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Abstract Software Effort Estimation (SEE) models can be used for decision-support
by software managers to determine the effort required to develop a software project.
They are created based on data describing projects completed in the past. Such data
could include past projects from within the company that we are interested in (WC
projects) and/or fromother companies (cross-company, i.e., CCprojects). In particular,
the use of CC data has been investigated in an attempt to overcome limitations caused
by the typically small size of WC datasets. However, software companies operate in
non-stationary environments, where changes may affect the typical effort required to
develop software projects. Our previous work showed that bothWC and CCmodels of
the past can become more or less useful over time, i.e., they can sometimes be helpful
and sometimesmisleading. So, how canwe know if andwhen amodel created based on
past data represents well the current projects being estimated?We propose an approach
called Dynamic Cross-company Learning (DCL) to dynamically identify which WC
or CC past models are most useful for making predictions to a given company at
the present. DCL automatically emphasizes the predictions given by these models in
order to improve predictive performance. Our experiments comparing DCL against
existing WC and CC approaches show that DCL is successful in improving SEE by
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emphasizing the most useful past models. A thorough analysis of DCL’s behaviour is
provided, strengthening its external validity.

Keywords Model-based software effort estimation · Machine learning ·
Cross-company learning · Online learning · Non-stationary environments

List of abbreviations and specialist terms

AddExp Additive expert ensemble machine learning approach
Bagging Bootstrap aggregating machine learning approach
Base learners Machine learning models composing an ensemble and their

corresponding learning algorithms
CC Cross-company; other companies. In this paper, we will use

the term CC loosely. For example, projects from different
departments within the same company could be considered
as CC projects if such departments employ largely different
practices

Data stream Sequence of chronologically ordered examples
DCL Dynamic cross-company learning approach proposed in this

work
DCL-F DCL using only filtering
DCL-N DCL using no dynamic weighting and no filtering
DCL-W DCL using only dynamic weighting
DDD Diversity for dealing with drifts machine learning approach
Δ Glass’ effect size
DWM Dynamic weight majority machine learning approach
EBA Estimation by analogy
Ensemble Set of machine learning models grouped together with the

aim of improving predictive performance
Functional size Software size measurement based on the amount of func-

tionality to be delivered by the software
Input attribute Independent variable; feature describing a project/example
ISBSG International Software Benchmarking Standards Group
k-NN k-Nearest neighbours machine learning approach
MAE Mean absolute error measure of predictive performance
ML Machine learning
MLP MultiLayer perceptron
Output attribute Dependent variable; feature that the machine learning

approaches aim to predict. In this work, this is the effort
Predictive performance Measure of how good the predictions/estimations are; accu-

racy of predictions/estimations
RBF network Radial basis function network; machine learning approach
Relevancy filtering Approach that eliminates CC projects that are too different

from the WC projects being predicted
Rguess Random guess
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RT Regression tree machine learning approach
SA Standardised accuracy measure of predictive performance
SEE Software effort estimation
Time step Moment in time when a new training example is received
Training example In this work, this is a project for which both the input and out-

put attributes are known. It can be used for training/updating
machine learning models

WC Within-company

1 Introduction

Software effort estimation (SEE) is the process of estimating the effort required to
develop a software project. Software effort is typically the main cost driver in software
projects (Jørgensen and Shepperd 2007; Stutzke 2006). Both over and underestima-
tions of effort can cause problems to a company. For instance, overestimations may
result in a company losing contracts or wasting resources, whereas underestimations
may result in poor quality, delayed or unfinished software projects.

SEE is a difficult task. Human-made effort estimations may be strongly affected
by effort-irrelevant and misleading information, such as the font or margin size of
specifications (Jørgensen and Grimstad 2011). Sometimes, software engineers may
not improve their effort estimations even after feedback about their estimates is pro-
vided (Gruschke and Jørgensen 2008). Therefore, several Machine Learning (ML)
approaches have been investigated to automatically build SEE models (Wen et al.
2012). However, SEE models created using ML might not capture some human fac-
tors that influence the effort required to develop software projects. Therefore, SEE
models should not be used as replacements for experts and experts should not blindly
trust such models. Instead, we believe that SEE models should be used as decision-
support tools to help experts to perform or re-think their estimations.

For example, if an expert estimation is similar to the estimation given by a model,
then we have an increased confidence on the estimate. If the two estimations differ
considerably, then the expert can analyse the project further to gain extra insights into
what effort best reflects the project. Depending on his/her further analysis, he/she may
decide to keep his/her own estimate, or adopt the model’s estimate, or an estimate in
between the two estimates. In short, we envision learnedmodels towork in conjunction
with human experts.

ML approaches create SEE models based on data describing projects completed in
the past. Such data could include past projects from within the company that we are
interested in (WC projects) and/or from other companies (CC projects). It has been
suggested that early SEE models such as COCOMO and SLIM need to be calibrated
to the context of specific companies based on data from within these companies in
order to work effectively (Boehm 1981; Kitchenham and Taylor 1984). Other authors
have also suggested that SEE models should be built based on WC data (Kok et al.
1990; DeMarco 1986). However, companies may face difficulties in terms ofWC data
collection, e.g. Kitchenham et al. (2007), (1) the time required to accumulate enough
data (Cherkassky and Mulier 1998) on past projects from a single company may be

123



502 Autom Softw Eng (2017) 24:499–542

prohibitive; (2) by the time the dataset is large enough (Cherkassky and Mulier 1998),
technologies used by the company may have changed, and older projects may no
longer be representative of current practices; and (3) care is necessary as data need to
be collected in a consistent manner.

In an attempt to overcome these problems, the use of CC models for SEE has been
investigated (Kitchenham et al. 2007; Kocaguneli et al. 2010;Menzies et al. 2013). CC
models are typically defined as those built using datasets containing data from several
companies. Several CC datasets are available for SEE (http://openscience.us/repo/)
and there are even organisations worldwide that use large proprietary CC datasets
with tool support to provide estimation and benchmarking services. An example is
the International Software Benchmarking Standards Group (ISBSG) (ISBSG 2011),
which provides tools to estimate effort and benchmark productivity using their CC
data. ISBSG also sells their CC data to those companies that wish to use their own
tools for estimation and benchmarking purposes.

However, studies comparing CC and WC SEE models suggested that CC models
typically perform similar or worse (and no better) thanWCmodels (Kitchenham et al.
2007). Amore recent study,Minku and Yao (2012a) further confirmed that CCmodels
can indeed sometimes perform worse than WC models. Nevertheless, this study also
revealed that CC models have the potential to outperform WC models depending on
the time period analysed (Minku and Yao 2012a). This finding is in accordance with
the fact that companies operate in non-stationary environments. For example, new
employees can be hired or lost, training can be provided, employees can become more
experienced, new types of software projects can be accepted, the management strategy
can change, new programming languages can be introduced, etc. Such changes can
affect the predictive performance of SEE models. In fact, both WC and CC models
of the past can become more or less useful over time, i.e., they can sometimes be
helpful and sometimes misleading (Minku and Yao 2012a). SEE models developed at
a certain point in time may become obsolete. In a similar way, models that were good
in the past and poor at present may become useful again in the future (Minku and Yao
2012a), as a company may start behaving similarly to a previous situation.

It is likely that whether or not CC data are useful as training data depends on how
similar they are to the current target projects. If the CC projects are similar to the
current target projects, they are likely to be useful for these projects. Otherwise, they
are not currently directly useful. It is also important to note that, even though the
terms CC and WC are widely used in software effort estimation, WC projects can be
themselves dissimilar/heterogeneous. Therefore, the terms CC and WC are not ideal.
In this paper, we will use the term CC loosely. For example, projects from different
departments within the same company could be considered as CC projects if such
departments employ largely different practices.

If one can successfully identify which CC and WC models are currently the most
useful ones, it may be possible to emphasise the right models to improve SEE. With
that in mind, this paper aims at answering the following research questions:

RQ1 How canwe knowwhichmodel from the past best represents the current projects
being estimated?

RQ2 Can that information help improving SEE?
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In order to answer these research questions, we propose an approach called Dynamic
Cross-companyLearning (DCL) able to identify themodels that reflectwell the current
projects being estimated automatically. It then emphasises these models in order to
improve SEE.

Our proposed approach was preliminarily presented in Minku and Yao (2012a). Its
mechanism to emphasize the best models has also been adopted by a later approach
(Minku and Yao 2014). However, those works did not investigate whether the mech-
anism to emphasize the right models really works as expected and why. They did not
validate the improvement in predictive performance that can be achieved by empha-
sising such models in comparison to an approach that always gives the same emphasis
to all models either. Even though DCL was compared against a WC model and a
new approach for dealing with non-stationary environments from the ML literature,
typical CC SEE approaches were not included in the analysis (Minku and Yao 2012a).
Since that study, a new competitive CC SEE approach has also been proposed (Turhan
and Mendes 2014). So, ideally DCL should be compared against that approach. Fur-
thermore, no previous work provided a thorough understanding of DCL’s behaviours.
A thorough understanding is important when proposing new approaches, as it can
strengthen its external validity by identifying the situations where the approach is
successful and the situations where it could fail. It can also give an insight into what
components of an approach make it successful and whether all of them are really nec-
essary; and into how robust the approach is to different parameter choices and types
of base learner. The current work performs new analyses addressing all these issues
(Sects. 6–10), providing a thorough validation of DCL and its ability to emphasise the
right models.

The rest of this paper is organised as follows. Section 2 presents related work.
Section 3 presents our formulation of the problem. Section 4 presents the proposed
approach Dynamic Cross-company Learning (DCL). The approach was preliminarily
presented in Minku and Yao (2012a) and answers part of RQ1. Section 5 describes
the datasets used in our study. Section 6 provides an analysis of the ability of DCL
to emphasize the right models and a detailed understanding of why and when DCL
is expected to succeed or fail to emphasize the right models. It investigates DCL’s
ability to answer RQ1. Section 7 validates DCL against an approach that always gives
the same emphasis to all existing SEE models, i.e., it evaluates the improvement
in SEE predictive performance achieved by emphasising the right models. It also
analyses which of the two main components of DCL is key for its improved predictive
performance. Section 8 compares DCL against a corresponding WC model and other
WC and CC approaches. Together, Sects. 7 and 8 answer RQ2. Section 9 presents a
study showing that DCL is robust against the type of model used in combination with
it. The study also reveals what types of model are likely to do better in combination
with DCL. Section 10 provides an analysis of DCL’s sensitivity to parameters. These
sections contribute to the external validity of our study. Section 11 discusses threats
to validity. Section 12 presents the conclusions, implications to practice and future
work.
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2 Related work

2.1 ML for SEE assuming no chronology

There has been much work on SEE in the software engineering literature (Jørgensen
and Shepperd 2007; Kitchenham et al. 2007). Algorithmic SEE models have been
studied for many years (Boehm 1981; Jørgensen and Shepperd 2007). Among them,
ML algorithms have been increasingly investigated as automated SEE approaches
(Jørgensen and Shepperd 2007). Most work usingML for SEE implicitly assumes that
the projects used to build predictive models have no temporal order/chronology. Such
work does not ensure that the software projects used to build a ML model are projects
completed before the projects used for testing this model. This means that models
used for making effort estimations are potentially trained with projects that would not
have been available for training in a real world scenario. This section explains some
work that assumes no chronology.

An important work in this area is that of Shepperd and Schofield (1997), who used a
k-Nearest Neighbour (k-NN) algorithm (Bishop 2006) based on normalised attributes
and Euclidean distance as the similarity measure. This approach is also known as
estimation by analogy. Despite being first used for SEE more than 15years ago, this
approach has been shown to be able to achieve competitive results in comparison to
recent techniques, depending on the dataset (Minku and Yao 2013a).

