f  alternative chronsets turns out to 
correspond to reality. This one becomes the new basis for further planning. 

So, however time lines are implemented, they will have to be able to 
inherit properties from "superl ines"  belonging to higher chronsets. A flexi- 
ble model of  this kind of  inheritance is the "da ta  poo l "  model, developed in 
Sussman (1972) and McDermott  (1981b). This allows a distributed data 
structure to be labeled so that different parts are "vis ible"  in different data 
pools. Each data pool will correspond to a chronset. So, rather than have 
different time lines, we can have one big time line, with some parts invisible 
in some chronsets. 

The next question is how time lines are implemented. The idea I am 
currently pursuing is that they are modeled "spat ia l ly ,"  that is, using much 
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the same machinery as in a spatial reasoner like that o f  McDermot t  (1980b), 
Davis (1981), and McDermot t  (1981c). 

In our spatial reasoner, every entity is modeled as a " f r o b " - - a  f rame 
of  reference attached to an object.  The frobs are arranged in a graph. I f  the 
position of  an object is known (fairly precisely) with respect to another  
object,  its position with respect to that object ' s  f rame is stored explicitly; 
otherwise, it is computed when needed. Questions such as, How far is it 
f rom A to B? are answered by computat ion on the coordinates of  A and B. 
Questions such as, What object is near A? are answered by searching through 
a discrimination tree of  objects stored with respect to A (McDermott ,  
1981c, d). 

Our working hypothesis is that events and facts can be modeled as 
frobs. The reason this approach may fail is that the frob graphs may just be 
too complicated; however, it is hard to think of  a more promising approach.  
(But see Allen, 1981.) 

In general, a f rob 's  position and other features are " f u z z y , "  that is, 
known only to within an interval. Hence we call the aggregation of  frobs a 
fuzzy map. The fuzziness is entirely due to uncertainty. The position of  the 
object in the real world is assumed definite. (Objects are not quantum 
mechanical.)  I f  an event is to be thought of  as a frob, there must be a sense 
in which it is a definite object with uncertain attributes. Of  course, this is 
not what an event is at all. Instead, it is an infinite collection of  time inter- 
vals. The time during which I sang the Star Spangled Banner is a meaning- 
less quantity, unless you mean the fuzzy interval o f  all dates f rom my first 
singing of  it to my last. But this interval will never be reduced to a point by 
further information.  

On the other hand,  there does seem to be a notion of  temporary  uncer- 
tainty that gets resolved. I am not sure what time the plumber  is coming 
tomorrow;  after she had been here, I am sure. This notion is completely 
outside the realm of  the logic I developed in Sections 1 through 5. Consider 
a problem solver at state SO, with a time line including tomorrow,  and an 
event "P lumbe r  comes . "  It is simply wrong to say that there is uncertainty 
in what time the plumber is going to come in the day following SO, because 
there are lots o f  24-hour periods following SO, one per chronicle. Twenty- 
four hours later, there will be an infinite number  o f  problem solvers, in an 
infinite number  of  incomparable  states following SO, each with a slightly 
different idea of  when the plumber  came. 

So for its own sanity, a problem solver is going to need the notion of  
the real chronicle, the one that is actually going to happen.  Actually, for 
completeness, we will have every chronset contain a unique realest chronicle, 
which must be the real chronicle if the chronset contains it. The uncertainty 
surrounding the exact t ime of  an event in a given chronset is then the uncer- 
tainty about  the occurrence of  the event in the realest chronicle in the set. 
And this only makes sense for events that happen at most once in a chroni- 
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cle. We will call an event or fact being modeled in a time line in this way an 
occurrence. 

With these restrictions, it makes sense to apply techniques for map- 
ping time. The existence of  chronsets merely forces there to be many com- 
peting maps. 

Before I discuss time lines in more detail, let me issue a warning about  
the " r ea l "  chronicle and its relatives. I am convinced that no hint of  this 
concept must appear in the logic, because it would lead to some serious 
paradoxes and a breakdown of  the system. (I thank Ernie Davis for discus- 
sions leading to this conclusion.) For instance, how do you represent that 
something is inevitable? In the logic so far, you must say that it will happen 
in all chronicles. It seems tempting to explore the alternative way of  putting 
this, that the thing will happen in the real chronicle. After all, what can it 
matter that something happens in an unreal chronicle? But then everything 
that actually happens was inevitable. 

The only conclusion is that the logic we use makes some extreme as- 
sumptions about time, which our implementation resolutely ignored. If this 
bothers you because you think logic ought to encompass everything that 
goes on in a robot,  then this should convince you that it can' t .  If  this bothers 
you because you want to know who is right, the logic or the implementation, 
my guess is that the implementation is right, but so what? Neither alterna- 
tive is very palatable, but neither can be neglected. A system that accepted 
the idea of  many futures would have no grounds for any decision; but 
neither woul~d a system that accepted the idea of  one future. The trick is to 
resonate between them, betting that there is one real future that matters, 
relying on a logic that presupposes the opposite. 

One other topic falls under the " Implementa t ion"  heading. A data 
dependency is a note of  the support that an assertion has, expressed as a list 
of  other assertions (Doyle, 1979). In the implementation I am describing, 
there will be two kinds of  dependency: the support for the contention that 
an occurrence will take place in a chronset; and the support for the time 
when it occurs in that chronset. The former is relatively straightforward. A 
cause will be linked to its effect. A bad occurrence will be linked to the task 
that prevents it. The only complication is that these links may have to cross 
chronset boundaries; for example, a task might be there because in another 
chronset, something bad will happen. 

