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Abstract In this paper we investigate a maximax optimization problem related to a homogeneous Dirichlet
problem in two classes of rearrangements. We prove existence and representation of the maximizers.
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1 Introduction

In this paper we investigate an optimization problem of maximax type related to the following boundary value
problem

− �u + h(x)u = f (x) in �, and u = 0 on ∂�. (1)

Here, � is a smooth bounded domain in R
N , h a non-negative function in L∞(�), and f a function in L2(�).

It is well-known that (1) has a unique weak solution in H1
0 (�); see [4]. We denote the solution by u f h to

emphasize on its dependence on f and h. The problem (1) has been widely used to model many physical
phenomena, but the one we briefly explain here is related to the bending of an elastic membrane. Suppose �
is a planar region occupied by an elastic membrane fixed around the boundary. The membrane is assumed to
be non-isotropic; that is, it is made of several materials with different densities, and hence the presence of the
function h in (1) is justified. Further, we assume the membrane is subject to a vertical force such as a load
distribution, and this justifies the use of a function like f on the right hand side of the differential equation in
(1). Finally, the solution u f h denotes the displacement (bending) of the membrane at various points of �.

We now proceed to introduce the optimization problem that we are interested in. Note that the setting is
going to be done in any dimension in contrast to the above physical description of (1) in dimension two. We
first define a quantity as follows

J ( f, h) =
∫

�

f u f h dx .
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Recalling the variational formulation of u f h , see the next section, confirms the functional J : L2(�) ×
L∞(�) → R is well defined. Our interest is in the following maximax optimization problem

max
h∈R[h0]

max
f ∈R[ f0]

J ( f, h), (2)

where h0 and f0 satisfy the conditions mentioned above pertaining to the two functions h and f in (1).
Moreover, R[h0] and R[ f0] indicate two rearrangement classes generated by h0 and f0, respectively; see the
next section for precise definition. The main result of this paper is Theorem 4.2, where we prove (2) is solvable,
contingent to f0 and h0 satisfying a technical condition. By solvability of (2), we mean existence of a pair
( f̂ , ĥ) ∈ R[ f0] × R[h0] such that

J ( f̂ , ĥ) = max
h∈R[h0]

max
f ∈R[ f0]

J ( f, h).

Optimization problems where the admissible set is a rearrangement class or a subset of that have become
quite popular in recent years; see for example [5–13] and references therein. However, the one which is
discussed here is unique in the sense that the admissible set is a cross product of two rearrangement classes.
This problem is physically interesting as well. Let us go back to the membrane problem described above. In
that setting, the optimization problem (2) is asking for the best design of the membrane (the function ĥ), and
the optimal load distribution (the function f̂ ) which maximizes the quantity J .

2 Preliminaries

In this section we collect some well-known results.
Let � be a smooth bounded domain in R

N . For any E ⊂ � we denote the N -dimensional Lebesgue
measure of E , by LN (E). Let f, g : � → R be two measurable functions. We say f and g are rearrangement
of each other provided

LN ({x ∈ � : f (x) ≥ c}) = LN ({x ∈ � : g(x) ≥ c}),
for all c ∈ R. It is well known that if f ∈ L p(�), 1 ≤ p ≤ ∞, and g be a rearrangement of f , then g ∈ L p(�)
and in fact ‖ f ‖p = ‖g‖p, where ‖.‖p denotes the standard norm of L p(�). The rearrangement class by f is
denoted R[ f ], which comprises all functions that are rearrangements of f . The readers can study [2,3] for
more results about rearrangements of functions.

We say u ∈ H1
0 (�) is the weak solution of (1) whenever

∫

�

∇u · ∇v dx +
∫

�

huv dx =
∫

�

f v dx, for all v ∈ H1
0 (�). (3)

It is well known that u, the unique weak solution of (1), satisfies the following variational problem
∫

�

f u dx =
∫

�

|∇u|2 dx +
∫

�

hu2 dx

= max
w∈H1

0 (�)

⎧⎨
⎩2

∫

�

f w dx −
∫

�

hw2 dx −
∫

�

|∇w|2 dx

⎫⎬
⎭ . (4)

We now collect some useful lemmas to be applied later.