More recent work has been emphasising the relatively good predictive performance
achieved by ensembles of learning machines (Kultur et al. 2009; Minku and Yao
2013a; Kocaguneli et al. 2012) and local methods that make estimations based on
completed projects similar to the project being estimated (Minku and Yao 2013a;
Menzies et al. 2013; Bettenburg et al. 2012). For instance, Regression Trees (RTs),
Bagging ensembles ofMultiLayer Perceptrons (Bag+MLPs) and Bagging ensembles
of RTs (Bag+RTs) have been shown to perform well across several datasets (Minku
and Yao 2013a).

Several SEE studies have also tried to use CC models in an attempt to deal with
the fact that WC training sets are frequently not large enough to represent the whole
population of projects well, resulting in poor SEE models. For example, some studies
used CC training examples to augment their existing WC training sets (Lefley and
Shepperd 2003). The resulting augmented training set was then used to build models
to make predictions in the WC context. Others used solely CC training examples to
build such models (Briand et al. 2000; Wieczorek and Ruhe 2002). Both the former
and latter types of studies have found that the resulting models obtained similar or
worse predictive performance than models trained solely on WC training examples
(Kitchenham et al. 2007).

More recent work on relevancy filtering has demonstrated that eliminating CC
projects that are too different from the projects being predicted can more frequently
lead to CC models able to achieve similar predictive performance to WC models
(Turhan and Mendes 2014; Kocaguneli et al. 2014). However, measuring similarity
between training and target projects coming from different and potentially hetero-
geneous sources is not straightforward. This is because similarity here involves not
only the space of available input attributes, but also the output attribute (effort). Two
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projects that are similar in the input space may still be different in the output space if
they come from heterogeneous sources. This can happen, for example, as a result of
different interpretations given to the levels of subjective input attributes during data
collection, as a result of the unavailability of certain relevant input attributes, or as a
result of different definitions of work hours (e.g., based on unpaid overtime). There-
fore, measuring similarity based solely on the input attributes will not always work
well. This is a potential reason why CC SEE approaches based on similarity on the
input space such as Relevancy Filtering (Turhan and Mendes 2014; Kocaguneli et al.
2014) sometimes perform worse than WC models.

An insightful work (Menzies et al. 2013) in the context of predicting software effort
and defect proneness is based on clustering WC+CC examples, and then creating
prediction rules for each cluster. These prediction rules are aimed at finding features
that lead to less effort or fewer defects. Given a certain cluster, its neighbouring cluster
with the lowest required efforts/defects was referred to as the envied cluster. When
making predictions for WC projects from a cluster, rules created using only the CC
examples from the envied cluster were better than rules created using only the WC
examples from the envied cluster. So, the authors recommended to cluster WC+CC
examples, but to learn rules using solely the CC examples from the envied cluster.
These results are very encouraging and motivate further investigation of CC SEE, as
they suggest that CCmodels may also be able to achieve better predictive performance
than WC models in SEE.

2.2 Chronology-based ML for SEE

The approaches described above do not consider the chronology of the software
projects being used for creating and evaluating the SEE models. However, SEE
operates in online learning scenarios where new completed projects arrive over time
following a temporal order. Such scenarios are unlikely to be stationary, as software
development companies and their employees evolve with time. For example, new
employees can be hired or lost, training can be provided, employees can become more
experienced, new types of software projects can be accepted, the management strat-
egy can change, new programming languages can be introduced, etc. So, SEE models
developed at a certain point in time may become obsolete. For instance, Kitchenham
et al. (2002) reported that the best fitting regression model changed substantially over
time in a case study with a WC dataset. Premraj et al. (2005) also reported that pro-
ductivity changed over time in a study with a CC dataset. In order to reflect a real SEE
scenario more closely, the chronology of projects should ideally be considered when
developing/evaluating SEE models.

Existing approaches involving chronology-based ML for SEE can be divided into
three types: chronological splitting (Sect. 2.2.1), moving window (Sect. 2.2.2) and
time transfer (Sect. 2.2.3).

2.2.1 Chronological splitting approaches

MLevaluation procedures for stationary environments randomly split data into training
and testing data without taking chronology into account. The training data are used to
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create predictive models, whereas test data are used to estimate the models’ predictive
performances on unseen data. Examples of such procedures are repeated (random)
holdout and cross-validation. These procedures are unsuitable for evaluating predictive
models in non-stationary environments, because changes may cause examples from
different periods of time to have different characteristics. For instance, consider that the
productivity of a company significantly changed over time, affecting the relationship
between available input attributes and effort in a company. If we allow a ML model to
be trained using projects from the future to predict projects from the past, this model
will use examples that reflect the new relationship between input attributes and effort,
which would not have been available in a real world scenario. As a result, the testing
performance obtained by such models will not reflect the predictive performance that
would be achieved in practice.

In order to account for that, chronological splitting approaches create data splits
ensuring that all training projects have been completed before the starting date of the
testing projects. For example, Lefley and Shepperd (2003) performed a SEE study to
compare the predictive performance of genetic programming against neural networks,
k-nearest neighbours and least squares regression. In order to perform this comparison
in a more realistic manner, they used a date-based splitting of their dataset into two
partitions. The first partition included 48 WC and 101 CC projects completed by 15th
October 1991, andwas used for training. The second partition included 15WCprojects
that started after this date, and was used for testing. Sentas et al. (2005) also adopted
date-based splitting in two of the three datasets used to compare ordinal regression
and stepwise linear regression.

Auer et al. (2006) andAuer and Biffl (2004) performed an analysis of input attribute
weightingmethods for analogy-based SEE. They explained that SEE datasets typically
growover time as companies take onnewprojects. Therefore, a realistic SEEprocedure
would be to (1) measure the input attributes of the project to be estimated, (2) estimate
the effort for this project based on the existing SEE model, and (3) upon a project’s
completion, add its input attributes and effort to the dataset and re-build or re-calibrate
the SEEmodel based on the new, larger, dataset. This approach, where the SEE model
used to estimate a given project is trained on all previously completed projects, can
be referred to as project-by-project splitting or growing portfolio. It allows us to
investigate how SEE models change as they are updated over time. Auer and Biffl’s
work (2004) was based on five WC datasets and Auer et al.’s work (2006) was based
on eleven WC datasets. However, it is not entirely clear if chronology was considered
in all of them. Several later studies also involved comparisons with growing portfolio
approaches (Lokan andMendes 2009a;MacDonell and Shepperd 2010; Amasaki et al.
2011; Lokan and Mendes 2012; Amasaki and Lokan 2015a, b).

In practice, we wish to estimate the effort for a given project soon after its com-
mencement based on all completed projects available by that time.Wemay alsowish to
update this initial estimate if more completed projects become available before the end
of this project. Therefore, whenever a new project is completed, one may wish to pre-
dict a given number of incomplete or future projects based on all completed projects.
For example, consider that we have three projects pt , pt+1 and pt+2, completed at
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times t , t+1 and t+2, respectively.1 At time t , we may wish to estimate projects pt+1
and pt+2 based on a model trained with all projects completed up to time t . Then, once
we reach time t + 1, we may wish to provide an updated prediction for project pt+2
based on a model trained with all projects completed up to time t + 1. This approach
has been used, for example, in a study of the impact of parameter tuning on SEE (Song
et al. 2013). This studywas based on threeWCdatasets and fiveML approaches (MLP,
Bag+MLP, RT, Bag+RT and k-NN). It shows that the best parameters to be used
with ML approaches can change over time. This issue affects some ML approaches
such as k-NN more than others such as Bag+RTs. Other studies also involved this
type of chronological splitting, but in the context of time transfer approaches (Minku
and Yao 2012b, 2014).

Even though the studies above used chronological splitting, they did not investigate
the impact of using chronological splitting in comparison with random splitting. With
that in mind, Lokan and Mendes compared WC models created based on growing
portfolio (WC1) with leave-one-out (WC2) and leave-two-out (WC3) cross-validation
(Lokan and Mendes 2008). They also compared CCmodels created based on growing
portfolio (CC1) with a CC model created based on the whole CC dataset (CC2).
Their study was based on multivariate stepwise regression and one dataset. In terms
of absolute errors, WC1 performed similarly to WC2 and WC3, and CC1 performed
similarly to CC2. However, in terms of z values, WC1 was significantly worse than
WC2 and WC3, and CC1 was significantly better than CC2. This demonstrates that
the results obtained by using random splitting can differ from the results obtained
using chronological splitting. A similar study in the context of data-based splitting
demonstrates that date-based splitting can also sometimes lead to different results
from random holdout (Lokan and Mendes 2009c). MacDonell and Shepperd (2010)
also investigated growing portfolio in comparison with leave-one-out cross-validation
based on least squares linear regression and a WC dataset. Their results suggest that
these evaluation approaches lead to different results, even though their analysis is not
based on statistical tests. Overall, these studies show that it is important to consider
chronology in order to better reflect the SEE procedure used in practice.

2.2.2 Moving window approaches

Even though the studies presented in Sect. 2.2.1 considered chronology, they did
not consider that older projects may become obsolete and hinder the predictive per-
formance if included in the training set. Kitchenham et al. (2002) recommended to
discard old projects from the training set based on a moving window approach as fol-
lows. For each new project pt to be estimated, a SEE model should be created based
on a “window” containing projects pt−1 to pt−n . As this approach creates windows
based on the number of previous projects to be included, it can be referred to as fixed-
size window approach. In Kitchenham et al.’s case study with the WC CSC dataset,
n = 30 was used. This means that each window had a fixed size of 30 projects. This

1 Please note that each time step (e.g., t , t + 1 and t + 2) refers to the completion time of a project, and not
to the whole duration (from start to completion time) of this project.
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approach was proposed due to the observation that the best fitting regression model
changed substantially over time in their case study.

Lokan and Mendes (2009a)’s work is to the best of our knowledge the first work to
provide a detailed investigation of whether moving windows can improve predictive
performance. Their work revealed that SEE models trained on fixed-size windows
can provide significantly better predictive performance than the growing portfolio
approach (Lokan and Mendes 2009a). However, whether or not fixed-size windows
were beneficial depended on the window size. In their case study using multivariate
stepwise regression and theWC ISBSG dataset (a subset derived from ISBSGRelease
10), smaller windows (from 20 to 40 projects) had a detrimental effect in comparison
with growing portfolio. Larger windows (from 85 to 120 projects) had a positive effect
on predictive performance in terms of magnitude of the relative error, but led to similar
predictive performance in terms of absolute error.

Amasaki and Lokan (2015a) also compared fixed-size windows against growing
portfolio as part of their studywith the sameWC ISBSGdataset as (Lokan andMendes
2009a). However, they used linear regression based on input attributes selected with
Lasso (Tibshirani 1996) instead of stepwise regression. The reason for using Lasso
was that their preliminary results showed that Lasso providedmore accurate estimates.
Fixed-size windows achieved similar absolute error to growing portfolio for window
sizes from 20 to 40, and significantly better absolute error for window sizes between
40 (exclusive) and 120 (inclusive). In terms of magnitude of the relative error, fixed-
size windows started to provide better predictive performance even for some window
sizes smaller than 40.

MacDonell and Shepperd (2010) investigated the predictive performance of fixed-
size windows with size of five projects in a study based on least squares linear
regression and the WCMacDonell dataset. Even though their analysis is not based on
statistical tests, it suggests that moving windows can provide much better results than
growing portfolio.

A further study (Lokan and Mendes 2014) found fixed-size windows to obtain
either similar or significantly worse predictive performance than growing portfolio
when using multivariate stepwise linear regression for the WC Finnish dataset (a
subset of the Finnish dataset).

All results above were based on linear regression, which can be considered as
a global learning approach. Global learning approaches make estimations based on
models representing the whole training set. Different from global learning approaches,
local learning approaches make estimations based only on the training projects most
similar to the project being estimated. Amasaki et al. (2011) explained that, as the
estimations are based on a subset of all training projects, moving window approaches
might be less useful for local learning approaches. Therefore, they performed a com-
parison between fixed-size window and growing portfolio using the local approach
k-NN and two WC datasets (CSC and Maxwell). Their experiments found no statis-
tically significant differences in predictive performance between the two approaches.