The second kind is more problematic. Times of  occurrence are not 
asserted, but constrained. As constraints accumulate, they become more 
precisely known, just as in McDermott  (1980b). How to erase such con- 
straints is still an open problem in the spatial domain,  and may also be a 
problem in the temporal domain. 

Consider how this data-dependency system would solve the "Lit t le  
Nell" problem I started with. Once the system (Dudley) has reasoned out 
the causal sequence involving the train and Nell, and sees that a bad event is 
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going to happen, it looks for a plan to prevent it. Assuming it finds a candi- 
date, it sets up an alternative chronset in which this plan is successfully ex- 
ecuted. (See Figure 5.) It does an analysis of  feasibility, and decides that this 
chronset probably corresponds to reality more closely than the one it started 
with. However,  the data dependency supporting the assertion that "Mo v e  
Nell" is a task specifies that the occurrence of  "Nell is mashed" in the other, 
original chronset as the justification of  the task. It is irrelevant that this 
chronset is not expected to be realized. 

It is relevant that in the alternative chronset, she gets mashed. This 
assertion will be supported by a record of  the causal argument (inv,~lving 
the persistence of  being tied up, the train schedule, and so on) that led to 
Dudley's alarm in the first place. If  this argument is upset, say by a new 
assertion that Dick Daring is planning to free Nell in two minutes (thus ter- 
minating a crucial persistence), then it is no longer true, even in the alterna- 
tive chronicle, that Nell is in danger, and the assertion " I  have the task of  
moving Nell" will disappear from Dudley's data base. 

supports Physical laws, 
plausible inferences 

Nell mashed j~" *~ 

supp°rts , / f 
Task: Move Nell - -... J ~'-- ... supports 

~ N e l l  not mashed 

Figure 5. Tree of Chronsets for the Dudley-Nell Problem 

Chronsets: 

. 4-" I do not 
move Nell 

I do move 
Nell 

4-- 
(EXPECTED) 

As another illustration, let me sketch how this system would handle 
one straightforward kind of  inference--system simulation. This kind of  in- 
ference is the result of  applying ecause and pcause rules to see how a system 
will behave. That  is, starting in some state, we use these rules to predict 
future states, then start from there to predict more states, and so forth.  
Each application of  a rule creates a new frob, corresponding to the caused 
effect. This frob will represent a persistence or event. It is also a frame of  
reference for further simulation; its effects will be frobs fuzzily located in its 
frame, and so on. Figure 6 shows how each occurrence is located more or less 
fuzzily, at some offset in the frame of  its cause. Each effect then serves as a 
frame for the next round. Once the structure is built, it can serve to answer 
queries, like " H o w  soon after F1 will F3 occur?"  This requires translating 
F3's fuzzy coordinates back into frame F0 for comparison. The more steps 
of  translation, the fuzzier the coordinates get. 
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Figure 6. Each Frob is a Frame for the Next Occurrence 

Just storing the coordinates does not suffice for answering questions 
such as "What ' s  the first occurrence o f . . . a f t e r  F l ? "  This requires other 
sorts of  indexing. (McDermott,  1981d) 

This sketch is intended only to suggest what one might do. I feel that 
raw simulation of  this sort is actually of  little value, except for simple loop- 
free systems. If a loop is encountered, the unwary simulator will itself go 
into a loop. Instead, it should be on the lookout for " l o o p y "  patterns, such 
as a quantity increasing twice, and try to step back and draw more interest- 
ing conclusions. I can only point at this problem here, and not hope to solve 
i t .  9 

'I have implemented a preliminary version of a program for reasoning about simple 
mechanisms, including some with loops, and will report on it in a later paper. 
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7. CONCLUSIONS 

I set out to develop a temporal logic which captured the openness and con- 
tinuity of  time. To this end, the basic ontology had to include states arranged 
into a branching set o f  continua, the "chronicle t ree ."  Doing this enabled 
us to state facts about causes and effects, continuous change, and plans. In 
many cases, we could make useful deductions about  the course of  events. 
Here is a list of  some of  the situations considered: 

• Causal sequences, including infinite loops 
• Continuous change up to some threshold 
• Actions taken to prevent the operation of  causal systems 
• Conflicts among actions done in the wrong order (cf. Sacerdoti, 

1977) 
• Changes in one's plans forced (or not forced) by changing circum- 

stances 

I look at some of  these systems more formally than others, for which I em- 
phasized implementational considerations. 

I have found that logic and implementation fertilize each other. One 
often has a vague notion of  what he wants a program to do, plus a pile of  
special cases that don ' t  fit together too well. Sometimes one goes ahead and 
implements the special cases. I urge consideration of  the alternative: tempo- 
rarily to ignore hard-nosed programming issues, and try to achieve an ele- 
gant synthesis of  the special cases in the logical domain. If  you fail, it is 
likely that the logical bugs holding you up would have caused the program 
to exhibit bizarre behavior anyway. If you succeed, the results can often be 
transferred back to the programming domain. The ontology of  the logic will 
be reflected in the data structures of  the program (as chronicles gave rise to 
chronsets); the commonly encountered proofs will give rise to inference 
algorithms, and records of  them become data dependencies, which help to 
make the program robust and less opaque. Of  course, the program will fail 
to make inferences the logic allows (and hence, via non-monotonicity,  jump 
to conclusions the logic forbids), but humans have these limitations too. 
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