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Abstract The ability to share the attention with another in-
dividual is essential for having intuitive interaction. Two rel-
atively simple, but important prerequisites for this, saliency
detection and attention manipulation by the robot, are identi-
fied in the first part of the paper. By creating a saliency based
attentional model combined with a robot ego-sphere and by
adopting attention manipulation skills, the robot can engage
in an interaction with a human and start an interaction game
including objects as a first step towards a joint attention.

We set up an interaction experiment in which participants
could physically interact with a humanoid robot equipped
with mechanisms for saliency detection and attention ma-
nipulation. We tested our implementation in four combina-
tions of activated parts of the attention system, which re-
sulted in four different behaviours.

Our aim was to identify those physical and behavioural
characteristics that need to be emphasised when implement-
ing attentive mechanisms in robots, and to measure the user
experience when interacting with a robot equipped with at-
tentive mechanisms.

We adopted two techniques for evaluating saliency detec-
tion and attention manipulation mechanisms in human-robot
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interaction: user experience as measured by qualitative and
quantitative questions in questionnaires and proxemics esti-
mated from recorded videos of the interactions.

The robot’s level of interactiveness has been found to be
positively correlated with user experience factors like ex-
citement and robot factors like lifelikeness and intelligence,
suggesting that robots must give as much feedback as pos-
sible in order to increase the intuitiveness of the interaction,
even when performing only attentive behaviours. This was
confirmed also by proxemics analysis: participants reacted
more frenetically when the interaction was perceived as less
satisfying. Improving the robot’s feedback capability could
increase user satisfaction and decrease the probability of
unexpected or incomprehensible user movements. Finally,
multi-modal interaction (through arm and head movements)
increased the level of interactiveness perceived by partici-
pants. Positive correlation has been found between the ele-
gance of robot movements and user satisfaction.

Keywords Measuring interaction · Attentional models ·
Multimodal interaction · Human-robot interaction ·
Proxemics

1 Introduction

Current social robotic systems require interaction protocols
which decrease the intuitiveness of the interaction itself,
causing frustration and despair in the user. Recently, inter-
est has been focused on measuring the efficacy of robot be-
haviours and its perceived intelligence based on the evalua-
tion from human users [1]. Indeed, measuring human-robot
interaction could suggest what to improve in the cognitive
abilities and in the appearance of the robot and how to im-
prove it.
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When human-robot interaction fails, the reason most of-
ten lies in the fact that the robot and the human try to com-
municate about different things and that the human partner
has wrong expectations of the robotic partner. Several pre-
requisites have been identified [2, 3] about the features (both
physical and cognitive) that let a robot interact effectively
and naturally with a human user.

Here, we stress the fact that robots need to reach joint
attention with the users for having successful interactions.
This has not been achieved so far, since joint attention not
only requires visual attention on the same visual features in
the environment, but also skills in attention detection, atten-
tion manipulation, social interaction skills and even inten-
tional understanding [2]. Without joint attention a robot will
not be able to achieve a degree of interaction comparable to
a human-human interaction.

Previously, we implemented an attentive mechanism
which adopts two fundamental skills for joint attention [4].
In this paper, we focus on measuring the quality of this im-
plementation. By evaluating robot skills, in fact, we want
to identify those characteristics that need to be emphasised
when implementing attentive mechanisms in robots and to
identify correlations between them.

Several metrics for measuring HRI have been proposed,
from measuring the ability of a robot to engage in tempo-
rally structured behavioural interactions with humans [5], to
evaluating robot social effectiveness from different points
of view (engineering, psychological, sociological) [6]. We
adopted a series of metrics based on cognitive science stud-
ies about measuring social skills in humans and based on
studies about how robots are perceived by humans and
whether this perception affects the expectation humans have
about robot intelligence (Godspeed questionnaire [7]).

Quantifying human behaviour usually requires the anal-
ysis of video recordings, questionnaires and interviews. In
this work, we used the first two methods for quantifying the
quality of robot behaviour. We set up four interaction exper-
iments between a humanoid robot and a user and recorded
them. After each experiment, the user was asked to fill a
questionnaire on the quality of the interaction and on the per-
ception of several functional and physical properties of the
robot. To the best of our knowledge, very few studies have
been done so far on correlating human perception of robot
skills (measured with the Godspeed questionnaire, whose
reliability was tested) with proxemic distances.

In [8], Takayama and Pantofaru adopted part of the God-
speed questionnaire in their measurements, finding that peo-
ple who held more negative attitudes toward robots felt less
safe when interacting with them. They also studied human
personal space around robots, finding that experience with
owning or experience with robots decreases the personal
space that people maintain around robots and a robot look-
ing people in the face influences proxemic behaviours. The

latter suggests to perform proxemics analysis when measur-
ing attentive mechanisms in robots.

The article is organised as follows: Section 2 introduces
the saliency detection and attention manipulation skills im-
plemented on the Nao robot from Aldebaran; Section 3
shows the experimental setup: experimental procedure, the
robot platform, structure of the participants, measurements
performed, results and discussion; finally, in Sect. 4 we de-
pict the achievements of the current work and how we would
like to continue it.

2 Saliency Detection and Attention Manipulation

In this section, we will provide a short overview of the sys-
tem we implemented on the humanoid robot Nao by which
we provide the robot with both saliency detection and at-
tention manipulation skills [9]. For full description and an
overview of work in this area, please see [4].

Attention is a cognitive skill, studied in humans and ob-
served in some animal species, which lets a subject con-
centrate on a particular aspect of the environment without
the interference of the surrounding. There is evidence from
developmental psychology studies that the development of
skills to understand, manipulate and coordinate attentional
behaviour lays the foundation of imitation learning and so-
cial cognition [10].

In our world, we are constantly surrounded with items,
such as objects, people and events, which stand out to their
neighbouring items. This is represented with the saliency
of those items. Saliency detection represents an attentional
mechanism, through which those items are discovered, and
it enables humans to shift their limited attentional resources
to those objects that stand out the most.