A later study (Amasaki and Lokan 2012) with the WC ISBSG dataset showed that
statistical significances were found in favour of fixed-size windows when using k-
NN, even though for less window sizes than when using linear regression. Therefore,
fixed-sizewindowswere effective bothwith linear regression and k-NN for this dataset
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when compared against growing portfolios. However, the degree of effectiveness was
higher when using linear regression. A very recent study (Amasaki and Lokan 2015b)
with theWCFinnish dataset showed that fixed-size windows obtained either similar or
significantly worse predictive performance than growing portfolios when using k-NN.

Another type of moving window approach defines window size in terms of duration
as follows. For each new project to be estimated, a SEE model should be created
based on a window containing all projects whose development span occurred during
the last n months. This means that the number of projects within the window is not
fixed—it depends on the number of projects developed during the last n months. The
advantage of duration-based windows is that they allow for a clear cut in terms of how
recent projects must be in order to be included in the window, ensuring that projects
deemed old are not included. The disadvantage is that there is no explicit control over
the number of projects included in the window. If the number of projects developed
during the last n months is small, the small training set used to create the SEE models
may result in poor predictive performance.

Lokan andMendes (2014) compared duration-basedwindows against growing port-
folio and fixed-size windows, based on stepwise multivariate regression and two WC
datasets (WC ISBSG and WC Finnish). For the WC ISBSG dataset, their analysis
shows that duration-based moving windows can be beneficial to predictive perfor-
mance in comparison with growing portfolio, depending on the duration. Duration of
around 36months provided the most promising results for their dataset. When using
the most promising duration and number of projects for duration-based and fixed-
size windows, duration-based moving windows performed statistically similarly to
fixed-size windows. However, for the WC Finnish dataset, both duration-based win-
dows and fixed-size windows obtained either similar or significantly worse predictive
performance than growing portfolio.

Amasaki and Lokan (2015b) further investigated the predictive performance of
duration-based windows when using k-NN. They also used the WC Finnish dataset.
However, they found that duration-based windows achieved either similar or better
predictive performance than growing portfolio, depending on the duration. The results
when using k-NNwith duration-basedwindows are thus very different from the results
using k-NN with fixed-size windows and from the results using linear regression with
duration-based windows.

Amasaki and Lokan also proposed the use of weighted fixed-size (Amasaki and
Lokan 2015a) and weighted duration-based (Amasaki and Lokan 2014) windows.
Weighted windows give more weight to more recent projects within the window than
to older projects. Weighted and unweighted windows were compared using linear
regression with Lasso input attributes selection and the WC ISBSG dataset. The
analysis shows that weighted fixed-size windows significantly improved predictive
performance in larger windows, and significantly worsened predictive performance
in smaller windows (Amasaki and Lokan 2015a). Weighted duration-based windows
improvedpredictive performance significantly especially for largerwindows. For some
otherwindow sizes,weighted duration-basedwindowswere detrimental (Amasaki and
Lokan 2014).

All the studies above were based on WC datasets. The fact that windows can
sometimes be beneficial is an indication that the (unknown) real underlying function
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mapping input attributes to effort in a single company may change over time, empha-
sising the importance of proposing and investigating approaches able to deal with
such changes at the same time as not hindering predictive performance when there are
no changes. The main difficulty with using moving windows is that their predictive
performance is highly dependent on the window size and they may be detrimental to
some datasets. The studies explained in this section show that discarding old data can
be helpful, but is not always advisable.

2.2.3 Time transfer approaches

Our work (Minku and Yao 2012a) showed that CC and WC models can become
more or less useful over time, sometimes representing well the current projects being
estimated and sometimes being misleading. These results corroborate the finding that
discarding old data is not always advisable (Lokan and Mendes 2014). Based on that,
a dynamic adaptive approach (DCL) was proposed to automatically adapt to changes
by making use of old data when they are helpful. This type of approach can be seen
as transferring knowledge from different periods of time to the present when they are
beneficial.

DCL is to the best of our knowledge the first approach able to use CC data for
improving predictive performance overWC SEEmodels (Minku and Yao 2012a). It is
able to achieve that by identifying which models among CC and WC models created
with past data are most useful to a company at each given point in time based on a
weighting mechanism. Its weighting mechanism to emphasize the best models has
also been adopted by a later approach (Minku and Yao 2014). However, as explained
in Sect. 1, DCL and its weighting scheme have not been thoroughly evaluated yet.
DCL is explained in detail in Sect. 4.

2.3 ML literature on predictive models for non-stationary environments

The ML literature contains several approaches designed for dealing with online and
non-stationary environments. However, such approaches typically assume the avail-
ability of large amounts of data, forming a data stream (Muthukrishnan 2005) unlikely
to exist in SEE. A widely known approach for classification tasks in this type of
environment is Dynamic Weight Majority (DWM) (Kolter and Maloof 2007). DWM
creates different base learners,2 each associated with a dynamic weight which is
reduced when the base learner gives a wrong prediction. Base learners are dynam-
ically added and removed, facilitating adaptation to changes. DWM’s predictions are
based on the weighted majority vote among the base learners.

Additive Expert Ensemble (AddExp) (Kolter and Maloof 2005) is an approach
similar to DWM that works for both classification and regression tasks, even though
regression is restricted to predictions in the interval [0, 1]. However, AddExp is less
robust to noise. Another approach is Diversity for Dealing with Drifts (DDD) (Minku

2 The models (and their corresponding learning algorithms) composing an ensemble are referred to as its
base learners.
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and Yao 2012b). Its main idea is that very highly diverse ensembles (whose base
learners produce very different predictions from each other) are likely to present poor
predictive performance under stable conditions, but may become useful when there
are changes. So, DDD maintains both a low diversity ensemble and a high diversity
ensemble, which is only activated upon change detection.

3 Formulation of the problem

We formulate SEE as an online learning problem in which a new completed project
implemented by a single company is received as a training example at each time step,
forming a WC data stream. These training examples can be used to create a WC SEE
model. Different from typical online data stream problems (Muthukrishnan 2005),
even though new projects arrive with time, the volume of incoming training data is
small. So, there are no tight space or time constraints. For instance, it is acceptable for
a new SEEmodel to be created from scratch whenever a new training project becomes
available.

At each time step, we wish to determine which SEE models among a set of WC
and CC models are currently most useful for the single company, i.e., which SEE
models best represent the current relationship between input and output attributes for
the projects being estimated. We also wish to predict the effort of a given number of
future projects from theWC data stream, i.e., projects that have not yet completed and
whose actual effort is still unknown. We consider ten as a reasonable number of future
projects to be predicted in this study, although our approach is applicable to any value.

It is important to emphasize that only past completed projects with known effort
(training examples) can be used for determining which SEEmodels are currently most
useful and for training/updating existing models.

4 Dynamic cross-company learning (DCL)

This section describes an approach called Dynamic Cross-company Learning (DCL),
which is able to automatically identify which existing CC orWCmodels are currently
the most relevant for making SEEs for a company (RQ1). These models are then
emphasized in order to improve SEE for this company (RQ2).

The idea behind DCL is that models performing poorly at a certain moment may
become beneficial in the event of changes in the environment (Minku et al. 2010).
For instance, a CC model may perform poorly for some period of time and perform
relatively well in a later period (Minku and Yao 2012a). So, DCLmaintains a memory
of m models trained on past CC data and one model specific for WC data stream
learning. Each model is associated with a weight representing how useful it currently
is, inspired by Kolter and Maloof (2005, 2007)’s ML approaches. These weights
are dynamically updated and allow DCL to emphasize estimations given by CC data
models when they are useful. They are proposed to address research question RQ1
outlined in Sect. 1. DCL’s estimations are then based on the weighted average of the
base learners’ estimations. In this way, we expect DCL to improve SEE by giving
different emphasis to different models (RQ2).
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As a backup measure, should the weighting mechanism fail at some point, DCL
also restricts the use of CC models. If the project to be estimated is “too different”
from the projects used to build a CC model, this model is filtered out, i.e., is not
allowed to contribute to the weighted average for estimating this project. Filtering out
CC data for localization has been shown to be useful for SEE (Turhan and Mendes
2014; Kocaguneli et al. 2014).

The method to filter CC models out in DCL is as follows. An impactful input
attribute is used to definewhether a certainWCproject to be predicted is “too different”
from the projects used to build a CC model. For example, for all the WC datasets
used in this study, size is likely to be the most impactful input attribute, given that
regression trees trained on these datasets selected size as the top-level attribute. A
CC model is then considered in the estimation of a certain project only if the size of
this project is lower than the quantile Q of the size of the training projects used to
build this model, where Q is a pre-defined parameter. CC models that do not satisfy
this requirement are filtered out of the estimation of this project, but are kept in the
system so that they can possibly contribute to the estimation of other projects in the
future. As the WC model is likely to be poor and unstable in the beginning of its
life due to the very small number of WC training projects, filtering of CC models is
only applied after a considerable number Tstart of WC training projects have been
presented, where Tstart is a pre-defined parameter. It is worth noting that other input
attributes than size should be used for filtering if they are deemed more influential
than size. This may happen, for example, when projects have a high level of reuse and
integration.

The CC models can be any CC models available to the company that we are
interested in. In particular, if the company has access to the CC training projects
themselves,m different CC training sets can be created based on some a priori knowl-
edge. For example, different sets can be created for different companies, or different
sets can be created by grouping together CC projects with similar productivity. It is
worth noting that we use the term CC loosely here. For example, projects from dif-
ferent departments within the same company could be considered as CC projects if
such departments employ largely different practices. Separation based on productivity
ranges can be particularly useful and easily automated. The reason for the usefulness
of productivity-based separation is that different productivity ranges can simulate dif-
ferent possible situations of a company. When a change happens, a company may
become more or less productive, and CC models built using different productivity
ranges could become more or less beneficial. Note that productivity is based on effort.
So, we cannot use the productivity of the project being estimated to decide which
CC models are likely to be more beneficial for this project. Instead, DCL determines
which base learners are likely to be more or less beneficial at each time step based on
dynamic weights updated through its learning algorithm whenever a new WC project
is completed.

Algorithm 1 presents DCL. Existing CC models can be learnt beforehand and
provided to the algorithm as input arguments. DCL initialises the weights associated
to each CC model with the value 1/m (line 2). Weights associated with WC models
are initialized to zero (line 3), so that DCL can be used for predictions before any WC
training project becomes available, i.e., based solely on CC models (line 4).
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Algorithm 1 DCL
Parameters:
Lc, 1 ≤ c ≤ m: CC models.
βc, βw : factors for decreasing model weights 0 ≤ βc, βw < 1
1: for each CC model Lc, 1 ≤ c ≤ m do
2: wc = 1/m {Initialise weight for CC models.}
3: wm+1 = 0 {WC model weight.}
4: Allow using DCL for predictions while there is no WC training project available
5: for each new WC training project (x, y) do
6: winner = argmini,1≤i≤m+1 |Li (x) − y|
7: for loser, 1 ≤ loser ≤ m + 1 ∧ loser �= winner do
8: wloser = βwloser , where

β = βc if loser <= m and β = βw otherwise.
9: if (x, y) is the first WC training project then
10: wm+1 = 1

m+1
11: Divide each weight by the sum of all weights
12: Use (x, y) to learn WC model Lm+1
13: Allow using DCL for predictions while no new WC training project is made available

After that, whenever a new WC training project is made available, it is used to (1)
update the weights used to determine which SEE models are most relevant at present
and (2) train the WC model. One WC training project from the stream is received at
each iteration, which corresponds to one time step. The weight update rule is shown
in lines 6–11. Each base learner is used to perform an estimation for the incoming
training project. The model with the lowest absolute error estimate is considered to be
the winner (line 6). This can be either the WC or a CC model. The weights associated
with all the loser models are multiplied by β, 0 ≤ β < 1, where β = βc for the CC
models and β = βw for the WC model. Lower/higher β values cause the system to
quickly/slowly reduce its emphasis on models that are providing wrong estimations.
If the current WC training example is the first WC training example, the weight of
the WC model is changed from 0 (zero) to 1/(m + 1) (line 10). After all weights are
updated, they are divided by the sum of all weights (line 11).

