
ORIGINAL ARTICLE

Declarative GUI descriptions for device-independent applications

Jacek Chmielewski1 • Jakub Flotyński1 • Dariusz Rumiński1 • Adam Wójtowicz1

Received: 6 April 2015 / Accepted: 5 January 2016 / Published online: 2 February 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The increasing number and diversity of devices

connected to the Internet open new research challenges in

the field of cross-platform and device-independent appli-

cations. One of the approaches to this problem is the

Device-Independent Architecture, which provides appli-

cation logic and application data device independence. It

enables also usage of user interface (UI) adaptation mid-

dleware to support application UI device independence.

Potentially, device-independent descriptions of application

UI can be implemented with existing user interface

description languages (UIDLs). In this paper, we present an

analysis of eight popular UIDLs that are assumed to be

suitable for device-independent GUI descriptions, along

with a summary of evaluation results and lessons learned.

The selected UIDLs were employed to describe a set of

GUI views based on an existing mobile application. The

gathered results confirm our research hypothesis that the

analyzed popular declarative UIDLs are not capable of

describing mobile GUI in a device-independent manner.

Therefore, using the knowledge gathered from the reported

experiment, we propose a set of guidelines for an optimal

device-independent UIDL.

Keywords User interface description languages � UIDL �
GUI adaptation middleware � Device-independent

applications � Device-Independent Architecture

1 Introduction

Cisco’s Internet Business Solutions Group predicts that by

2020 there will be about 50 billion devices connected to the

Internet [8]. There are already more connected devices than

people on the planet. But, according to the mentioned

forecast, by 2020 there will be almost ten devices per each

human being. The rapid growth in the number of devices

will be followed by tenfold increase in mobile data traffic

[9]. This trend builds the need for solutions that enable

users to access their data and applications in a device-

agnostic way—i.e., no matter what device type or software

platform they use. Solutions for accessing distributed data

sources using the ubiquitous Web platform were proposed

in [30, 23]. But, to provide fully device-independent

applications it is necessary to overcome three major

obstacles: device independence of application logic, device

independence of application data, and device independence

of application user interface (UI). Researchers usually

approach these issues separately, but there are solutions

that have the ability to address them all at once. One of the

available options is to build applications according to the

Device-Independent Architecture (DIA) [6, 7]. The DIA

makes application logic and data device independent by

placing them outside of user’s devices. The only element of

device-independent applications that depends on device

parameters is the UI. To maintain complete device inde-

pendence of an application, it is necessary to introduce a UI

adaptation middleware between the application and user’s

devices. In such configuration, the application has to

& Jacek Chmielewski

chmielewski@kti.ue.poznan.pl

Jakub Flotyński

flotynski@kti.ue.poznan.pl

Dariusz Rumiński

ruminski@kti.ue.poznan.pl

Adam Wójtowicz

awojtow@kti.ue.poznan.pl

1 Department of Information Technology, Poznań University

of Economics and Business, Al. Niepodległości 10,

61-875 Poznan, Poland

123

Pers Ubiquit Comput (2016) 20:185–194

DOI 10.1007/s00779-016-0903-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206906721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-016-0903-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-016-0903-2&domain=pdf

provide a device-independent UI description, which can be

processed by the middleware and adapted for a particular

device. Adaptation of UI to different target devices can

significantly reduce effort in application development—in

comparison with creating independent UIs for the partic-

ular devices [20]. In addition, to maintain application-

middleware independence, the device-independent UI

description should not depend on a particular middleware

implementation. This goal can be achieved by providing

the middleware with declarative description of an appli-

cation UI, as contrary to imperative instructions defining

how to generate the UI within a specific programming

platform.

Assuming the usage of a DIA-based application and a

UI adaptation middleware the question that remains is:

How to construct a device-independent UI description?