Lemma 2.1 ([3]) Let 1 ≤ p ≤ ∞ and q be the conjugate exponent of p. Let f0 ∈ L p(�). Then,

(i) R[ f0] , the weak closure of R[ f0] in L p(�), is compact with respect to Lq-topology on L p(�).
(ii) R[ f0] is convex.

Remark 2.2 Lq -topology on L p(�) is the weak topology for 1 ≤ p < ∞ and is the weak* topology for
p = ∞.
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Lemma 2.3 ([3]) Let f0 : � → R and g : � → R be two measurable functions. If every level set of g has
measure zero, then there exists an increasing function ϕ such that ϕ ◦ g ∈ R[ f0]. Furthermore, there exists a
decreasing function ψ such that ψ ◦ g ∈ R[ f0].
Lemma 2.4 ([3]) Let 1 ≤ p ≤ ∞ and q be the conjugate exponent of p. Let f0 ∈ L p(�) and g ∈ Lq(�).
Thus

(i) If there is an increasing function ϕ such that ϕ ◦ g ∈ R[ f0] then
∫

�

f g dx ≤
∫

�

(ϕ ◦ g)g dx, for all f ∈ R[ f0].

(ii) If there is a decreasing function ψ such that ψ ◦ g ∈ R[ f0] then
∫

�

f g dx ≥
∫

�

(ψ ◦ g)g dx, for all f ∈ R[ f0].

Lemma 2.5 ([2]) Let 1 ≤ p ≤ ∞ and q be the conjugate exponent of p. Let f0 ∈ L p(�) and � : L p(�) → R

be convex.

(i) Suppose that � is sequentially continuous in the Lq-topology on L p(�). Then � attains a maximum value
relative to R[ f0].

(ii) Suppose that � is strictly convex, that f ∗ is a maximizer for � relative to R[ f0] and that g is a member
of sub-gradient of � at f ∗. Then f ∗ = ϕ ◦ g almost everywhere in � for some increasing function ϕ.

3 The inverse of −� + hI

Let h be a non-negative function in L∞(�) and I stand for identity operator. Let Kh : L2(�) → H1
0 (�)

denote the inverse of −�+ hI with Dirichlet homogeneous boundary conditions on ∂�. Let f ∈ L2(�), thus
Kh( f ) is the unique weak solution of problem (1) corresponding to f and h. In the following, we prove some
properties of Kh .

(P1) Kh is a bounded linear operator.

Proof From (4) and Hölder’s inequality we infer that
∫

�

|∇(Kh( f )|2 dx ≤
∫

�

f Kh( f ) dx ≤ ‖ f ‖2‖Kh( f )‖2.

By continuous imbedding of H1
0 (�) into L2(�), see [1], there exists a positive constant C such that

‖Kh( f )‖ ≤ C‖ f ‖2. (5)

Here, ‖.‖ = (
∫
�

|∇(.)|2 dx)1/2 is equivalent norm in H1
0 (�). Therefore, Kh is a bounded (continuous)

linear operator. �
Remark 3.1 By compact imbedding of H1

0 (�) into L2(�), see [1], we infer that Kh is a compact operator.

(P2) Kh is symmetric; that is,
∫

�

f Kh(g) dx =
∫

�

gKh( f ) dx for all f, g ∈ L2(�).

Proof It is clear from (3). �
(P3) Kh is positive; that is,

∫
�

f Kh( f ) dx ≥ 0 for all f ∈ L2(�).

Proof It is clear from (4). �

123



430 Arab J Math (2013) 2:427–433

4 Maximax optimization

We begin with the following theorem.