The WC model’s training is done at the end of the iteration (line 12). It consists
of using the incoming training project to train the WC model using its own learning
algorithm,whichmayormaynot need retraining on the previous projects.DCL ismade
available for predictions after theWCmodel is trained at the end of each iteration (line
13) and until a newWC training project arrives. Typically, one would like to predict a
certain number of future projects from the WC data stream before a new WC training
project arrives.

5 Datasets

Five different datasets were used in our study: ISBSG2000, ISBSG2001, ISBSG,
Nasa60Coc81 andNasa60Coc81Nasa93. These include both datasets derived from the
International Software Benchmarking Standards Group (ISBSG) Repository (ISBSG
2011) and the PRedictOr Models In Software Engineering Software (PROMISE)
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Repository (Shirabad and Menzies 2005). Each dataset is composed of a WC data
stream, and a number of CC subsets.

5.1 ISBSG datasets

Three SEE datasets were derived from ISBSG Release 10, which contains software
project information from several companies. Information on projects belonging to
a single company was provided to us upon request. The data were preprocessed,
maintaining only projects with:

– Data and function points quality A (assessed as being sound with nothing being
identified that might affect their integrity) or B (appears sound but there are some
factors which could affect their integrity).

– Recorded effort that considers only development team.
– Normalised effort equal to total recorded effort, meaning that the reported effort
is the actual effort across the whole life cycle.

– Functional sizing method IFPUG version 4+ or identified as with addendum to
existing standards.

The preprocessing resulted in 187 projects from a single company (WC) and 826
projects from other companies (CC). Three different datasets were then created:

– ISBSG2000—119 WC projects implemented after the year 2000 and 168 CC
projects implemented up to the end of year 2000.

– ISBSG2001—69 WC projects implemented after the year 2001 and 224 CC
projects implemented up to the end of year 2001.

– ISBSG—no date restriction to the 187WC and 826 CC projects, meaning that CC
projects with implementation date more recent thanWC projects are allowed. This
dataset can be used to simulate the case in which it is known that other companies
can be more evolved than the single company analysed.

The split date has been chosen so as to provide increments of roughly the same size.
ISBSG2001 contains a few more than 60 WC projects, ISBSG2000 contains almost
2 · 60 projects and ISBSG contains a few more than 3 · 60 projects. Even though these
datasets are not entirely independent, they can demonstrate how well DCL is able to
cope with different data stream lengths. Indeed as can be seen in Sect. 6 (Fig. 3a–c),
the weights learned by DCL differ for these three datasets.

Four input attributes (development type, language type, development platform and
functional size) and one output attribute (software effort in person-hours) were used.
K -Nearest Neighbours (Cartwright et al. 2003) imputation was used for dealing with
missing attributes for each dataset separately.

The CCmodels used by DCLwere trained on CC project subsets created according
to their normalised level 1 productivity rate provided by the repository. The separation
into subsets was based on the distribution of productivity. A representative example
of productivity and its skewness is shown in Fig. 1. The ranges used for creating the
subsets are shown in Table 1 and were chosen to provide similar size partitions. This
process could be easily automated in practice. Note that each of the three datasets
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Fig. 1 Sorted productivity of the 826 ISBSG CC projects. The vertical black lines separate the projects
into three subsets according to the ranges in Table 1

derived from the ISBSG repository thus contain three different CC subsets and one
WC data stream.

5.2 Nasa60Coc81 dataset

Nasa60 and Cocomo81 are two software effort estimation datasets available from the
PROMISE Repository3. Nasa60 contains 60 Nasa projects from 1980s to 1990s and
Cocomo81 consists of the 63 projects analysed by Boehm to develop the software cost
estimation model COCOMO (Boehm 1981). Both datasets contain 16 input attributes
(15 cost drivers (Boehm 1981) and number of lines of code) and one output attribute
(software effort in person-months). Cocomo81 contains an additional input attribute
(development type) not present in Nasa60, which was thus removed.

Nasa60’s projects were considered as the WC data and Cocomo81’s projects were
considered as the CC data. There is no information on whether Nasa60’s projects are
sorted in chronological order. The original order of the Nasa60 projects was preserved
in order to simulate the WC data stream. Even though this may not be the true chrono-
logical order, a simulated chronological order can be used to show (1) whether DCL
would be able to identity which model is more relevant with that order of projects and
(2) whether DCL can benefit from the CC models to improve SEE. As for Cocomo81,
the dataset provided by the PROMISE repository is sorted according to project iden-
tifier. In this study, we have sorted Cocomo81’s projects according to the completion
year provided in Boehm’s book (Boehm 1981).

3 Nasa60 has also been named Cocomo Nasa in the past, and is not available for download from the current
PROMISE repository.
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Table 1 Ranges of productivity for CC subsets. For ISBSG2000, ISBSG2001, ISBSG and Nasa60Coc81,
these ranges were used to create different CC subsets

CC subset Productivity band Number of
examples

ISBSG2000 CC-0 [0.7, 5] 56

CC-1 (5, 13] 57

CC-2 (13, 155.7] 55

ISBSG2001 CC-0 [0.7,6] 72

CC-1 (6, 14] 79

CC-2 (14, 155.7] 73

ISBSG CC-0 [0.3, 10] 291

CC-1 (10, 20] 250

CC-2 (20, 424.9] 285

Nasa60Coc81 Coc81-0 [0.7, 2.85] 19

Coc81-1 (2.85, 6.6] 20

Coc81-2 (6.6, 49] 24

Nasa60Coc81Nasa93 Coc81 [0.7, 49] 63

Nasa93 [0.59, 89.38] 93

For Nasa60Coc81Nasa93, these ranges represent the different productivity values present in the original
Cocomo81 and Nasa93 datasets

In order to create different CC models for DCL, the productivity in terms of effort
divided by the number of lines of code was calculated for Cocomo81. The productivity
values are skewed, similarly to ISBSG’s, shown in Fig. 1. CC projects were then
separated into subsets according the ranges shown in Table 1. Each CC subset was
used to train one CC model. Note that Nasa60Coc81 is thus composed of three CC
subsets (derived from Cocomo81) and one WC data stream (Nasa60).

5.3 Nasa60Coc81Nasa93 dataset

This dataset is also composed of Nasa60 and Cocomo81, but it includes an additional
dataset called Nasa93, which contains 93 Nasa projects from 1970s to 1980s and has
the same input and output attributes as Cocomo81. As with Cocomo81, the attribute
development type was removed in order to keep compatibility with Nasa60. Nasa60
and Nasa93 are both composed of Nasa’s projects, and they have an overlap of 55
projects. Nasa60 is used here as the WC data stream, whereas Cocomo81 and Nasa93
are used as two “CC subsets”. So, Nasa93 should be identified as very useful for
predicting Nasa60 projects by any approach or analysis performed with that purpose.

Cocomo81 is used as a single CC subset for DCL as shown in Table 1, instead
of being divided into three. Similar to Nasa60Coc81, the original order of the
Nasa60 projects is preserved in order to simulate the WC data stream. Note that
Nasa60Coc81Nasa93 is thus composed of two CC subsets (Cocomo81 and Nasa93)
and one WC data stream (Nasa60).
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It is worth noting that there are mainly two types of analyses in this paper: (1)
analyses to evaluate and understand the behaviour of DCL and its ability to emphasize
the right models, and (2) analysis to check whether CC data can improve predictive
performance over WC models. For the former, the existence of an overlap between
the CC and WC data simulates the case where a given CC model is very helpful for
improving WC predictions. This is very useful to test whether DCL is successful in
finding out that the corresponding CC model is helpful. For the latter, the overlap
means that we cannot use Nasa93 as a CC subset to draw the conclusion that CC data
are useful for improving WC predictions.

6 DCL’s ability to emphasize the right models

DCL was designed to be able to identify which past models best represent the current
projects being estimated by a given company in terms of the effort required to develop
software projects. Therefore, it is essential to analyse whether DCL is successful in
doing so. This section evaluates the ability of DCL’s dynamic weighting mechanism
to emphasize the models that best represent the company that we are interested in
(single company). It investigates how well DCL addresses RQ1. It also provides an in
depth understanding of DCL’s behaviour, contributing to its external validity.

6.1 Experimental setup

The analysis is based on the following:

– the weights given by DCL to each base learner, and
– the predictive performance of each base learner in isolation, i.e., when used for
predictions as a single model rather than within DCL.

If the highest/lowest weights correspond to the base learners that perform best/worst,
DCL’s weighting scheme is successful.

Regression trees (RTs) were used as the data models in the experiments, as
they achieved good predictive performance for SEE in comparison to several other
approaches (Minku and Yao 2013a). The input and output attributes of the RTs are the
input and output attributes of the datasets explained in Sect. 5. We used the REPTree
implementation from Weka (Hall et al. 2009) to implement the RTs. The parameters
of the RTs were minimum total weight of one for the instances in a leaf, and minimum
proportion 0.0001 of the variance on all the data that need to be present at a node in
order for splitting to be performed. These parameters were shown to be appropriate in
the literature (Minku and Yao 2011).

DCL’s parameters were the default values of βc = βw = 0.5, Tstart = 15 and
Q = 0.9. The use of default values for DCL ensures that any benefit obtained by
DCL does not depend heavily on fine tuning its parameters. This is especially desir-
able considering that companies would frequently not have resources for fine tuning
parameters, and that non-stationary environments might cause the best parameters to
change with time. An analysis of the impact of different parameter choices on DCL’s
predictive performance is provided in Sect. 10.
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A single execution for each dataset from Sect. 5 was performed, as both DCL and
the RTs used in this study are deterministic and the datasets must have their order
of examples fixed to represent the real online learning scenario of a company. This
is a standard procedure when evaluating online learning approaches (Minku and Yao
2012b; Kolter and Maloof 2007).

At each time step, the predictive performance was measured in terms of Mean
Absolute Error (MAE) over the predictions on the next ten projects of the WC data
stream. MAE is defined as:

MAE =
n∑

i=1

|yi − ŷi |
n

,

where n is the number of cases considered (which is ten in this work), yi is the actual
value of the variable being predicted and ŷi is its estimation. MAE was chosen for
being a symmetric measure unbiased towards under or overestimates, different from
other measures such as measures based on theMagnitude of the Relative Error (MRE)
(Lokan and Mendes 2009b; Shepperd and McDonell 2012). Lower MAE indicates
higher/better predictive performance.

6.2 Analysis

If a base learner performs better than another one at a given time step, this means
that it represents the current relationship between input and output attributes of the
single company better than this other model. Therefore, DCL’s weighting scheme
can be considered successful in learning this if it assigns higher weights to base
learners that performbetter. In particular, if a certainCCmodel obtains better predictive
performance than the WC model at a given time step, it is considered more beneficial
than the WC model at this time step. If the CC model’s predictive performance is
worse at a given time step, it is considered detrimental at this time step. Therefore,
we provide an analysis of the predictive performance of each RT used within DCL in
combination with the weight assigned by DCL to it.

Figure 2 shows the MAE of each isolated RT at each time step. We can see that
the MAEs of different models (CC-RTs and WC-RT) are considerably different from
each other and that they can become more or less beneficial/detrimental for the single
company whose projects are being estimated, depending on the moment in time. For
ISBSG2000, ISBSG2001, ISBSG and Nasa60Coc81 (the datasets that use real CC
data), it is interesting to observe that the CC-RTs sometimes perform better than the
WC-RT. This demonstrates that CC models have the potential to improve predictive
performance over WC models (Minku and Yao 2012a).