There are two approaches that can be combined—
a bottom-up, pre-attentive process and a top-down process
influenced by motivation. Bottom-up detection uses differ-
ent low-level features (e.g. motion, colour, orientation and
intensity) for saliency detection. Top-down detection relies
on high-level features, and it is highly influenced by our
current goals and intentions. The combination of bottom-up
and top-down processes is highly inspired by similar mech-
anisms in humans [11, 12].

Figure 1 gives an overview of the attention mechanism
we implemented on the humanoid robot Nao.

For saliency detection, we used optic flow and face detec-
tion filters that store the information in a robot ego-sphere,
and a marker detector for simplified object detection. Each
feature detector represents one filter, and by applying it to
the input, a saliency map is generated. The robot directs its
attention to the point which has the highest saliency. Due
to Nao’s computational limitations, the ego-sphere is rep-
resented with a tessellated sphere, where information about



Int J Soc Robot (2013) 5:139–152 141

Fig. 1 Overview of the attentive mechanism. Frames are analysed by
three different filters which are activated by the motivation system. Op-
tic flow and face detection filters feed the ego-sphere, while the marker
detector filter stores objects in a different memory. The motivation sys-
tem activates or deactivates filters and movements according to its cur-
rent state. See Sect. 3 and refer to [4] for further information

salient areas is stored in the edges of the sphere, like in [13,
14]. To simulate a short-term memory, habituation, inhibi-
tion and decay mechanisms are employed [15].

Pointing is a way for manipulating the attention of some-
one else. It is still not clear whether this behaviour is innate
or if it results from reaching behaviours in its first develop-
mental stage. Recognising and performing pointing gestures
is very important for being able to share attention with an-
other person [2].

We implemented learning through self-exploration on a
humanoid platform [16]. We used motor babbling for learn-
ing the mapping between different sensory modalities and
for equipping the robot with prediction abilities of sensory
consequences (in this case, the position of the hand of the
robot) from control commands applied to its neck and its
arm [3]. Then, we equipped the robot with prediction abil-
ities of arm movement commands that allowed for and re-
sulted in pointing towards an object presented outside the
reach of the robot [9].

Finally, we implemented a partially preprogrammed mo-
tivation system to show how different behaviours can re-
sult in the activation or deactivation of parts of the atten-
tion system, actually implementing a top-down approach for
saliency detection, or in the activation of attention manipu-
lation.

3 Experiment

The proposed experiment aimed at several goals: test the
quality of the implemented saliency detection and attention
manipulation mechanisms; identify those physical and be-
havioural characteristics that need to be emphasised when
implementing attentive mechanisms in robots; measure the
user experience when interacting with a robot equipped with
attentive mechanisms; find correlations between heteroge-
neous robot features perceived by the participants during
the exhibition of attentive mechanisms; and analyse the dif-
ferences in the perception depending on the different be-
haviours performed by the robot.

We tested our implementations in four combinations of
activated parts of the attention system, which resulted in four
different behaviours:

Exploration. In this state, the robot is attracted by move-
ments, faces and objects, actually looking like exploring
the surrounding environment.

Interaction. This behaviour reproduces the experiment done
in [9]. The robot is looking and pointing at an object, if
there is one.

Interaction avoidance. This behaviour implements the loss
of interest and boredom. In this state the robot looks
away from the object handed over by the interacting
partner.

Full interaction. This behaviour is composed as a sequence
of the previous behaviours. The first performed action
is exploration. Once the robot has detected a person to
interact with and an object which can be used to draw
the attention of the user, its motivation state changes to
interaction, and after a certain period it switches to in-
teraction avoidance, which is followed by exploration.

For a full description of the behaviours, please refer to [4].

3.1 Hypotheses

We had several expectations about the outcomes of the ex-
periment. We expected that the level of interactiveness of the
robot was positively correlated with the level of excitement
and perceived intelligence. Playing with the robot in the in-
teraction state might be more exciting and satisfactory than
playing with it in the avoid interaction one.

Multi-modal interaction (through arms and head move-
ments) might increase the perception of interactiveness; on
the other side, a less interactive behaviour might decrease
user satisfaction and cause the participants to behave ner-
vously.

Anthropomorphic attributes might be positively corre-
lated with the perception of intelligence.

Reaching commands can be perceived as a desire to grasp
the object. This has been demonstrated in a preliminary ex-
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Fig. 2 Experimental setup showing interaction between the Nao and a
person

periment, in which the participants were asked how they in-
terpreted the movements of the robot performing the inter-
action behaviour.

3.2 Procedure

The experiments consisted of the robot performing the be-
haviours described in the previous section in four separate
interaction sessions, one per each of the four behaviours.
The experiment supervisor manually activated or deacti-
vated them. Figure 2 shows a frame taken from a typical
interaction session. The user sat in front of the robot at a
distance of ca. 90 cm. For each person, each interaction
test lasted one minute. We recorded the interaction with a
standard camera (resolution 640 × 480) placed at ca. 2 me-
ters perpendicularly to the robot-user axis. Beside the table
where the robot was standing there was a scale drawn on a
whiteboard for the visual estimation (estimated average er-
ror: 5 cm) of the distance between the nose of the user and
the head of the robot and from the hand of the user and the
head of the robot; according to the type of interaction, we
noticed that the users move their hands closer to the robot.

After each of the four interaction sessions, the partici-
pants were asked to fill a questionnaire about the quality of
the interaction with the robot and about the perception of
robot behaviours.

3.3 Robot Platform

The robot platform is the Nao (version 3.3) from Aldebaran,
a humanoid robot around 57 cm tall. For the experiment,
we used only the degrees of freedom in the arms and the
neck. The lower camera is positioned below two eyes, which
resulted in the robot not seeing an object if it is brought close
to the eyes. For that reason two fake eyes were placed on the
sides of the lower camera, and the real eyes were covered
with a tape.