Theorem 4.1 Let h be a non-negative function in L∞(�) and f0 ∈ L2(�). Then the maximization problem

max
f ∈R[ f0]

J ( f, h),

is solvable; that is, there exists fh ∈ R[ f0] such that

J ( fh, h) = max
f ∈R[ f0]

∫

�

f Kh( f ) dx .

Moreover, there exists an increasing function ϕ such that fh = ϕ ◦ Kh( fh) almost everywhere in �.

Proof First, we show that the functional

J ( f, h) =
∫

�

f Kh( f ) dx

is Gâteaux differentiable with respect to f ∈ L2(�). Let f, g ∈ L2(�). Since Kh is symmetric, Property (P2)
of Kh , we infer that

〈D1 J ( f, h), g〉 := lim
t→0

J ( f + tg, h) − J ( f, h)

t
= 2

∫

�

gKh( f ) dx . (6)

J (., h) is weakly sequentially continuous, because Kh is a linear compact operator; see Remark 3.1. Now, we
show that J (., h) is strictly convex. For any h ∈ L∞(�), f ∈ L2(�) and w ∈ H1

0 (�) define

�(w, f, h) := 2
∫

�

f w dx −
∫

�

hw2 dx −
∫

�

|∇w|2 dx .

So, from (4) we deduce
J ( f, h) = sup

w∈H1
0 (�)

�(w, f, h).

Let t ∈ [0, 1], h ∈ L∞(�) and f, g ∈ L2(�), we have

�(w, t f + (1 − t)g, h) = t�(w, f, h) + (1 − t)�(w, g, h);
thus

J (t f + (1 − t)g, h) ≤ t J ( f, h) + (1 − t)J (g, h).

Hence, J (., h) is convex. Suppose for some t ∈ (0, 1), we have

J (t f + (1 − t)g, h) = t J ( f, h) + (1 − t)J (g, h).

Thus,

�(Kh(t f + (1 − t)g), t f + (1 − t)g, h) = t�(Kh( f ), f, h) + (1 − t)�(Kh(g), g, h);
so

t�(Kh(t f + (1 − t)g), f, h) + (1 − t)�(Kh(t f + (1 − t)g), g, h)

= t�(Kh( f ), f, h) + (1 − t)�(Kh(g), g, h).

Therefore, Kh(t f + (1 − t)g) = Kh( f ) = Kh(g) almost everywhere in �. Since Kh is linear and invertible,
we deduce f = g almost everywhere in �. Therefore J (., h) is strictly convex. Now by applying Lemma 2.5
we infer that there exists fh ∈ R[ f0] such that

J ( fh, h) = max
f ∈R[ f0]

J ( f, h) =
∫

�

fh Kh( fh) dx,

and fh = ϕ ◦ Kh( fh) almost everywhere in �, for some increasing function ϕ. �
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Now, we are ready to prove the following theorem.

Theorem 4.2 Let h0 be a non-negative function in L∞(�) and f0 ∈ L2(�) such that LN ({x ∈ � : | f0(x)| =
c h0(x)}) = 0 for all c ≥ 0. Then the following maximax optimization problem is solvable

max
h∈R[h0]

max
f ∈R[ f0]

J ( f, h).

Proof Theorem 4.1 implies that we must prove the following optimization problem is solvable

γ = max
h∈R[h0]

L(h), (7)

where L(h) := J ( fh, h). From Hölder’s inequality, the continuous embedding of H1
0 (�) into L2(�) and

inequality (5), for all h ∈ R[h0] we have

|L(h)| =
∣∣∣∣∣∣
∫

�

fh Kh( fh) dx

∣∣∣∣∣∣ ≤ ‖ fh‖2 ‖Kh( fh)‖2

≤ C‖ fh‖2 ‖Kh( fh)‖
≤ C‖ fh‖2

2 = C‖ f0‖2
2,

where C denotes a positive constant that can change from line to line. Thus, L is bounded on R[h0]. Assume
{hi } to be a maximizing sequence for the problem (7). For simplicity we set fi := fhi and Ki := Khi . From (5),
we infer that {Ki ( fi )} is a bounded sequence in H1