Figure 3 shows the weights attributed by DCL to each model throughout time.
The weights vary much more for ISBSG2000, ISBSG2001 and ISBSG than for
Nasa60Coc81 and Nasa60Coc81Nasa93. This reflects the fact that the relative predic-
tive performance of the best performing base learners is less stable for ISBSG2000,
ISBSG2001 and ISBSG than for Nasa60Coc81 and Nasa60Coc81Nasa93 (Fig. 2). For
instance, the predictive performances of CC-RT0 and WC-RT are competing during

123



Autom Softw Eng (2017) 24:499–542 519

10 20 30 40 50 60 70 80 90 100
0

3000

6000

9000

12000

15000

Time Step

M
A

E
CC−RT0
CC−RT1
CC−RT2
WC−RT

5 10 15 20 25 30 35 40 45 50 55
0

3000

6000

9000

12000

15000

Time Step

M
A

E

CC−RT0
CC−RT1
CC−RT2
WC−RT

20 40 60 80 100 120 140 160
0

3000

6000

9000

12000

15000

Time Step

M
A

E

CC−RT0
CC−RT1
CC−RT2
WC−RT

5 10 15 20 25 30 35 40 45 50
0

300

600

900

1200

1500

Time Step

M
A

E

CC−RT0 (Coc81−0)
CC−RT1 (Coc81−1)
CC−RT2 (Coc81−2)
WC−RT (CocNasa)

5 10 15 20 25 30 35 40 45 50
0

300

600

900

1200

1500

Time Step

M
A

E

CC−RT0 (Coc81)
CC−RT1 (Nasa93)
WC−RT (CocNasa)

(a) (b)

(c)

(d) (e)

Fig. 2 Predictive performance of CC-RTs (not trainedwithWCdata) andWC-RTs for each dataset in terms
of MAE. Some RTs have very high MAE, but the limit of the y-axis was not increased to avoid hindering
visualization of the better performing RTs. From Minku and Yao (2012a). a ISBSG2000. b ISBSG2001. c
ISBSG. d Nasa60Coc81. e Nasa60Coc81Nasa93

several moments for ISBSG (Fig. 2c), especially after time step 50. These two models
usually present the best predictive performances after this time step (Fig. 2c). This is
reflected by DCL, whose weights attributed to CC-RT0 and WC-RT are also domi-
nating and competing against each other during this period (Fig. 3c). On time steps
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Fig. 3 DCL’s dynamic weights. a ISBSG2000. b ISBSG2001. c ISBSG. d Nasa60Coc81. e
Nasa60Coc81Nasa93

20–45, CC-RT1 also achieves competitive predictive performance (Fig. 2c), presenting
similar and competing weight to CC-RT0 and WC-RT (Fig. 3c). Before time step 20,
the best predictive performance is achieved by CC-RT0, and this is also successfully
reflected by its higher weight during the first time steps. Nevertheless, there are some
moments in time where a certain learner is best at predicting the next ten projects, but
this is still not reflected by DCL’s weights.

123



Autom Softw Eng (2017) 24:499–542 521

Table 2 Absolute error of each
base learner for the project at the
current time step for
Nasa60Coc81

Time step C-RT-0 CC-RT1 CC-RT2 WC-RT

25 105.00 105.57 766.00 47.00

26 77.93 62.60 119.40 2.40

27 77.93 62.60 119.40 1.20

28 21.20 6.89 56.80 10.80

29 15.20 0.89 62.80 23.80

30 1.60 15.91 79.60 9.60

31 0.80 13.51 77.20 2.40

32 26.00 11.69 52.00 7.80

33 177.80 151.80 70.20 52.80

34 149.00 264.50 2131.00 857.00

35 185.00 228.50 2095.00 120.00

36 40.00 373.50 2240.00 145.00

37 185.00 228.50 2095.00 36.00

38 38.00 7.00 501.20 12.00

39 10.33 21.33 956.50 110.00

40 10.00 5.00 956.50 58.40Values in bold italics represent
the winner model

FromFig. 2d, we can see that CC-RT1was themodelwith the best overall predictive
performance across time steps for Nasa60Coc81. This was reflected by its large weight
shown in Fig. 3d. Therefore, DCL was successful in identifying the model that most
contributed to a better overall predictive performance across time steps. However, we
can also see that CC-RT0 was better than CC-RT1 between time steps 25–35, and
this behaviour was not reflected by DCL’s weights. A possible reason for that is that
CC-RT0’s weight became too low due to its prolonged time behaving worse than
CC-RT1. So, we have performed experiments restricting the weights of all models
to a minimum of 0.01 to check whether the weight can reflect better the current
projects being estimated. This resulted in an increase of CC-RT0’s weights, but this
increase was delayed and only started to become more apparent after time step 30. So,
restricting the weights to 0.01 did not provide significant improvements in predictive
performance.

In order to find the reason why DCL is sometimes not able to emphasize the right
models sufficiently, we examined the absolute error obtained by base learners on the
project at the current time step. For example, in order to understand why DCL was not
able to emphasize CC-RT0 sufficiently for Nasa60Coc81 between time steps 25–35,
we examined the absolute error obtained by each model on the project at the current
time step between time steps 25–45 (Table 2). This reveals that, even though CC-RT0
is a better model to predict the effort of the next ten projects (Fig. 2d), WC-RT is better
at making predictions for the current project during 25–27, becoming frequently the
winner during these time steps. As a result, WC-RT’s weight, rather than CC-RT0’s,
increases on these times steps (this increase is only visually noticeable in plots when
restricting DCL’s weights to 0.01, which were omitted due to space constraints). This
analysis shows that, when future projects become suddenly too different from the
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current ones, DCL may not be able to emphasize the best models for predicting those
future projects fast enough. This is not unexpected, because a learner cannot learn
what has not been taught. Such a situation might be better handled by techniques for
detecting concept drifts (Minku and Yao 2012b). Similarly, on time steps 30–37, both
CC-RT0 and WC-RT win frequently, causing their weights to increase competitively
during this period. This impedes CC-RT0 of achieving a higher overall weight. The
reason for WC-RT’s higher MAE on time steps 25–35 (Fig. 2d) is its very high error
on a single project (time step 34), and not the number of times that it loses.

From Fig. 2e, we can see that CC-RT1 was the best model throughout the whole
learning for Nasa60Coc81Nasa93. This is expected, as CC-RT1 was trained on a
dataset containing an overlap with the WC data stream. As shown by Fig. 3e, DCL
gave the highest weight to this model throughout the learning. Therefore, DCL was
successful in identifying CC-RT1 as the best model to be used.

In short, the dynamic weighting mechanism of DCL is generally successful in
identifying the best base learners to be emphasized (RQ1). However, abrupt changes
can sometimes cause a given model to suddenly present much better/worse predictive
performance than before, without a transition period for its weights to gradually start
reflecting the new situation. In these cases, weights have a short delay in reflecting the
new situation, because they can only start reflecting it once it becomes active. In the
future, techniques for detecting concept drifts (Minku and Yao 2012b) could be used
here.

7 DCL’s predictive performance

DCL was designed to emphasize the models that reflect well the current relationship
between input and output attributes for a given company. Section 6 demonstrated that
DCL is successful in doing so. However, no analysis has been done so far to check
whether emphasizing the right models can really lead to improvements in SEE. This
section presents such an analysis, contributing to answering RQ2. Given that DCL
relies not only on the weighting mechanism, but also on a backup filtering mechanism,
this section also investigates how helpful each of these mechanisms is in improving
predictive performance and whether they are both really essential to DCL. Section 7.1
explains the experimental setup, and Sects. 7.2 and 7.3 present the analysis.

7.1 Experimental setup

The analysis presented in this section is based on a comparison between DCL and the
following approaches:

– DCL using only filtering (DCL-F),
– DCL using only dynamic weighting (DCL-W) and
– DCL using no dynamic weighting and no filtering (DCL-N).

DCL-F and DCL-N represent approaches that give the same emphasis to all SEE
models. Theyuse afixedweight of 1/(m+1) for eachmodel andwill be used to validate
DCL’s success in improving SEE in comparison to corresponding approaches that do

123



Autom Softw Eng (2017) 24:499–542 523

not attempt to emphasise different models. DCL-W and DCL-F will be compared
to DCL in order to analyse the contribution of dynamic weighting and filtering to
DCL’s predictive performance. The parameters of all approaches were the same as in
Sect. 6.1.

Besides evaluating predictive performance in terms of MAE, this section also anal-
yses the standardized accuracy (SA) and effect sizeΔ (Shepperd andMcDonell 2012)
in order to provide interpretable results in terms of the magnitude of the predictive
performance. SA is defined as SAL = (1 − MAEL/MAER) × 100, where L is the
approach being evaluated,MAEL is theMAE of this approach, andMAER is theMAE
of a large number, typically 1000, runs of random guesses (rguess). Rguess estimates
the effort of aWC project pt on a time step t as the effort of aWC project pi , 1 ≤ i < t
sampled uniformly at random. We used 1000 runs of rguess, following previous work
(Shepperd and McDonell 2012). SAL is viewed as the ratio of how much better L is
than rguess. The effect sizeΔC of an approach against the control approachC in terms
of MAE is defined as ΔC = (MAEC − MAEL)/SC , where SC is the sample standard
deviation of the control approach. As suggested by Shepperd and McDonell (2012),
we interpret the absolute value of the effect size, which is standardised (i.e., scale-
independent), in terms of the categories proposed by Cohen (1992): small (≈0.2),
medium (≈0.5) and large (≈0.8). So, the effect size can be used to explain how large
the difference in MAE between an approach and a control approach is, and thus gives
insight into how large the impact of this difference is likely to be in practice.

SEE is typically a very difficult task and approaches might perform worse than
rguess (Shepperd and McDonell 2012). An approach that performs similar or worse
than rguess is useless from the practical point of view. We compared DCL against
rguess in our previous work (Minku and Yao 2012a). Our experiments showed that
DCL always performed statistically significantly better than random guess with very
high effect size.

7.2 DCL’s ability to improve overall MAE

In order to investigate the success of DCL in improving SEE predictive performance,
we compare it against DCL-F and DCL-N, which represent approaches that give the
same emphasis to all SEE models. In order to find out which mechanism (dynamic
weighting or filtering) contributes more to DCL’s predictive performance, we compare
DCL against DCL-W and DCL-F.

Table 3 shows the overall predictive performance achieved by DCL, DCL-W, DCL-
F and DCL-N for each dataset. As we can see, DCL-W provided the best results for
most datasets, whereas DCL using both dynamic weighting and filtering produced
the best results for ISBSG2000. In most cases, the worst results were obtained when
neither dynamic weighting nor filtering was used (DCL-N).