The attention mechanism was implemented in C++ us-
ing the framework of the Nao Team Humboldt [17]. The
attentional mechanism is fully executed onboard the robot
and there is no remote processing of the data. The robot is
connected to the computer through Ethernet. A robot con-
trol program is running on the computer which is used to
visualise the data and activate required modules for the at-
tentional mechanism in the framework.

We adopted such a robot for measuring the users’ expec-
tations about the robot’s skills due to its anthropomorphic
form. Moreover, its small child-resembling size could re-
duce users’ expectations, thus increasing the positive eval-
uation of the interactions.

Unfortunately, Nao has limited computational resources.
Our implementation, at the current state, lets the robot pro-
cess all the filters at a rate of approximately 7–8 frames per
second. The computationally most expensive algorithms are
those related to image processing, e.g. the face detection fil-
ter and the optical flow filter, which together take almost
110 ms per calculation. This results in slower movements
and reactions when the robot is in the exploration state and
in the exploration part of the full interaction state, which,
we expect, could affect the intuitiveness of the interaction.
However, in a preliminary experiment, the participants rated
the speed of the robot as good. An interesting research ques-
tion could be what is the proper movement speed a robot
might exhibit in order to be perceived as harmless. We in-
cluded this topic in the future development of the experi-
ment. Furthermore, in the current experiment, although the
fastest processing was in interaction avoidance, people per-
ceived the robot as less responsive than during interaction
and full interaction.

3.4 Participants

In total 28 people participated in the survey, which results
in a total of 112 questionnaires (four questionnaires per par-
ticipant, one for each interaction). Some participants missed
to answer some questions, but those were only a few ques-
tions. It is interesting to note that few participants had neg-
ative or neutral responses in all four experiments, regardless
of the experiment, together with comments saying that Nao
did not want anything because it is a machine. This might be
perceived as a negative bias towards robots.

Of 28 participants, 8 were female (28.57 %) and 20
were male (71.43 %). There were 17 Germans, 2 Italians,
2 Serbians, 2 Poles, 1 Czech, 1 Dutch, 1 Estonian and 1
French. Regarding previous experience with robots, 25 per-
sons (89.29 %) had none and 3 (10.71 %) had previous
experience—one with industrial robots, one with Aldebaran
Nao and one with Lego Mindstorms. The average age of the
participants was 28.12 (σ = 5.64). Among the participants,
75 % had university level education and 25 % had high-
school level education.



Int J Soc Robot (2013) 5:139–152 143

Unfortunately, not all the participants allowed to be
filmed during their interaction because of privacy reasons
(even though we informed them that the data will be kept
anonymous and videos will not be published against their
wish). The video database is composed of 10 videos for ex-
ploration, 7 for interaction, 8 for avoid interaction and 9 for
full interaction.

3.5 Measurements

Only recently, performance criteria different from those typ-
ical for industrial robots have been adopted for measuring
the success of social and service robots. Current criteria lie
within the satisfaction of the user [18].

We decided to adopt two techniques for evaluating the
interaction: questionnaires and proxemics estimated from
recorded video sequences of the interaction. So far, we
wanted to adopt only metrics related to socio-cognitive skill
perception instead of measuring the affective state of the
user through the use of physiological sensors.

3.5.1 Questionnaires

We conducted a qualitative, anonymous survey to evaluate
how people perceive their interaction with the Nao. Ques-
tionnaires are often used to measure the user’s attitude. The
first encountered problem was related to what type of ques-
tionnaire to adopt. Developing a valid questionnaire can take
a considerable amount of time and the absence of standard-
isation makes it difficult to compare the results with other
studies. That is why we decided to adopt standardised mea-
surement tools for human-robot interaction, in addition to
some metrics we found interesting for our research. We
adopted as a part of our survey the Godspeed questionnaire
[7] which uses semantic differential scales for evaluating
the attitude towards the robot. Such a questionnaire contains
questions (variables) about five concepts (latent variables):
Anthropomorphism, Animacy, Likeability, Perceived Intel-
ligence and Perceived Safety (for a detailed description and
for the set of questions, please refer to [7]).

Anthropomorphism refers to the attribution of human fea-
tures and behaviours to non-human agents, such as animals,
computers or robots. Anthropomorphism variables were
(left value scored as 1, right value scored as 5): fake–natural,
machinelike–humanlike, unconscious–conscious, artificial–
lifelike, moving rigidly–moving elegantly.

Animacy is the property of alive agents. Robots can per-
form physical behaviours and reactions to stimuli. The par-
ticipants’ perception about robot animacy can give impor-
tant insights for improving robot skills. Variables were:
dead–alive, stagnant–lively, mechanical–organic, artificial–
lifelike (different from the one in anthropomorphism, as re-
lated to the animacy), inert–interactive, apathetic–responsive.

Likeability may influence the user’s judgments. Some
studies indicate that people often make important judgments
within seconds of meeting a person and it is assumed that
people are able to judge also a robot [7]. Likeability vari-
ables were: dislike–like, unfriendly–friendly, unkind–kind,
unpleasant–pleasant, awful–nice.

Perceived Intelligence is one of the most important
metrics for evaluating the efficacy of the implemented
skills. It can depend on robot competence, but the dura-
tion of the interaction is also one of the most influenc-
ing factors, as users can become bored if the interaction
is long and the vocabulary of the robot’s behaviours is
limited. Variables were: incompetent–competent, ignorant–
knowledgeable, irresponsible–responsible, unintelligent–
intelligent, foolish–sensible.

Perceived Safety is a metric for estimating the user’s level
of comfort when interacting with the robot and the percep-
tion of the level of danger. Variables were: anxious–relaxed,
agitated–calm, quiescent–surprised (this variable was re-
coded, as explained in the next paragraph).