0 (�), thus there exists a subsequence, still denoted {Ki ( fi )},
that converges weakly to v ∈ H1

0 (�). The compact imbedding of H1
0 (�) into L2(�) implies that {Ki ( fi )}

converges strongly to v in L2(�). Since {hi } and { fi } are bounded sequences in R[h0] and R[ f0], respectively,
by applying Lemma 2.1, there exist subsequences of those, still denoted {hi } and { fi }, and η ∈ R[h0] and
ξ ∈ R[ f0] such that {hi } converges weakly* to η in L∞(�) and { fi } converges weakly to ξ in L2(�). Now
by the weak lower semicontinuity of Dirichlet integral, we drive

γ = lim
i→∞ L(hi )

= lim
i→∞

⎧⎨
⎩2

∫

�

fi Ki ( fi ) dx −
∫

�

hi K 2
i ( fi ) dx −

∫

�

|∇Ki ( fi )|2 dx

⎫⎬
⎭

≤ 2
∫

�

ξv dx −
∫

�

ηv2 dx −
∫

�

|∇v|2 dx . (8)

From (3), we have∫

�

∇Ki ( fi ) · ∇w dx +
∫

�

hi Ki ( fi )w dx =
∫

�

fiw dx, for all w ∈ H1
0 (�).

Thus, when i → ∞, we deduce that∫

�

∇v · ∇w dx +
∫

�

ηvw dx =
∫

�

ξw dx, for all w ∈ H1
0 (�).

Therefore v is the weak solution of the following problem

− �v + η(x)v = ξ(x) in �, and v = 0 on ∂�. (9)

Since LN ({x ∈ � : | f0(x)| = c h0(x)}) = 0 for all c ≥ 0, from (9) we infer that every level set of v has
measure zero. So, Lemma 2.3 and Lemma 2.4 imply that there exist f̂ ∈ R[ f0] and ĥ ∈ R[h0] such that∫

�

ξv dx ≤
∫

�

f̂ v dx and
∫

�

ηv2 dx ≥
∫

�

ĥv2 dx . (10)
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Now from (8) and (10), we infer that

γ ≤ 2
∫

�

f̂ v dx −
∫

�

ĥv2 dx −
∫

�

|∇v|2 dx

≤ J ( f̂ , ĥ) ≤ J ( fĥ, ĥ) = L(ĥ) ≤ γ.

Therefore γ = L(ĥ) = J ( fĥ, ĥ) and this completes the proof of the theorem. �
Remark 4.3 Assume that

J ( fĥ, ĥ) = max
h∈R[h0]

max
f ∈R[ f0]

J ( f, h).

We set û = Kĥ( fĥ). For any h ∈ R[h0] we have

J ( fĥ, ĥ) = 2
∫

�

fĥ û dx −
∫

�

ĥ(û)2 dx −
∫

�

|∇û|2 dx

≥ J ( fĥ, h) ≥ 2
∫

�

fĥ û dx −
∫

�

h(û)2 dx −
∫

�

|∇û|2 dx .

Thus ∫

�

ĥ(û)2 dx ≤
∫

�

h(û)2 dx for all h ∈ R[h0]. (11)

Now, by applying (11) and the similar methods that we used in Lemma 4.2 and Theorem 4.3 of [11], we infer
that there exists a decreasing function ψ, such that ĥ = ψ ◦ û almost everywhere in �. Therefore, from this
fact and Theorem 4.1, we deduce that

J (ϕ(Kĥ( fĥ)), ψ(Kĥ( fĥ))) = max
h∈R[h0]

max
f ∈R[ f0]

∫

�

f Kh( f ) dx .
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