In order to check whether these differences in predictive performance are statisti-
cally significant, we performed a Friedman test for comparing the overall MAE across
multiple datasets, as recommended by Demšar (2006). The test detected statistically
significant difference at the level of significance of 0.05 (FF = 27.25 > F(3, 12) =
3.49, p value <0.0001). The average ranking of the approaches is shown in Table 4.
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Table 3 Overall predictive performance averaged across time steps

Dataset DCL DCL-W DCL-F DCL-N

MAE±SD

ISBSG2000 2352.59±925.84 2554.36±1073.43 2641.08±953.42 3521.61± 1632.34

ISBSG2001 2873.11±1235.93 2795.39±1254.17 3417.44±1648.90 3573.21±1589.43

ISBSG 2805.56± 1468.20 2741.18±1396.35 3041.07±2140.21 5108.66±2955.82

Nasa60Coc81 205.83 ±214.70 142.31±122.64 303.28 ±203.33 298.50±196.10

Nasa60Coc81Nasa93 109.82 ±154.72 42.25±45.42 241.75±185.77 251.35±192.76

SA

ISBSG2000 46.21 41.60 39.61 19.48

ISBSG2001 30.14 32.03 16.90 13.11

ISBSG 53.69 54.75 49.80 15.67

Nasa60Coc81 56.92 70.22 36.52 37.52

Nasa60Coc81Nasa93 77.01 91.16 49.40 47.39

Δrguess

ISBSG2000 3.21 2.89 2.75 1.35

ISBSG2001 2.43 2.58 1.36 1.06

ISBSG 1.55 1.58 1.44 0.45

Nasa60Coc81 0.97 1.20 0.62 0.64

Nasa60Coc81Nasa93 1.32 1.56 0.84 0.81

Cells in bold italics represent the best values

The highest ranked approach was DCL-W; the second highest ranked was DCL; and
the worst ranked approach was DCL-N.

The average rankings give us insight into what approaches performed better/worse.
For instance, even before performing post-hoc tests we can see that although DCL-
W’s average ranking was 1.2 and DCL’s was 1.8, these two values were quite similar
to each other if we consider the standard deviation. In the same way, DCL-F’s and
DCL-N’s rankings were similar to each other, and worse than DCL-W’s. Post-hoc
tests with Holm–Bonferroni corrections were performed to confirmwhich approaches
are statistically significantly different from the highest ranked approach DCL-W. The
z and p values of the post-hoc tests are shown in Table 4. They confirm that DCL
using both dynamic weighting and filtering performed similarly to DCL-W, whereas
DCL-F and DCL-N performed worse.

These results show that dynamic weighting was essential to DCL’s predictive per-
formance, as the best results for each particular dataset were always achieved when
dynamic weighting was used (DCL-W or DCL). This means that DCL’s mechanism
to emphasize different models is successful in improving predictive performance in
comparison to approaches that give the sameweight to all models. The fact that there is
no statistically significant difference between DCL-W andDCL across datasets means
that filtering used in combination with weighting did not provide additional benefits
in all cases.
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Table 4 Ranking average and standard deviation of approaches across datasets based on overall MAE; and
z and p values of the post-hoc tests for comparison of each approach against DCL-W

Approach Rank Avg. Rank SD z p value

DCL-W 1.2 ≈ 1 0.45 – –

DCL 1.8 ≈ 2 0.45 0.7348 0.4624

DCL-F 3.2 ≈ 3 0.45 2.4495 0.0143

DCL-N 3.8 ≈ 4 0.45 3.1843 0.0015

The p value in bold italics represents statistically significant difference of overall MAE using Holm–
Bonferroni corrections at the overall level of significance of 0.05. For eachdataset, smaller ranking represents
better overall MAE

7.3 Analysis of MAE at each time step

Statistics such as overall average predictive performance reported in Sect. 8.2 are good
for providing a general idea of the predictive performance of approaches. However,
drawing conclusions based solely on such statistics is not ideal, as they may hide other
characteristics of the behaviour of the prediction models throughout time that can
be important when choosing one model over the other. For instance, these statistics
do not show whether a certain approach is better at some time steps, but worse at
others.

Figure 4 shows DCL’s MAE throughout time against DCL-N’s, which is an
approach that does not use DCL’s filtering and adaptive weighting mechanisms. We
can see that DCL performed better than DCL-N most of the time, reflecting its better
overall MAE presented in Sect. 7.2. During a few periods of time, however, DCL-
N outperformed DCL. These were around time step 40 for ISBSG2000, 40–45 for
ISBSG2001 and 37–45 for Nasa60Coc81. Improving DCL’s weighting mechanism
may help to avoid such periods of lower predictive performance as is proposed as
future work.

8 Using CC models to improve SEE

As explained in Sect. 1, given the problems caused by small WC datasets, both indus-
try and academia have been investing in CC data (Shirabad andMenzies 2005; ISBSG
2011), making approaches able to use such CC data to improve SEE desirable. How-
ever, existing approaches in the literature struggle to achieve such improvements in
predictive performance (see Sect. 2). This section investigates how DCL’s predic-
tive performance compares to WC SEEs. It also compares DCL’s results against
existing CC SEE approaches, to check whether it is worth adopting DCL in com-
parison to existing approaches. Together with Sect. 7, this section answers RQ2.
Section 8.1 explains the experimental setup and Sects. 8.2 and 8.3 present the analy-
sis.
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Fig. 4 Predictive performance of DCL and DCL-N for each dataset in terms of MAE. At each time step, a
new WC project is used for training, then the approaches are used to predict the next ten projects, and the
MAE is calculated based on these ten predictions. a ISBSG2000. b ISBSG2001. c ISBSG. dNasa60Coc81.
e Nasa60Coc81Nasa93

8.1 Experimental setup

DCL and the following approaches were compared:

– RT trained on the WC data stream (referred to simply as RT). As explained in
Sect. 3, a new WC project is completed and received at each time step. In order
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to create RTs, at each time step, the current RT was discarded and a new RT was
trained on all WC projects completed so far (including the one completed at the
current time step). This RT was then used to predict future projects of the WC
data stream. As explained in Sect. 6.1, RTs have shown to produce good predictive
performance for SEE in comparison to several other automated approaches (Minku
and Yao 2013a), being a good baseline approach for this study.

– RT trained both on the CC and WC data streams (CC-RT). At each time step, the
current CC-RT was discarded and a new CC-RT was trained on all CC data and
WC projects completed so far (including the one completed at the current time
step). This CC-RT was then used to predict future projects of the WC data stream.
This approach represents existing CC techniques that treat CC and WC data as
a single dataset to be used for building SEE models, e.g., Lefley and Shepperd
(2003).

– Relevancy filtering (Turhan and Mendes 2014) trained on the WC data stream
(relevancy filtering). Relevancy filtering is the state-of-the-art in CC SEE. As it
can be applied to both WC and CC data, we first compare DCL against a WC-
only Relevancy Filtering using RT as the base learner. Similar to the previous
approaches, at each time step, the current Relevancy Filteringmodel was discarded
and a new one trained on all WC projects completed so far.

– Relevancyfiltering (Turhan andMendes 2014) trainedon theWCandCCdata (CC-
Relevancy Filtering). This model is created similarly to WC Relevancy Filtering,
but using not only all WC data received so far, but also all CC data as the training
data at each time step.

– DWM trained on the WC data stream (referred to as DWM). DWM is a popular
ML approach for dealing with non-stationary environments (Kolter and Maloof
2007). It is included in the analysis to check whether DCL would be able to
improve predictive performance over an existing dynamic adaptive approach and
was first investigated in the SEE context in Minku and Yao (2012a). Different
from DDD (Minku and Yao 2012b), DWM keeps base learners likely to represent
several different concepts. This is more likely to be beneficial for SEE, where each
concept is available for a short period of time and may reoccur in the future.

– DWM first trained using the CC and then the WC data stream (CC-DWM). CC-
DWM was used to check whether DCL would produce competitive results in
comparison to a CC approach prepared to deal with non-stationary environments.

The weight update rule used in DWM and CC-DWM was the same as the one
used in DCL, to provide a fair comparison and allow for regression tasks. A new base
learner is added to the ensemble if its estimation on the current training project has
absolute error higher than τ in a time step multiple of p, where p is a parameter of
DWM/CC-DWM. Existing base learners with weight<θ are deleted also in time steps
multiple of p, following the original DWM algorithm (Kolter and Maloof 2007).

DCL’s, CC-RT’s and RT’s parameters were the default parameters shown in
Sect. 6.1. This ensures that the analysis of the behaviour of these approaches does
not depend on fine tuning parameters. Relevancy Filtering and CC-Relevancy Filter-
ing used the default parameter value of k = 10 (Turhan and Mendes 2014). DWM
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and CC-DWM used the default parameter values of β = 0.5, p = 1, θ = 0.01 and
τ = 0.25y (Kolter and Maloof 2007; Minku and Yao 2012a).4

A single execution for each dataset from Sect. 5 was performed for RT, CC-RT,
DWM, CC-DWM and DCL as they are deterministic when using the deterministic
RTs in this study. CC-Relevancy Filter and Relevancy Filter are non-deterministic.
So, 30 runs were performed for these approaches. The average of the thirty runs at
each time step was used in the analysis.

This analysis depends not only on DCL’s ability to emphasize the right models, but
also on how much CC data can help improving predictive performance in comparison
to WCmodels. Given that Nasa60Coc81Nasa93 contains a CC subset which overlaps
with the WC data, it cannot be used in this analysis. Therefore, this analysis is based
only on ISBSG2000, ISBSG2001, ISBSG and Nasa60Coc81.

8.2 Analysis of overall MAE across time steps

Table 5 presents the overall predictive performance across time steps in terms of
MAE, SA and Δrguess . RT, DWM, Relevancy Filtering and CC-Relevancy Filtering
have effect size Δrguess varying from medium to large, whereas DCL and CC-DWM
always have a very high effect size, showing a much better predictive performance.
Even though DCL’s, CC-DWM’s and CC-Relevancy Filtering’s SAs were consider-
ably larger given the difficulty of the SEE task, RT, DWM and Relevancy Filtering
presented low SA for ISBSG2001, indicating a clear need for improvement.

In order to compare multiple models over multiple datasets, we used Friedman
statistical tests, as recommended by Demšar (2006). The measure compared was
the overall MAE across time steps. The test detected statistically significant differ-
ence among the overall MAE of the approaches at the level of significance of 0.05
(FF = 6.46 > F(6, 18) = 2.66, p value = 0.0009). The ranking of approaches
obtained from the test is shown in Table 6. DCL was ranked first (lowest/best MAE)
for all datasets and was the only approach ranked higher than RT. Therefore, we com-
puted Wilcoxon signed-rank tests with Holm–Bonferroni between DCL and RT for
each dataset with overall level of significance of 0.05. This is a stronger test than the
usual post-hoc tests that would normally be needed if we were interested in com-
paring every approach against the baseline RT. Statistical comparisons between other
approaches and RT are not needed in this case because we know from the rankings
that none of them would outperform RT. The p values for comparing DCL against RT
are 0.0015 for ISBSG2000, 0.0139 for ISBSG2001, <0.0001 for ISBSG and 0.0074
for Nasa60Coc81, confirming that DCL outperforms RT on all these datasets.

Our experiments are based on predicting the next ten projects in the WC data
stream. However, our approach is also applicable to other numbers of future projects.
As a sanity check, we have performed additional experiments using DCL and the
baseline approach RT for predicting the next three, five and fifteen projects using
Nasa60Coc81, ISBSG, ISBSG2000 and ISBSG2001. If we count the number of wins

4 DCL was compared against DWM and CC-DWM in our preliminary work (Minku and Yao 2012a), but
those experiments were performed fine tuning DWM’s and CC-DWM’s parameters.
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Table 6 Ranking average and
standard deviation of approaches
across datasets based on the
overall MAE

Approach Rank Avg. Rank SD

DCL 1.00 0.00

RT 3.00 1.41

DWM 3.75 ≈ 4 0.96

Relevancy filter 4.00 2.16

CC-DWM 4.00 1.41

CC-RT 6.00 1.41

CC-relevancy filter 6.25 ≈ 6 0.50

For each dataset, smaller ranking
represents better overall MAE

(without checking for statistical significance), DCL wins in all cases. A Wilcoxon
signed-rank test to compare DCL-RT and RT across datasets and numbers of future
predictions confirms that DCL was better ranked than RT (p value of 0.00044).

Overall, we can conclude that DCL is successful in using CC data to improve SEE
in comparison with other existing SEE approaches, including WC approaches. This
result is of practical importance. It means that companies can use data from other
companies in order to reduce the issues caused by the small size of their WC SEE
datasets, saving the cost of collecting a large number of WC data.