The reliability of the questionnaire was analysed by its
authors, who claim that such questions have sufficient in-
ternal consistency and reliability; to confirm this, we com-
puted Cronbach’s alpha1 for each latent variable again. We
found that Cronbach’s alpha was negative (α = −1.111)
for the latent variable Perceived Safety, due to a negative
average covariance among items. This violated reliability
model assumptions for that set of variables, due to a mis-
coding of a variable. In fact, the questionnaire is written
in such a way that high values of one variable mean the
same thing as low values of the other variable; the mis-
coded variable was: Quiescent (scaled as 1) to Surprised
(scaled as 5), probably due to the fact that participants in-
tended quiescence as a synonym for calmness (the previous
variable was Agitated, coded as 1, or Calm, coded as 5).
After recoding the quiescent–surprised variable, the Cron-
bach’s alpha proved to be higher (αPerceived Safety = 0.839).2

We did not find any other problems with the rest of the la-
tent variables: αAnthropomorphism = 0.825, αAnimacy = 0.853,
αLikeability = 0.813, αPerceived Intelligence = 0.750.

In addition to the Godspeed questionnaire, we introduced
a new latent variable for measuring the concept of User
Satisfaction, with two variables: frustrating—exciting and
unsatisfying interaction—satisfying interaction (high Cron-
bach’s alpha: αUser Satisfaction = 0.799).

Open questions were also introduced about the under-
standing of the behaviour of the robot, its desires, its aim-
ing to interact or not, its successfulness, its gender (with the

1High Cronbach’s alpha values are those greater than 0.5, which spec-
ify that the used set of variables are good for defining a certain concept.
2Recoding represents inversion of the variable in the following manner:
1 = 5, 2 = 4, 3 = 3, 4 = 2, 5 = 1.
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explanation of the chosen one), its age, type of communi-
cation during the interaction, expectations about future im-
provements and differences between Nao and humans.

3.5.2 Proxemics

According to the sociological concept of proxemics, hu-
mans, as well as animals, use to define personal spheres
which delimit areas of physical distance that correlate re-
liably with how much people have in common [19]. The
boundaries of such spheres are determined by factors like
gender, age and culture. Coming inside the sphere of an-
other person may let him/her feel intimidated, or staying too
far can be seen as cold or distant. Four spheres were identi-
fied, according to [19]: Intimate Distance (from 0 to 45 cm),
reserved for embracing, touching, whispering; Personal Dis-
tance (from 45 to 120 cm), reserved for friends; Social Dis-
tance (from 1.2 to 3.6 m), reserved for acquaintances and
strangers; Public Distance (more than 3.6 m), reserved for
public speaking.

To the best of our knowledge, in human-robot interac-
tion, no assumptions about the existence of such boundaries
have been made. The focus has been pointed on identifying
those factors that influence interaction distance. Interaction
distance can be influenced by factors like user age or gender,
pet ownership, crowdedness in the environment or available
space, as shown in [8, 19]. However, their analyses did not
include users’ perceptions about the behaviour or features of
the robot.

We wanted to include proxemics measurement hoping to
find some correlations between interaction distance and the
factors treated in the questionnaire. We analysed participant
behaviour also from measuring the distances between the
face of the robot and the face of the user and between the
face of the robot and the hand of the user.3

As introduced in Sect. 3.2, proxemics analyses were done
by gathering data from video recorded during the interaction
sessions (Fig. 2 shows a sample frame). The user sat in front
of the robot at a distance of ca. 90 cm. We recorded the inter-
action with a standard camera (resolution 640 × 480) placed
at ca. 2 meters perpendicularly to the axis robot-user. Be-
side the table where the robot was standing there was a scale
drawn on a whiteboard for the visual estimation (estimated
average error: 5 cm) of the distance between the nose of the
user and the head of the robot and from the hand of the user
and the head of the robot. Videos were annotated manually:
every 5 seconds the face-face and face-hand distances were
visually estimated by the operator, manually projecting their
positions onto the scale drawn on the whiteboard.

3When interacting with the robot, participants did not use two hands
at the same time. Almost all of them performed movements only with
one arm, or at least they alternated between left and right. We registered
only the movements from the active one.

Participants were sitting on a chair (they all started at the
same distance to the robot), but they were told to feel free to
interact in any way they considered more appropriate. How-
ever, it happened only in very few cases (only 2 participants)
that they stood up. In both cases, we gathered the face-face
and face-hand distances as projected onto the horizontal line
parallel to the table.

3.6 Results

This section presents the quantitative evaluation of our ex-
periments.

In an earlier experiment we noticed some interesting pat-
terns [4, 9]. It seemed that if a person holds the object close
to the robot’s hand, then Nao’s pointing will be perceived
as a desire to grasp the object. This could indicate, along
with the hypothesis that pointing emerges from grasping,
that there is also a reverse connection—pointing can be per-
ceived as grasping, if the object is too close to the hand.4

Furthermore, most of the participants in the preliminary ex-
periment responded that Nao was either likeable or very
likeable and that the speed of experiment was good (out of
three possible answers: too fast, good and too slow), even
though the execution speed was lower than in the current
experiment. All participants in the preliminary experiment,
except one, had no previous experience with robots.

Figure 3 shows the means and the standard deviations of
the responses.

First, we checked whether the distributions of the col-
lected data are normal or not, in order to select the proper
statistical tests. For each variable (that is, for each question),
we looked at the superimposition of the histogram of the
data with a normal curve characterised by the mean and the
variance of the data. Almost all the histograms did not fit
well together with the corresponding normal curves. Thus,
we checked the kurtosis and the skewness of the data,5 in
order to have a more precise measurement of the normal-
ity of the distributions. The distributions of all the variables
related to the questionnaire had kurtosis and skewness be-
tween −2 and +2, while 17 out of 64 distributions related
to the variables of the proxemics analysis6 did not.