Answering the question requires solving several diverse

problems that depend on required UI modality. The scope

of the research presented in this paper is limited to the most

common UI modality: the graphical UI (GUI). Considering

the GUI, the problems that have to be solved are deter-

mined by two major tasks composing a GUI adaptation

process: adaptation of GUI structure and adaptation of GUI

appearance. The first task is about deciding which GUI

elements should be presented on a particular device. The

second task is to provide information on how these GUI

elements should look like. The work presented in this paper

addresses problems related to the second task. Our research

hypothesis is stated as follows: the existing popular

declarative UI description languages (UIDLs) are not

capable of describing mobile GUI views in a device-in-

dependent manner for DIA-based applications. To test this

hypothesis, we have defined a set of GUI views based on an

existing mobile banking application that has multiple ver-

sions for different devices (different software platforms)

and we have conducted a series of experiments aiming to

describe the defined GUI views using eight popular UIDLs.

Based on the results of these experiments, our main con-

tributions presented in this paper include the following:

• confirmation of the hypothesis that none of the

analyzed UIDLs are able to fully support device-

independent GUI descriptions for DIA-based

applications,

• formulation of a set of practical guidelines that could be

used to improve some characteristics of existing UIDLs

or to develop a new device-independent UIDL.

Both contributions push the research on DIA-based device-

independent applications forward and open new research

directions that could be investigated in this area.

The rest of this paper is constructed in the following

manner. Section 2 provides background information on

DIA and UIDLs, along with an overview of similar

research conducted in the past. Sections 3 and 4 present the

experiment design and provide a description of experiment

results. Section 5 contains a discussion and an analysis of

the results. The final conclusions and summary are pro-

vided in Sect. 6.

2 Background

The background of the presented survey covers the DIA,

which separates applications from end-devices, and UIDLs

that enable device-independent UI description, which can

be used within applications based on the DIA.

2.1 Device-Independent Architecture

The DIA has been proposed to facilitate analysis and

development of applications that can be made available to

users via any capable device from the large, diverse, and

fast-growing pool of Internet-enabled end-devices—i.e.,

devices that are used directly by users to interact with an

application, but not sensors that passively record a state of

an environment. As presented in [6], the idea of DIA

originates from the service-oriented architecture, where

systems are decomposed into atomic services, and pro-

cesses use such services without knowing much about their

implementation. A similar approach can be used to

decompose end-devices. Each end-device, be it a laptop or

a smartphone, provides: resources, services, and user

interaction channels. Resources encompass processing

power, memory, and storage. Services are providers of

context information, such as location, temperature, light

intensity, and data from other types of sensors. User

interaction channels (both incoming and outgoing) are the

means to communicate with a user and include screen,

keyboard, vibration, and camera. The key concept is to use

external resources, instead of what is provided by an end-

device, and to generalize the way services and user inter-

action channels are accessed. Therefore, in DIA, the sep-

aration of application from end-devices, which enables the

device independence, is achieved by:

• executing the application outside of end-devices,

• accessing sensor data provided by a device via a

standardized API, and

• using universal UI descriptions.

The execution of the application on external resources

ensures that the application logic does not depend on the

hardware or software platform of an end-device. The

interesting consequence is that, in this architecture, end-

devices could be deprived of their general purpose

resources, as the resources are not needed. Services publish

data in service-specific formats (e.g., location coordinates

186 Pers Ubiquit Comput (2016) 20:185–194

123

for a geolocation service, numerical data for a temperature

sensor) independently of their implementation on a par-

ticular end-device. Therefore, it is feasible to build a

middleware providing a device-independent API, such as

the one proposed in Wolfram Language [31], to access

such services. The usage of a universal UI description is a

key requirement for independence of an application UI

from end-device parameters (e.g., screen size and pixel

density).

However, such generalized UI descriptions may result in

a quite raw UI presented to users, which is usually far from

what is expected for a consumer mobile application. To

enable UI presentation to be tailored to parameters of a

specific end-device, the generic UI description has to be

properly adapted before reaching the user. UI adaptation

should be separated from the application and could be

provided in the mentioned middleware that is placed

between applications and end-devices. The structure of an

application implemented according to DIA is presented in

Fig. 1. The middleware functionality may be bound to the

application itself as a software library, may be provided as

a separate proxy service, or may be implemented in a form

of a device independence driver directly on an end-device.