8.3 Analysis of MAE at each time step

In this section, we analyse the predictive performance of DCL against the baseline
approach RT in order to further understand the benefit of using DCL as a CC approach.
Figure 5 shows the MAE at each time step for DCL and RT. There are several periods
of around 20 time steps in which DCL outperforms RT. This number of time steps
possibly involves several months (or even years) of worse RT estimations, which could
have harmful consequences for a company. So, the improvements provided by DCL
are considerable in terms of number of time steps.

We can see from Figs. 2 and 5 that DCL managed to use the potential benefit from
CC data in several cases. However, even though DCL rarely obtained worse predictive
performance than RT throughout time, it still has room for further improvement. Its
MAE was a bit worse during the first 15 time steps for ISBSG2001. The full potential
benefit from CC-RT1 and CC-RT2 was not used by DCL in the last 15 time steps
for Nasa60Coc81 either. Improvements on DCL’s weighting scheme may help it to
achieve better predictive performance, as it sometimes does not reflect the best models
(Sect. 6). Filtering may sometimes also hinder predictive performance, as shown in
Sect. 7. Therefore, future research could also look into improving DCL’s filtering.

We also computed the effect size of DCL against RT’s for a sliding window repre-
senting different periods of time using the function shown in algorithm 2. The window
size is a critical parameter of this function. Too small windows could be more likely
to find short consecutive periods in which one approach is continuously better than
the other, creating too large effect sizes. Too large windows would provide the same
information as the overall effect size. In order to determine the window size, we ran
algorithm 2 with window sizes from 10 to 2/3 of the size of the dataset and computed
the average of the effect sizes in

−→
Δ RT for each window size. The average of all effect
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Fig. 5 Predictive performance of RT and DCL for each dataset in terms of MAE. The number of years
represents the period covered by the time steps considering the implementation date of the single company
projects. At each time step, a new WC project is used for training, then the approaches are used to predict
the next ten projects, and theMAE is calculated based on these ten predictions. a ISBSG 2000 (≈2.5years).
b ISBSG 2001 (≈1.5year). c ISBSG (≈6.5years). d Nasa60Coc81 (≈17years)

sizes in
−→
Δ RT should be close to the overall effect size. So, the window size whose

average effect size achieved the smallest absolute difference with respect to the overall
effect size was chosen. This resulted in window sizes of 33 for ISBSG2000, 39 for
ISBSG2001, 43 for ISBSG and 32 for Nasa60Coc81. The sliding window effect sizes
are shown in Fig. 6. As we can see, all datasets had at least some moments in which
the effect size was large and in favour of DCL (above the top horizontal dotted black
line). This further demonstrates that it is worth using DCL as a CC learning approach.

9 DCL and types of base learners

This section analyses the overall behaviour of DCL when using different types of base
learner than RTs. It aims at (1) verifying whether it can still provide benefits over its
corresponding WC model when using other types of base learner, and at (2) revealing
what base learners do better in combination with DCL. This analysis supports the
external validity of this work, as it shows whether DCL still performs as expected
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Algorithm 2 Sliding effect size
Parameters:−−−→
MAEDCL : vector with DCL’s MAE at each time step;−−−→
MAERT : vector with RT’s MAE at each time step;
T : number of time steps;
W : window size.

1: Create empty vector of effect sizes
−→
Δ RT .

2: for i = 1 to T do
3: if i + W − 1 > T then
4: Return E f f .

5: AvgDcl ←
∑ j=i+W−1

j=i
−−−→
MAEDCL [ j]
W

6: AvgRt ←
∑ j=i+W−1

j=i
−−−→
MAERT [ j]

W

7: StdRt ←
√

1
W−1

∑ j=i+W−1
j=i (

−−−→
MAERT [ j] − AvgRt)2

8: Add AvgRt−AvgDcl
StdRt to the end of

−→
Δ RT .

Return
−→
Δ RT .
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Fig. 6 Effect size ΔRT based on sliding windows. The horizontal dotted blue (dark grey) lines represent
the borders between what is considered a positive or negative small/medium/large effect size. a ISBSG
2000, window size=33. b ISBSG 2001, window size=39. c ISBSG, window size=43. d Nasa60Coc81,
window size=32 (Color figure online)
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even when using different base learners. It also gives insights to practitioners in terms
of what base learners to use with DCL for achieving better SEEs.

9.1 Experimental setup

Besides using RTs as in the previous sections, this section also considers the following
base learners:

– Estimation by analogy (EBA) (Shepperd andSchofield 1997)—this is the k-nearest
neighbour algorithm (Bishop 2005) based on normalised attributes and Euclidean
distance.

– Bagging ensembles of RTs (Bag+RTs) (Minku and Yao 2013a).
– Radial basis function networks (RBFs) (Bishop 2005).
– Multilayer perceptrons (MLPs) (Bishop 2005).

These base learners were chosen because they provide a variety of different
behaviours, including EBA as a competitive traditional approach to SEE; Bag+RTs
and RTs as two approaches that have more recently been shown to be good for SEE
in comparison to other approaches (Minku and Yao 2013a); MLP as an approach that
has been shown to be successful as a base learner in other types of ensembles for
SEE (Minku and Yao 2013a, b), and RBF as an approach that has not been doing very
well for SEE (Minku and Yao 2013a, b). RBFs were included to check whether DCL
could make their predictive performance competitive. Similar to Sect. 8, base learners
trained on theWC data streams are simply referred to by the base learner’s name (e.g.,
RT or RBF). DCL using a certain base learner is referred to as DCL+<base learner
name> in this section. For example, we refer to the DCL models being used in the
previous sections as DCL+RT in this section. Similar to Sect. 8, a WC model used
on its own is simply referred to by its name (e.g., RT).

The parameters used with DCL and RT are the default values used in Sect. 6.1.
The parameter values for the other base learners were chosen following the same
procedure as for RTs, i.e., they are the values that most often produced better results
in Minku and Yao (2013a). These were number of neighbours k = 1 for EBA; number
of hidden nodes 9, learning rate and momentum 0.1, number of epochs 100 for MLP;
minimum standard deviation for clusters 0.01 and number of clusters 6 for RBF; and
for Bag+RT, number of base learners 50, minimum total weight of 1 for the instances
in a leaf of the RT, and minimum proportion of the variance on all the data that need to
be present at a node in the RT in order for splitting to be performed 0.0001. A single
execution was performed for each dataset for EBA, which is a deterministic approach
as our RT. For the others, 30 runs were performed on each dataset.

The first part of the analysis aims at checking whether DCL improves upon its
corresponding WC learners. For that, the average overall MAE of DCL using each
type of base learner on each dataset was paired with the average overall MAE of the
correspondingWC learner for each dataset. This comparison is not used to check what
combinations of DCL and base learner could provide best results, but whether DCL
can improve the predictive performance of each type of WC base learner. Therefore,
given that Nasa60Coc81Nasa93 contains a CC subset which overlaps with the WC
data, it was not used for this part of the analysis. This resulted in 20 pairs (5 types of
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Table 7 Predictive performance of the best three ranked approaches in terms of MAE for each dataset

Dataset Approach MAE SA Δrguess

ISBSG2000 DCL+MLP 2262.83 48.26 3.35

DCL+Bag+RT 2293.03 47.57 3.31

DCL+RT 2352.59 46.21 3.21

ISBSG2001 DCL+ IBK 2661.77 35.28 2.84

DCL+MLP 2784.57 32.29 2.60

DCL+RT 2873.11 30.14 2.43

ISBSG DCL+Bag+RT 2586.80 57.30 1.66

DCL+RT 2805.56 53.69 1.55

DCL+MLP 2856.90 52.84 1.53

Nasa60Coc81 DCL+RT 205.83 56.92 0.97

DCL+Bag+RT 244.93 48.74 0.83

DCL+MLP 247.40 48.22 0.82

Effect sizes in bold italics can be considered as large

base learner and 4 datasets). The comparison betweenDCL and the correspondingWC
models was based on a Wilcoxon signed-rank test across datasets, as recommended
by Demšar (2006).

The second part of the analysis aims at finding out what combinations of base
learner do better with DCL. For that, a Friedman test (Demšar 2006) was performed
for comparison across all datasets considering each of the 5 combinations of DCL
with a base learner. Statistics such as SA, effect size Δrguess and standard deviation
of the ranking in terms of overall MAE were also used in the analysis.

9.2 Analysis of DCL versus WC models

The Wilcoxon signed-rank test to compare DCL and the corresponding WC models
shows that the overall MAE rankings are statistically significantly different across
datasets with level of significance of 0.05 (p value=0.00068). DCL’s sum of ranks
was 196, whereas the WC models’ sum of ranks was 14, where higher means better.
So, DCL’s ranking is generally superior than its corresponding WC models and we
can conclude that DCL is generally robust to the type of base learners. The only two
cases where a WCmodel was ranked higher than DCL were RBF for ISBSG2001 and
EBA for Nasa60Coc81.

Table 7 shows the overall MAE, SA and effect sizeΔrguess for the best three ranked
approaches in terms of MAE for each dataset. As we can see, the best three ranked
approaches were always based on DCL, i.e., DCL never lost from a WC model when
it was among the best ranked approaches. Moreover, the effect size Δrguess of the
best three ranked approaches in terms of MAE was always large, showing that they
are considerably better than rguess. Therefore, we can conclude that DCL is generally
successful in improving SEE over its corresponding WC model, contributing to its
external validity. As a sanity check, we have also compared the best ranked DCL
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Table 8 Ranking average and standard deviation of DCL approaches across datasets based on overall
MAE; and z and p values of the post-hoc tests for comparison of each approach against DCL+RBF

Approach Rank Avg. Rank SD z p value

DCL+RT 2 1.00 2.6 0.0093

DCL+Bag+RT 2.2 ≈ 2 1.10 2.4 0.0164

DCL+MLP 2.6 ≈ 3 1.14 2 0.0455

DCL+EBA 3.6 ≈ 4 1.67 1 0.3173

DCL+RBF 4.6 ≈ 5 0.55 – –

The p values in bold italics represents statistically significant difference of overall MAE using Holm–
Bonferroni corrections at the overall level of significance of 0.05. For eachdataset, smaller ranking represents
better overall MAE

against the best ranked WC model for each dataset using Wilcoxon signed-rank tests
withHolm–Bonferroni corrections. The results show that DCLwas significantly better
for all datasets.

9.3 Analysis of combinations of base learners and DCL

The Friedman test for comparison of DCL using different base learners in terms of
overall MAE across datasets detected statistically significant difference at the level
of significance of 0.05 (FF = 3.58 > F(4, 16) = 3.01, p value=0.0288). Table 8
shows that DCL+RT is the highest ranked approach. From the table, we can see that
the average rankings of DCL+RT, DCL+Bag+RT and DCL+MLP are similar.
DCL+EBA has a larger standard deviation. This reflects the fact that even though it
was the best ranked on one dataset, it was theworst ranked on two others. The approach
with the worst average ranking (DCL+RBF) was more consistently the worst ranked,
as we can see from its lower standard deviation. So, we performed post-hoc tests with
Holm–Bonferroni corrections to check what approaches are statistically significantly
different from it. The tests reveal that both DCL+RT and DCL+Bag+RT perform
better than DCL+RBF, whereas DCL+MLP’s and DCL+EBA’s rankings are not
statistically significantly different from DCL+RBF’s.