4The robot platform we used has no movable fingers and it is unable to
grasp an object.
5In general, when kurtosis and skewness are between −2 and +2, the
data is not too far away from a normal distribution. When that is not
the case, corrections (like Box-Cox transformations) can be applied to
the data in order to apply the tests that have assumptions of normality.
6For each of the four behaviours performed by the robot, we created
two variables for the average value and variance of the distance be-
tween the face of the Nao and the nose of the participant for the fol-
lowing cases: during the first 15 seconds of the interaction, between the
15th second and the 45th second of the interaction, and during the last
15 seconds of the interaction (in total 6 variables). The same variables
were created for analysing the distance between the face of the Nao
and the user’s hand closest to the robot.
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Fig. 3 These graphs show the results taken from the Godspeed questionnaire

Due to the non-normality of such distributions, it seems
to be more appropriate applying non-parametric statistical
tests for the whole analysis. However, the use of ANOVA on
Likert-scale data and without the assumption of normality
of the distributions of the data to be analysed is controver-
sial. In general, researchers claim that only non-parametric
statistics should be used on Likert-scale data and when the
normality assumption is violated. Vallejo et al. [20], instead,
found that the Repeated Measures ANOVA7 was robust to-
ward the violation of normality assumption. Simulation re-
sults of Schmider et al. [21] confirm also this observation,
since they found in their Monte Carlo study that the empiri-

7Repeated measures ANOVA compare the average score for a single
group of subjects at multiple time periods (observations).

cal Types I and II errors in ANOVA were not affected by the
violation of assumptions.

3.6.1 Correlations

A Spearman’s Rank Order correlation8 was run to deter-
mine the relationship between perceived factors and be-
tween them and average human-robot distances. Each run
was done for each experimental session (exploration, inter-
action, interaction avoidance and full interaction).

8Spearman’s correlation coefficient is non-parametric, looks at ranked
(coded) variables (without looking at the data directly) and does not
have the normality assumption on the distributions, thus it can be used
for skewed or ordinal variables. We ran the correlation with 2-tailed
test of significance. Missing values were excluded with cases pairwise.
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Tables 1 and 2 show some of the most relevant correla-
tions. In addition to the data shown in the tables, it has to
be noted that in the exploration test there was a strong, pos-
itive correlation between almost all the anthropomorphism
variables and the perceived intelligence attributes related to
competence and knowledge; in interaction, the higher the
likeability of the robot, the higher the variance of face-
face distance during all the interaction tests (r = 0.805,
P = 0.029, N = 7); in full interaction, perceived intelli-
gence was found to be positively correlated with almost all
the other variables (except those related to perceived safety)
with r > 0.5 and almost always significant at the 0.01 level.

3.6.2 Repeated Measures ANOVA

Because the participants of the four different observations
were the same in each group, we adopted the Repeated mea-
sures ANOVA test (post-hoc test using Bonferroni correc-
tion) for the analysis of variances. Also known as within-
subjects ANOVA test, repeated measures ANOVA is the
equivalent of the one-way ANOVA but for related, not inde-
pendent groups. We performed the test on all the dependent
variables.9

Post-hoc tests revealed that the four different behaviours
performed by the robot have not changed significantly the
participants’ perception of the anthropomorphic attributes
related to naturalness, humanlikeness, consciousness and ar-
tificiality. Table 3 shows the statistically significant results of
repeated measures ANOVA on the questionnaire variables.

Proxemics variables contain a high number of missing
values. In order to perform repeated measures ANOVA on
those variables, we had to replace missing values with mul-
tiple imputation (n = 20). New samples were created, where
proxemics information was inferred using the questionnaire
variables as predictors.10

9Mauchly’s test has been used as statistical test for validating re-
peated measures ANOVA. It tests the sphericity, which is related to
the equality of the variances of the differences between levels of the re-
peated measures factor. Sphericity, an assumption of repeated measures
ANOVA, requires that the variances for each set of difference scores
are equal. Sphericity can not be assumed when the significance level
of the Mauchly’s test is < 0.05. Violations of sphericity assumption
can invalidate the analysis conclusions, but corrections can be applied
to alter the degrees of freedom in order to produce a more accurate sig-
nificance value, like the Greenhouse-Geisser correction. When the sig-
nificance level of the Greenhouse-Geisser estimate is < 0.05, statistical
significant differences revealed by post-hoc test can be elicited from
the pairwise comparisons between the observations. Repeated Mea-
sures ANOVA does not tell where the differences between groups lie.
When repeated measures ANOVA is statistically significant (both with
sphericity assumption not violated or with Greenhouse-Geisser correc-
tion), post-hoc tests with multiple comparisons can highlight exactly
where these differences occur.
10For multiple imputation, all the available variables that can predict
the values of missing data should be included.

Table 4 shows the statistically significant results of the
repeated measures ANOVA on the proxemics variables.

3.6.3 Latent Growth Curve Model

A latent growth curve model was also used to assess the
change in user perception over the four behaviours. This
model uses a structural equation to estimate two latent vari-
ables, the slope and intercept, to assess the average linear
change across the measurements, where the individual mea-
surements are the indicators of the latents.11 The estimated
population distribution of the linear change (or growth) tra-
jectory, denoted by the slope and the intercept of a linear
function, are derived from this structural equation model.
The estimator selected for the procedure was a Bayesian es-
timator with non-informative priors.12 All calculations were
produced with Mplus 6.11.

The estimated slopes for many of the items were almost
all positive, with also positive credibility intervals, meaning
that there is a significant positive trend in the average score
from the first observation (exploration) to the last observa-
tion (full interaction).13

3.7 Discussion

Despite the small sample size of the data collected during
the experiments (especially regarding the proxemics anal-
ysis), the outcomes suggested many elements and features
that need to be carefully taken into account when develop-
ing attentive mechanisms for intuitive robot behaviour.