The research presented in this paper focuses on the flow

of GUI description—since its generation at the server side,

to its presentation on an end-device. To maintain the

overall device independence of an application, the GUI

description generated by the application executed at the

server side has to be device independent. Then, the mid-

dleware uses information about end-device screen param-

eters to adapt the GUI description to its final form, which is

subsequently passed to the end-device for presentation.

2.2 User interface description languages

As defined in [12], a user interface description language

(UIDL) is a specification language that describes various

aspects of a UI under development. UIDL defines a syntax

and semantics that can be used to support the various stages

of UI development life cycle and development goals, and

determines the granularity of UI components that can be

used in UI design [29]. Recently, the most notable research

in the area of UIDLs was done by the W3C model-based

UI Working Group (MBUI WG) [17]. Its goal was to

combine the best elements from existing UI description

solutions and to propose recommendations that will enable

building context-aware UIs for a variety of Web interactive

applications. The MBUI WG indicates the CAMELEON

Framework, presented in Fig. 2, as the main reference for

classifying UIs supporting multiple targets—users, plat-

forms, and environments—in context-aware computing.

The framework defines development of UIs at the follow-

ing four levels of abstraction. From the highest level—the

task and concept level—on which logical activities, which

are required to reach users’ goals, and domain specific

objects, which are manipulated by these activities, are

specified at design time. To lower abstraction levels, which

are used at run time. Following the concepts provided by

the CAMELEON framework, in this research we assume

the following UI levels.

• At the abstract user interface (AUI) level, a UI is

represented as a collection of presentation units, which

are abstract in the sense of their final presentation

(independent of the modality of interaction), as they

can be presented (accessed) in different ways, e.g.,

visually, vocally, haptically. Presentation units typi-

cally focus on semantics and general properties of UI

components (e.g., input / output data components as

well as structural and logical dependencies between

components), without covering exact properties related

to the final presentation of the UI (e.g., size, position,

color of components).

• At the concrete user interface (CUI) level, a particular

modality is selected and a number of additional

descriptive attributes are introduced to an AUI descrip-

tion, which has been created at AUI level, to describe

the UI more precisely and to enable the perception of a

UI by a user independently from a particular presen-

tation platform (e.g., layouts, relative size and position

of components).

• At the final user interface (FUI) level, a CUI descrip-

tion, which has been created at CUI level, is encoded in

a particular UI description language (a programming

language or a mark up language, e.g., Java, HTML5,

VoiceXML). A FUI is typically specific to a selected

modality of interaction as well as particular hardware

and software platforms (devices, operating systems,

presentation tools), as it may specify, e.g., properties

depending on screen resolution, or type of keyboard.

A FUI description may be either compiled or inter-

preted. It may be presented in various forms, on various

platforms depending on, e.g., device capabilities,

browser implementation, or the context of interaction.

In general, the border between CUI and FUI descrip-

tions may be fuzzy, as some FUI level UIDLs may be

used to represent UIs at CUI level, by skipping UI

Applica�on

logic processing
data storage

UI genera�on

Middleware

UI adapta�on

Applica�on

UI presenta�on

Server End-device

Fig. 1 Device-Independent Architecture diagram

Pers Ubiquit Comput (2016) 20:185–194 187

123

components and properties that are directly related to

particular hardware or software platforms and using

only components and properties that are platform-

agnostic.

The aforementioned levels can provide the basis for

modeling UIs according to the task-oriented paradigm. The

main activities leading to the creation of a UI, temporal

relations between the activities as well as attributes of the

activities and manipulated objects are described in [18, 19].