It is worth mentioning that Bag+RTs were always higher ranked than single
RTs, corroborating Minku and Yao’s results in terms of comparison of these two
approaches (Minku and Yao 2013a). However, DCL+RTs is very competitive, being
three times better and two times worse than DCL+Bag+RT. DCL+RT was always
among the three best approaches, whereas DCL+Bag+RT was not for ISBSG2001.
None of the cases where DCL lost from the corresponding WC model involved
RTs or Bag+RTs. RBFs obtained the worst rankings in 4 out of 5 datasets, and
DCL+RBF did not manage to improve the ranking enough to be among the best
three. Overall, this analysis shows that it is worth using DCL with RTs as the base
learners.
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Table 9 ANOVA factors and
interactions

Factors 2-factor
interactions

3- and 4-factor
interactions

βw βw ∗ βc βw ∗ βc ∗ Q

βc βw ∗ Q βw ∗ βc ∗ Tstart

Q βw ∗ Tstart βw ∗ Q ∗ Tstart

Tstart βc ∗ Q βc ∗ Q ∗ Tstart

βc ∗ Tstart βw∗βc∗Q∗Tstart
Q ∗ Tstart

10 The impact of DCL’s parameters

The previous sections used DCL’s default parameters. This section analyses DCL’s
sensitivity to parameters, revealing whether DCL’s predictive performance can be
influenced by parameter tuning (Song et al. 2013) and which parameters influence its
predictive performance the most.

10.1 Experimental setup

We have performed an analysis of variance (ANOVA) based on a full factorial design.
The factors analysed are the main parameters involved in DCL: Q, Tstart , βc, and βw.
The first two are parameters related to the filtering of cross-company models, whereas
the last two are used in the adjustment of weights of base learners. This leads to a total
of 15 factors and interactions, as shown in Table 9. The following parameter values
were tested:

– Q = 0.6, 0.7, 0.8, 0.9, 1.0;
– Tstart = 0, 15, 30, 45, 60;
– βc = 0.1, 0.3, 0.5, 0.7, 0.9; and
– βw = 0.1, 0.3, 0.5, 0.7, 0.9;

For each dataset among ISBSG2000, ISBSG2001, ISBSG and Nasa60Coc81, the
observations were DCL’s MAEs at each time step. The base learners were RTs,
as in Sect. 8. Sphericity is the main assumption made by within-subjects ANOVA
(Demšar 2006). We have used Mauchly tests to check whether sphericity is violated,
and found that sphericity is violated in all cases, except for Tstart in CocNasaCoc81
and ISBSG2000. Whenever sphericity was violated, Greenhouse–Geisser corrections
have been adopted. Our analysis is also based on the effect size η2 (Levine and Hullett
2002) of factors and interactions with significant impact on MAE.

10.2 Sensitivity analysis

ANOVA reveals that all factors and interactions among factors have statistically sig-
nificant impact on MAE, except for βw for ISBSG2000, and βc and βw ∗ Q for
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Table 10 Effect size η2 of factors and interactions with statistically significant impact on MAE

Dataset η2 > 0.01000 η2 > 0.02500 η2 > 0.05000

ISBSG2000 βc , Q, βw ∗ βc None None

ISBSG2001 None βw βw ∗ βc

ISBSG βc , βw ∗ βc None None

CocNasaCoc81 Q, Q ∗ Tstart βc , Tstart , βw ∗ βc βw

ISBSG2001. Most p values were smaller than 0.009. As we have 15 factors and inter-
actions, we expect all effect sizes η2 to be small. So, we interpret them in relative rather
than absolute terms. Our smallest η2 was 0.00006, and the largest was 0.07345. We
consider all η2 larger than 0.01000 as relatively high. Table 10 shows all factors and
interactions with both significant impact onMAE and η2 larger than 0.01000, 0.02500
and 0.05000, respectively. Cohen’s suggested reference values for small, medium and
large η2 were defined for one-way ANOVA, which does not reflect our design. They
are more likely to be applicable to partial η2. Our partial η2 varied from 0.01483 to
0.28314. However, we concentrated our analysis on η2 because, among other advan-
tages, η2 is more interpretable, representing the percentage of the variance accounted
for each factor/interaction (Levine and Hullett 2002).

Table 10 reveals that βc or its interaction with βw (βw ∗ βc) had relatively high
η2 for all datasets. This means that the choice of values for parameter βc or the
way these values interact with the values chosen for βw normally affect DCL’s MAE
considerably. Factors and interactions βw, Q, Tstart , and Q ∗Tstart had relatively high
η2 for some datasets, but not for the others. Therefore, even though these parameters
and interactions can affect DCL’s MAE, this is not always the case. Other interactions
always had very small η2, meaning that they have little effect on DCL’s MAE.

It is worth observing that Q and Q ∗ Tstart were less important for ISBSG2001
and ISBSG according to this analysis, given that their η2 was very small for these
datasets. As these parameters are related to whether or not filtering is applied, this
corroborates the results presented in Table 3, which show that the difference in SA
when using (DCL) or not using (DCL-W) filtering was small. It is also worth noting
that the interactions betweenweighting and filtering parameters (i.e.,βc∗Q,βc∗Tstart ,
βw∗Q and βw∗Tstart ) always had very low η2. Interactions between βc and βw always
had relatively high η2, and interactions between Q and Tstart sometimes had relatively
high η2. This is expected, as βw and βc have a strong relationship with each other, and
Q and Tstart also have a strong relationship with each other.

11 Threats to validity

In terms of internal validity (Mitchell and Jolley 2010), we have used as default param-
eter settings the values that have most often achieved better results in related literature
(Minku and Yao 2013a; Kolter and Maloof 2007; Minku and Yao 2012a; Turhan and
Mendes 2014). It is good and user-friendly to have models perform well using default
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parameter settings. In practice, there are still cases where further parameter tuning can
bring significant predictive performance gains. There are also still cases when new
learning models are needed. We have performed a sensitivity analysis to investigate
which parameters affect DCL’s predictive performance the most.

Construct validity was first dealt with by using MAE as a predictive performance
measure. This measure is not biased towards under or overestimations, being adequate
for revealing the potential benefit of CC data. DCL was then compared against other
approaches based on MAE, SA and Δ. So, we considered not only the predictive
performance, but also the magnitude of the differences in predictive performance and
effect size. Friedman, post-hoc tests and Wilcoxon signed-rank tests (Demšar 2006)
were used to show the significance of the differences in MAE.

We have provided an in depth understanding of DCL to handle external validity.
Among others, the analysis explains in which situations DCL is successful, and in
which situations it may fail to benefit from the best performing underlying model.
Predictions for an uncertain future will always incur some risk and errors. This is the
case for all software effort estimation approaches, including DCL. Our analysis shows
that DCL reduces this risk in comparison to other automated approaches by learning
whether changes are happening and adjusting its weights accordingly. However, it is
still impossible to adjust the weights to unknown changes that have never occurred in
the available training data. If a practitioner expects his/her company to suffer sudden
and unknown changes frequently, then automated approaches to software effort esti-
mation may not be the best option. If changes are not very sudden, then approaches
such as DCL can adjust to these changes.

Our analysis is based on five datasets. Three datasets with knownWCchronological
order were used. Even though the chronological order is not known for the other two,
they can still be used to simulate a WC data stream and show (1) whether DCL
would be able to identity which model is more relevant and (2) whether DCL can
benefit from the CC models to improve SEE. Therefore, the use of these datasets
contributes to the generalisation of our results. The dataset Nasa60Coc81Nasa93 was
used for checking whether our analyses and approaches are successful in identifying
a subset that is known to be very useful. Obtaining additional datasets for evaluating
DCL is difficult due to our need for non-proprietary datasets with information on
which projects belong to a single company among the projects of a CC dataset. If
more datasets become available in the future, a replicated study should be performed.
Nevertheless, the datasets used in our current study can be made available through
PROMISE and ISBSG. So, researchers and companies willing to use DCL could use
the same CC datasets used in this study. The subsets used in our study also covered
cases where they can be potentially very helpful, competitive against WC data and
detrimental. So, the subsets were diverse.

CC data were considered as fixed CC datasets by DCL. We showed that, even after
some periods of time when certain CC models are not useful, they can still become
useful later on. Fixed CC datasets as used here can be useful for prolonged periods
of time, allowing DCL to achieve similar or better overall MAE than WC models.
This means that DCL as investigated here is applicable in practice. However, fixed
CC datasets may not be useful indefinitely. If the weights of the CC models become
very small in comparison to the WC model, this means that the CC data are not
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currently helping. If this happens in practice and the accuracy of DCL’s predictions is
deemed low, additional CC data should be acquired and DCL re-built. The fact that
DCL’s MAE was usually not higher than the WC model’s during the beginning of
the learning period suggests that resetting DCL every several years might be a good
option. CC data can also be treated as a data stream and learned online, which is an
area that we would like to investigate as future work.

12 Conclusions

This paper presents a dynamic adaptive automated approach to find out when CC
models are beneficial and use them to improve SEE. It provides answers to the research
questions as follows:

[RQ1]Howcanweknowwhichmodel from the past best represents the current
projects being estimated?

A new dynamic adaptive automated approach called DCL was proposed to answer
this question. It uses weights to dynamically and automatically determine when CC
models are more or less helpful than a WC model. These weights are adjusted based
on DCL’s predictive performance throughout time, giving more emphasis on the most
recent projects in order to track possible changes in the company’s environment. The
dynamic weighting mechanism of DCL was successful in identifying the best base
learners to be emphasized. However, abrupt changes sometimes caused a given model
to suddenly present much better/worse predictive performance than before, without a
transition period for its weights to gradually start reflecting the new situation. In these
cases, weights had a short delay in reflecting the new situation, because they could
only start reflecting it once it became active.

[RQ2] Can that information help improving SEE?
Yes. CC models whose weights are higher are emphasised by DCL in order to

improve SEE. This resulted in improvements in predictive performance in comparison
to corresponding WC models and existing CC approaches from the literature. DCL’s
weighting mechanism was important to improve SEE, even though DCL’s filtering
mechanism was sometimes beneficial and sometimes detrimental.

An important practical implication of our work is that DCL frees practitioners from
the need for manually determining which WC or CC past models are relevant to the
present. Moreover, our results show that DCL can be used to identify when CC data is
useful to improve SEE in comparison to WC models, reducing the negative effect of
small WC datasets on SEE. This means that our approach saves the cost of collecting
WC data, enabling companies with few WC data to use SEE models. For example,
these companies can use DCL with existing CC data, e.g., from ISBSG (2011) or
PROMISE (Shirabad and Menzies 2005) repositories.

The SEE models provided by DCL could be used for decision-support in several
ways. For instance, if the SEE produced by DCL is similar to the SEE given by
an expert, both the company and its clients could see that as a reassurance that the
SEE given by the expert is in line with previous relevant past projects. If the SEEs
given by DCL and an expert differ considerably, this could be used to trigger further
analysis of the project to clarify its likely effort, as mentioned in Sect. 1. DCL could
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also assist project managers with project planning (e.g., what team expertise to use),
and requirement elicitators with which requirements to implement (e.g., whether it
is worth lifting or including extra memory or CPU constraints, etc.), as suggested
by the work of Minku et al. (2015). This is because practitioners could get SEEs for
different sets of input attribute values for a project, gaining insights into howmuch the
resulting effort would vary. Additionally, DCL’s weights can be used to identify which
CC or WC SEE model best reflects the relationship between project input attributes
and required effort in a company. When associated with transparent (readable) base
learners such as decision trees, this can provide insights into what project attributes
are more highly correlated with effort and how these attributes interact with each
other. Practitioners could potentially use that information to gain insights into how to
improve productivity.

Given the encouraging results achieved byDCL,wewould like to perform an empir-
ical validation of DCL with industry as future work. This will allow us to investigate
not only how good DCL’s SEEs are in comparison with expert-based SEEs, but also
howwell DCL can contribute with software project planning andmanagement in prac-
tice. Other directions for future research include treating CC projects as a data stream
in DCL; using other types of base learners with DCL; investigating other weight-
ing mechanisms and mechanisms to accelerate DCL’s recovery when there are abrupt
changes; investigating other approaches to filter CCmodels with the aim of improving
the filtering mechanism; and performing replicated studies with more datasets, if extra
datasets become available.
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