3.7.1 Godspeed questionnaire

The adoption of the Godspeed questionnaire allowed us to
test its qualities. Questionnaires are important tools in mea-
suring user perceptions and the Godspeed provided us with
a good instrument for measuring the quality of the imple-
mented robot behaviours. Its authors noted that comparing
different robots and their settings by means of the same mea-
surement index will help roboticists in making design de-
cisions. In [22], the indices of the Godspeed questionnaire
have been tested as measures of human-like characters. The

11The loadings are constrained to be 1 for the intercept latent and to 0
to 3 (depending of the time of measurement) for the slope latent.
12This estimation strategy was appropriate as the more commonly used
maximum likelihood estimator often produces biased (or often ines-
timable) results with such small sample sizes. The Bayesian estimator
is more robust to both small samples and violation of distributional
assumptions that could emerge from small samples.
13Further analysis can be done on piecewise linear growth, for breaking
up the curvilinear growth trajectories into separate linear components,
thus for analysing whether there was an increase or a decrease between
exploration and interaction, between interaction to interaction avoid-
ance, and so on.
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Table 1 Most relevant correlations (Part 1). For having the full tables, please ask the authors

Variables correlated Exploration Interaction Inter. avoidance Full interaction

R p N R p N R p N R p N

Anthropomorphism:
humanlike

Animacy: alive 0.581 0.001 28 0.654 0.000 28 0.665 0.000 28 0.546 0.003 28

Anthropomorphism:
humanlike

Animacy: interactive 0.513 0.005 28 0.605 0.001 27 Stat. not signif. 0.504 0.006 28

Anthropomorphism:
humanlike

Perc. Intelligence:
knowledgeable

0.416 0.031 28 0.562 0.003 26 0.571 0.002 27 0.606 0.001 27

Anthropomorphism:
humanlike

Perceived Intelligence:
competent

0.476 0.011 28 0.677 0.000 27 0.623 0.000 28 0.564 0.002 28

Anthropomorphism:
humanlike

Perceived Intelligence:
intelligent

Stat. not signif. 0.559 0.002 27 0.573 0.001 28 0.713 0.000 28

Anthropomorphism:
natural

Perc. Intelligence:
knowledgeable

0.498 0.008 27 0.557 0.003 26 Stat. not signif. 0.553 0.003 27

Anthropomorphism:
natural

Perc. Intelligence:
competent

0.565 0.002 28 0.612 0.001 27 Stat. not signif. 0.572 0.001 28

Anthropomorphism:
moving elegantly

Perc. Intelligence:
knowledgeable

0.697 0.000 26 0.399 0.044 26 0.654 0.000 27 0.422 0.028 27

Anthropomorphism:
moving elegantly

Perceived Intelligence:
competent

0.694 0.000 27 0.483 0.011 27 0.542 0.003 28 0.454 0.015 28

Anthropomorphism:
moving elegantly

Likeability: friendly Stat. not signif. Stat. not signif. −0.500 0.007 28 Stat. not signif.

Anthropomorphism:
lifelike

Variance Face-Hand
(15”–45”)

Stat. not signif. Stat. not signif. Stat. not signif. −0.786 0.012 9

Animacy: lifelike Likeability: friendly Stat. not signif. 0.663 0.001 23 −0.425 0.043 23 Stat. not signif.

Animacy: interactive Anthropomorphism:
lifelike

0.673 0.012 13 0.660 0.000 27 Stat. not signif. 0.556 0.002 28

Animacy: interactive Likeability: friendly 0.398 0.036 28 0.451 0.018 27 Stat. not signif. 0.655 0.000 28

Animacy: interactive Perceived Intelligence:
intelligent

0.462 0.013 28 0.705 0.000 26 0.403 0.033 28 0.619 0.000 28

Animacy: interactive User Satisf.: exciting 0.710 0.000 28 0.551 0.004 26 Stat. not signif. 0.706 0.000 28

Animacy: interactive User Satisf.: satisfying 0.470 0.012 28 0.687 0.000 26 Stat. not signif. 0.725 0.000 28

Animacy: responsive Average Face-Face
distance (60 s.)

0.633 0.037 11 Stat. not signif. Stat. not signif. Stat. not signif.

User Satisf.: satisfying
interaction

Anthropomorphism:
moving elegantly

0.505 0.007 27 0.482 0.011 27 Stat. not signif. 0.390 0.040 28

User Satisf.: satisfying
interaction

Anthropomorphism:
lifelike

0.576 0.002 26 0.653 0.000 27 Stat. not signif. 0.516 0.005 28

User Satisf.: satisfying
interaction

Animacy: responsive 0.696 0.000 28 0.722 0.000 27 Stat. not signif. 0.673 0.000 28

Perceived Safety:
quiescent

Average Face-Face
dist. (last 15”)

Stat. not signif. Stat. not signif. −0.879 0.009 7 Stat. not signif.

Perceived Safety:
quiescent

Average Face-Hand
dist. (last 15”)

Stat. not signif. Stat. not signif. −0.805 0.029 7 Stat. not signif.

results indicated significant and strong correlations among
some relevant indices and new indices have been proposed.
This matches the comments of most of the participants of
our experiments which complained about the similarity be-
tween many questions and about some high-level attributes
which were difficult to assign to the robot. The problem we

reported with the recorded variable and the previous notes
suggest to not adopt the original version of the Godspeed
questionnaire for further experiments, but rather its revisited
version.

To the best of our knowledge, no other study on atten-
tional mechanisms for robots has adopted the Godspeed
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Table 2 Most relevant correlations (Part 2). For having the full tables, please ask the authors

Variables correlated Exploration Interaction Inter. avoidance Full interaction

R p N R p N R p N R p N

Variance Face-Hand dist.
(0”–15”)

Perceived Safety:
quiescent

Stat. not signif. Stat. not signif. Stat. not signif. −0.670 0.048 9

Variance Face-Hand dist.
(60 s.)