A few surveys have been conducted to compare capa-

bilities of different UIDLs in the context of building multi-

platform UI descriptions. In [25], selected AUI level

UIDLs have been compared in terms of expressiveness,

available concepts, openness, and the number of tags. In

[12], various AUI and FUI level UIDLs have been com-

pared in terms of various aspects such as popularity,

methodology used, available tools, supported platforms,

and tags. Only languages that are relatively well docu-

mented, available for testing, and used in some develop-

ment cases have been selected for the survey. In [28],

general requirements (e.g., target device, delivery context,

possibilities of personalization and extensibility) and

technical requirements (e.g., separation of an interface

from its presentation, run time, and remote control) have

been specified for AUI level UIDLs, and selected lan-

guages have been evaluated. In [24], selected CUI and FUI

level UIDLs have been compared in terms of available

tools, supported target platforms, description of styles,

support for vector graphics, and the number of tags.

Moreover, a case study has been considered, and example

applications have been developed using the analyzed lan-

guages. The comparison of the developed applications

allowed for more comprehensive evaluation of the lan-

guages. In [22], several well-established and well-

documented languages have been compared in terms of

Web application development. In particular, the compar-

ison includes criteria related to: device and modality

independence, separation of data and interface, capabilities

of UI components as well as remote, and real-time control.

The aforementioned works have evaluated various

UIDLs according to a number of criteria, which are mainly

related to expressiveness and possibilities of building

multi-platform UIs. However, they do not provide a com-

prehensive evaluation of UIDLs in terms of their suitability

for building device-independent GUI descriptions of DIA-

based applications. In these applications, the UIDL has to

provide a universal device-independent GUI description

that contains all UI presentation details necessary for

automatic GUI adaptation to capabilities of a particular

end-device. This aspect was not covered in the previous

research, and our work aims to fill this gap. Additionally,

we define the GUI view to have a wider scope than usual.

In our research, the GUI view is an entity composed of GUI

components visible on a screen (output) and all possible

user actions that trigger a reaction (input). What is

important, the input part includes actions that influence the

GUI, but are not triggered by any visible GUI component.

These actions may occur outside of the screen presenting

the GUI, (e.g., a usage of a hardware back or settings

button).

3 Experiment design

The goal of the performed analysis was to verify the

hypothesis that popular declarative UIDLs are not capable

of describing mobile GUI views in a device-independent

manner for DIA-based applications, where the GUI

Fig. 2 CAMELEON reference

framework (image taken from

[5])

188 Pers Ubiquit Comput (2016) 20:185–194

123

description can be unambiguously and automatically pro-

cessed by a GUI adaptation middleware. To test this

hypothesis, we have defined a set of GUI views that mimic

a selected multi-platform m-banking application [4], we

have described these GUI views with eight popular UIDLs,

and finally, we have assessed the results using a set of

measurable qualitative and quantitative assessment criteria.

The m-banking domain has been chosen because it covers a

broad spectrum of practical usability requirements: on the

level of separate GUI components (e.g., custom password

field, specific validation requirements), on the level of

complete GUI views (e.g., interaction between GUI com-

ponents), and on the level of step-by-step usage scenarios

composed of many GUI views. The GUI views have been

described in all analyzed UIDLs, each in two versions: a

device independent (before adaptation) and a device

specific (after adaptation). However, in this experiment we

focus only on device-independent descriptions.

The experiment was preceded by the initial phase that

included:

• defining experimental GUI views and their basic

components,

• identifying UIDLs potentially suitable for describing

device-independent GUI views,

• specifying assessment criteria for the selected UIDLs.

The three elements of the initial phase have been explained

below.

3.1 Experimental GUI views

One of the assumptions of this evaluation was the useful-

ness of its outcomes in the process of designing a stateful

GUI adaptation system for DIA-based mobile applications.

Therefore, GUI components typical for stateful interac-

tions, such as in scenarios of HTTP-based request/re-

sponse, or typical mobile application interactions, have

been chosen to be analyzed. For this evaluation, ten dif-

ferent composed GUI views have been specified in a lan-

guage-independent manner, i.e., Welcome UI, Login UI,

Main menu UI, Details UI, History UI, Transaction details

UI, Money transfer form UI, Help UI, Map UI, Exchange

rates UI (sample GUI view is presented in Fig. 3).

Composed GUI views are constructed using a set of

proposed universal GUI components. The list of these GUI

components includes: Menu, Details, List, Information

form field, Text input form field, Amount input form field

with validation, Date input form field with validation,

Select form field, Checkbox form field, Password input form

field, Form action button, Table element, Map element,

Page element, Navigation menu, and Banner.