Likeability: friendly Stat. not signif. 0.802 0.030 7 Stat. not signif. −0.673 0.047 9

Variance Face-Hand dist.
(60 s.)

Likeability: kind Stat. not signif. Stat. not signif. Stat. not signif. −0.738 0.023 9

Variance Face-Hand dist.
(60 s.)

Likeability: pleasant Stat. not signif. Stat. not signif. Stat. not signif. −0.829 0.006 9

Variance Face-Hand dist.
(60 s.)

User Satisf.:
satisfying interaction

Stat. not signif. Stat. not signif. Stat. not signif. −0.738 0.023 9

Variance Face-Face dist.
(15”–45”)

Likeability: friendly Stat. not signif. 0.809 0.028 7 Stat. not signif. Stat. not signif.

Average Face-Face dist.
(60 s.)

User Satisf.:
exciting

Stat. not signif. Stat. not signif. Stat. not signif. 0.709 0.032 9

Average Face-Face dist.
(60 s.)

Perc. Intellingence:
intelligent

Stat. not signif. Stat. not signif. Stat. not signif. 0.729 0.026 9

questionnaire as a metric. However, in [23], the authors stud-
ied the combined and individual contribution of gestures
and gazing to the persuasiveness of a story-telling robot
measuring user perception with the Godspeed questionnaire.
The robots used persuasive gestures (or not) to accompany
the persuasive story, and also used gazing (or not) while
telling the persuasive story. Their results indicated that only
gazing had a main effect on persuasiveness, while the use
of gestures did not. Also, the combined effect of gestures
and gazing on persuasiveness was greater than the effect
of either gestures or gazing alone. This study suggests that
adding multiple social cues can have additive persuasive ef-
fects, matching what we will discuss in the next subsection
about multi-modal interaction and efficient feedback sys-
tems.

3.7.2 Correlations

Correlation analysis confirmed our expectations and sug-
gested directions for improvement of robot attention mech-
anisms. Positive correlations between anthropomorphic at-
tributes and perceived intelligence confirmed that a robot
with human-like appearance can increase the level of its per-
ceived intelligence. However, an excessive human-like ap-
pearance can entail the interacting person having too high
expectations about the robot’s cognitive capabilities, which
can provoke disappointment whenever the robot does not
fulfill such expectations. We believe that the positive cor-
relations between the anthropomorphic attributes and the
perceived intelligence reflect a good balancing between
Nao’s human-like appearance and its implemented cogni-
tive capabilities. Confirming this hypothesis, most of the

participants did not try to communicate vocally with the
robot, suggesting that they were not expecting this inter-
action modality due to the absence of a mouth in the
robot’s face and due to any other robot’s verbal capabil-
ity.

Positive correlations between the robot’s interactiveness
and user excitement and perception of lifelikeness and intel-
ligence (see Table 1, correlations between Animacy: inter-
active and Perceived Intelligence: intelligent) suggested also
that interactive capabilities emerging from attention mecha-
nisms can increase the perceived level of intelligence of the
robot. Such results confirm also the thought that a robot has
to be highly interactive for being perceived as a highly intel-
ligent agent, and it has to be responsive for increasing user
satisfaction.

We believe that a relevant contribution in the user sat-
isfaction is given by the robot’s responsiveness and inter-
activity and it can be increased by improving its feedback
system. A well designed feedback system could reduce the
consequences of some of the robot limitations. In our exper-
iments, participants experienced issues related to the limited
field of view of the Nao (58◦ diagonal FOV). It is plau-
sible that humans expect of humanoids to have approxi-
mately matching characteristics, such as the field of view,
or two eyes for vision.14 During the experiments, partic-
ipants, without being aware of that, were often waving to
the robot or handing over the object out of the robot’s field
of view causing no reactions to it. This resulted in affect-
ing the perception of the robot’s responsiveness and inter-

14Video cameras are not located in the positions of the eyes on the Nao,
which leads to unmet expectations.
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Table 3 Statistically significant results of repeated measures ANOVA
on the questionnaire variables. Cases with sphericity assumption vi-
olated were corrected with Greenhouse-Geisser method. The table

shows the statistically significant pairwise comparisons (illustrating the
changes in means from an observation to another), taken from the post-
hoc test with Bonferroni correction

Variable Sphericity assumed From observ. To observ. Mean difference Std. error Significance

Anthr.: moving elegantly no 1 3 −0.889 0.252 0.010

2 3 −0.481 0.154 0.026

Animacy: alive yes 1 2 −0.75 0.203 0.006

1 4 −0.893 0.165 0.000

Animacy: lively yes 1 2 −1.222 0.284 0.001

1 4 −0.741 0.224 0.016

Animacy: organic no 1 2 −0.750 0.239 0.025

2 3 −0.500 0.159 0.024

Animacy: interactive yes

1 2 −0.815 0.251 0.019

2 3 1.222 0.202 0.000

3 4 −1.000 0.233 0.001

Animacy: responsive yes

1 2 −0.786 0.259 0.032

2 3 1.464 0.260 0.000

3 4 −1.214 0.243 0.000

Likeability: friendly no

1 3 1.000 0.230 0.001

2 3 1.250 0.270 0.001

3 4 −1.107 0.274 0.002

Likeability: kind yes

1 3 0.786 0.243 0.019

2 3 1.107 0.248 0.001

3 4 −0.929 0.224 0.002

Likeability: pleasant no

1 3 0.929 0.185 0.000

2 3 1.250 0.222 0.000

3 4 −0.964 0.238 0.002

Likeability: nice no 1 3 0.714 0.198 0.008

2 3 0.786 0.249 0.023

Perceived Safety: quiescent yes 1 2 0.593 0.194 0.031

2 3 −0.481 0.154 0.026

User satisfaction: exciting no

1 2 −0.852 0.218 0.004

2 3 1.407 0.234 0.000

2 4 0.444 0.154 0.047

3 4 −0.963 0.285 0.014

User satisfaction: satisfying yes
1 2 −1.037 0.196 0.000

2 3 1.519 0.222 0.000

3 4 −0.963 0.229 0.002

activeness. A little foresight in the feedback system could
have probably reduced this effect, like changing the colour
of head LEDs, or emitting sounds, whenever the robot de-
tected something.