The selection of GUI components and composed GUI

views has been guided by UIs of the m-banking

application. The application is available on five different

mobile platforms (Android, iOS, Windows Phone, Sym-

bian, and mobile Web), and the analysis included all these

variants of the application UI. The goal was to cover a wide

range of typical and custom GUI components used in

standard and custom layouts. The final set of selected GUI

components and experimental views is a superset of what

can be found in majority of existing business and produc-

tivity applications, in which the user interface is designed

as a set of separate views.

3.2 UIDLs selection

The research presented in this paper is focused on UI

descriptions that can be placed between CUI and FUI

levels. Initially, we have analyzed also the AUI level

UIDLs, such as UIML [1], UsiXML [15], and MARIA

[21], which have been intended for device-independent UI

description. However, in this research we are looking for a

solution that provides UI designers with an extensive UI

appearance control on the level of the device-independent

UI description—which is not the case for abstract UI

languages.

The analyzed device-independent UI descriptions

assume fixed modality (visual output, plus touchscreen-

based input) and provide all details required for proper UI

presentation on a given device—which maps to the FUI

level. At the same time, these GUI descriptions have to be

device agnostic, so they correspond to the CUI level and

may employ only screen independent description con-

structs (e.g., % and mm units instead of pixels). Therefore,

UIDLs used in this analysis have been selected to represent

both categories of declarative UIDLs, i.e., low-level (al-

lowing for expressing UI representations that can be

Fig. 3 Example of composed GUI view—money transfer form UI

Pers Ubiquit Comput (2016) 20:185–194 189

123

directly instantiated and presented, thus allowing for

expressing explicitly, e.g., the positioning and sizing val-

ues) and universal languages (integrating the aforemen-

tioned functionality, allowing for defining positioning and

sizing, but expressed as relative values, independent from

particular screen).

Also, expressive power of a UIDL is an important factor

for its assessment. A UIDL supporting only predefined

high-level GUI components will not be able to meet

requirements of mobile business applications, which often

use custom GUI components. Therefore, the expectation is

that a valuable device-independent UIDL will satisfy two

seemingly contradictory requirements: high-level device-

independent GUI specification, with an expressiveness of

low-level pixel-based custom GUI designs.

The presented analysis is based on eight representatives

of declarative UIDLs, which include:

• UIDLs related to major technology vendors:

AndroidXML from Google [2], XAML from Microsoft

[11], UIBinder from Google [26], MXML from Adobe

[10]),

• UIDLs related to popular open-source technologies:

QML [27], XUL [16], OpenLaszlo [3],

• the Web-based de-facto standard: HTML [13].

Additional criteria for including the given UIDL in the

analysis have been: popularity, usage in significant prod-

ucts, the presence of an active developers community, and

availability of a detailed language documentation. Notice

that this research is focused solely on declarative GUI

descriptions, excluding dynamic aspects based on pro-

gramming languages bound with GUI descriptions.

3.3 Assessment criteria

The UIDL assessment criteria have been divided into a

group of expressiveness criteria (is it possible to express a

given GUI component having required features) and a

group of clarity criteria (how unambiguous and compact

the description is). There are also two additional criteria

that are not related to expressiveness and clarity. All these

criteria are explained in detail below.

The expressiveness criteria checks whether it is possible

to fully express a given GUI element using a selected

UIDL. This set of criteria is based on GUI components (16

components þ 2 additional features) as well as on complete

composed GUI views (10 interfaces). If a given expres-

siveness criterion is fulfilled by a given UIDL, one point is

added to the total assessment value for the UIDL. If a given

UIDL only partially allows for expressing a given GUI

component, fractions of the point are added—proportion-

ally to the amount of the missing features. For instance, 0.2

point is counted if Date input form field is absent and has to

be replaced with a regular text field that preserves its

function, but at the same time eliminates the ability to:

control the character input process, validate data, or use

pop-up calendar. On the other hand, 0.9 point is counted if

Date input form field allows for controlling value types and

value ranges, but forces user to input the date according to

one fixed format and there is no way to redefine it within

the UIDL.