Multi-modal interaction (through arm or head move-
ments) increased the level of interactiveness perceived by
participants, as suggested by the correlations between An-
imacy:interactive and several other variables (see Table 1)
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Table 4 Statistically significant results of repeated measures ANOVA
on the proxemics variables. Cases with sphericity assumption violated
were corrected with Greenhouse-Geisser method. The table shows the
statistically significant pairwise comparisons (illustrating the changes
in means from an observation to another), taken from the post-hoc
test with Bonferroni correction. Missing values were replaced with

multiple imputations. The new dataset contained 560 samples. Abbre-
viations: AV: average; VAR: variance; FF: distance between the face
of the robot and the face of the user; FH: distance between the face of
the robot and the closest hand of the user; all: considering the whole
duration of the test (60 seconds)

Variable Sphericity assumed From observ. To observ. Mean difference Std. error Significance

AV FF all no 1 2 13.675 0.419 0.000

1 3 11.876 0.302 0.000

1 4 9.734 0.355 0.000

2 3 −1.799 0.360 0.000

2 4 −3.941 0.436 0.000

3 4 −2.142 0.280 0.000

VAR FF all no 1 2 −6.218 2.058 0.016

1 3 −82.552 3.014 0.000

1 4 14.558 1.914 0.000

2 3 −76.334 2.361 0.000

2 4 20.776 1.633 0.000

3 4 97.110 2.862 0.000

AV FH all no 1 2 14.767 0.544 0.000

1 3 18.439 0.547 0.000

1 4 21.423 0.539 0.000

2 3 3.672 0.294 0.000

2 4 6.656 0.314 0.000

3 4 2.985 0.307 0.000

VAR FH all no 1 2 20.337 3.861 0.000

1 3 −217.131 7.246 0.000

2 3 −237.468 6.718 0.000

2 4 −28.076 5.602 0.000

3 4 209.392 6.904 0.000

which during interaction were higher than when the robot
performed other behaviours.15 The consideration of [23]
about combining gestures and gazing for increasing the per-
suasiveness and the likeability of the robot matches our con-
sideration about multi-modal interaction. Elegance in move-
ment positively correlating with user satisfaction suggests
that the robot might perform smooth and natural movements
in order to increase the quality of the interaction.

A trustworthy and lifelike robot can be better accepted
as a companion or as a co-worker, where close interaction
is needed, as suggested by the negative correlation between
lifelikeness and face-face average distance recorded during
interaction (r = 0.805, P = 0.029, N = 7).

15During interaction, the robot performed arm and head movements
during the whole session.

3.7.3 Repeated Measures ANOVA

Repeated measures ANOVA results showed that the alive-
ness of the robot during exploration scored lower than dur-
ing interaction and full interaction, again supporting our ex-
pectation that multi-modal interaction increases the expres-
siveness of the robot behaviours (in exploration, the robot
performed only head movements). Again, more expressive
movements or a better designed feedback system could have
increased the level of perceived animacy, likeability and user
satisfaction.

The less the interaction was perceived as satisfactory,
the more often and the more frenetically the participants
moved their hand. Repeated measures ANOVA confirmed
that the variance of face-hand distance is higher during in-
teraction avoidance (the least satisfactory robot behaviour
for the users) than during the other behaviours. It is also in-
teresting to note how successful the interaction avoidance
behaviour was, by which the robot did cause frustration to
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the users, according to its motivation of avoiding the interac-
tion. Several participants commented this behaviour assign-
ing mental states to the robot, like shyness and angriness.

4 Conclusions

We have created a saliency based attentional model com-
bined with a robot ego-sphere and implemented it on a hu-
manoid robot. In human-robot interaction experiments using
this model, we show that different attentional behaviour of
the robot has a strong influence on the interaction as experi-
enced by the human.

We have shown that—even on robots with limited com-
putational capacities such as the Nao—it is possible to have
an ongoing interaction between the robot and a person.
Techniques used are a combination of bottom-up and top-
down processes of attention and an ego-sphere as a short-
term memory representation in combination with motion,
face and object detection.

The adopted questionnaires were useful for correlating
perceived physical and behavioural robot features with prox-
emics data. We noticed some trends suggesting that some of
the perceived variables could influence the distances of the
interaction.

Through the discussion of the results in the previous
section, we identified those characteristics that need to be
emphasised and those skills that have to be taken into ac-
count (like providing enough feedback during the interac-
tion) when implementing attentive mechanisms in robots.

For future experiments we plan to explore different ap-
proaches for dynamic weight assignment for different fil-
ters. We also plan to extend the system to include more dif-
ferent filters on the Nao robot (e.g. for audio localisation),
as well as to port the approach to other robot platforms.
It would be interesting to see how these attentional mod-
els would rate on other, non-humanoid platforms. Addition-
ally, the presented full interaction behaviour, consisting of
exploration, interaction and interaction avoidance, can be
applied to more complex scenarios, and we are planning to
explore this further. Gesture recognition and synthesis, and
behaviour recognition and execution would enable the robot
to better communicate its intentions and understand the in-
tentions of others. We believe that giving visual and audi-
tory feedback to the participant is of extreme importance for
increasing the intuitiveness of the interaction and the user
satisfaction.

Another interesting research question could be what is
the proper movement speed a robot might exhibit in order to
be perceived harmless. We included this topic in the future
development of the experiment.

We believe that these experiments represent a step in a
good direction toward reaching joint attention between a hu-

man and a robot. We showed that basic attention manipula-
tion is possible, even with simple robot platforms, such as
the Nao, and that participants will assign different charac-
teristics to it based on its behaviour.
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