The clarity criteria verify the UIDL ease of use for

developers (less complex structure with smaller number of

distinct elements is easier to develop and maintain) and

measure the volume and complexity of GUI descriptions.

For complexity, the structured document complexity metric

(SDCM) has been used. It is a metric that can be applied to

documents, or a set of documents, that are represented in

both XML-based or SGML-based languages. It provides a

single value which is calculated by summing up the num-

ber of unique XML elements and the number of unique

XML attributes. Moreover, according to SDCM, additional

points are added: one for each required element and one for

each required attribute. Since only documents, as opposed

to document schemas, have been analyzed in our work, it is

checked whether given element/attribute is always present

in its parent element to test whether it is required or not.

For the same reason, the last SDCM rule (additional point

added for each element that can only appear as a first child

of its parent) is not applied to our calculations. Initially, it

was also considered to take into account extra (non-SDCM)

complexity factors, such as the presence of recursion or the

number of unique namespaces used. However, they have

not been used as not significant for the assumed DIA

processing model. Finally, volumes of the GUI descriptions

(document sizes) have been measured, taking advantage of

the fact that all analyzed documents use the same encoding

and the results are mutually comparable.

The two additional criteria check whether it is possible

to attach user interaction handlers (e.g., onClick) to UI

elements (allowing to connect UI with application logic)

and whether it is possible to compose multilingual UI

descriptions. Each criterion was assigned 1 point or less, in

the case of a partial support.

These measures have been used for each GUI compo-

nent and separately for each composed GUI (multiple GUI

components combined into a single interface).

4 Results of the experiment

The results of the expressiveness assessment (indicating

how many of the required GUI components can be

expressed) are presented in Fig. 4 (bars filled with oblique

pattern). There is no UIDL with 100 % expressiveness, that

190 Pers Ubiquit Comput (2016) 20:185–194

123

is allowing to express every GUI component specified in

the initial phase.

In Fig. 4, the expressiveness of the selected UIDLs is

presented together with total description sizes that are

summed up for all composed GUI views (represented by

black squares).

The size in bytes is not an accurate measure of

description clarity. There are UIDLs, e.g., HTML, that

produce relatively small, compact descriptions, but require

large number of distinct, unique elements (tags). Therefore,

we have used SDCM instead of relying only on the GUI

description size (c.f. Sect. 3.3). A strong negative corre-

lation (0.8) between size (measured in bytes) and com-

plexity (measured in SDCM) is observed, which can be

explained by the fact that compact descriptions need

complex dictionaries and vice versa.

Figure 5 presents SDCM values for all composed GUI

views bundled together (bars filled with vertical lines). In

this case, the element/attribute uniqueness used to calculate

SDCM values is aggregated for all documents globally.

The evaluation algorithm (c.f. Sect. 3.3) has a hidden

assumption that each GUI component has equal weight—

no matter how significant it is for implementation practice,

i.e., whether it appears in many composed GUI views or

not. To take this significance into account, we have also

measured the UIDL expressiveness and SDCM for each

composed GUI. Regarding SDCM, contrary to measuring

global element/attribute uniqueness that can be perceived

as a complexity measure of a UIDL itself, measuring ele-

ment/attribute average uniqueness within independent

composed GUI views expresses practical complexity of

GUI descriptions developed with a given UIDL. The global

element/attribute uniqueness is depicted in Fig. 5 as bars

filled with vertical lines, while the element/attribute aver-

age uniqueness within independent composed GUI views is

depicted as bars filled with checkered pattern.

The expressiveness results obtained for independent

composed GUI views depicted in Fig. 6 are generally

consistent with the previous results (c.f. Fig. 4)—there is

no UIDL that is able to express all features of every

composed GUI from the assumed reference set. Majority of

analyzed UIDLs do not support such components as Map

element, or Date input form field with validation, nor do

they allow for building a multilingual description, which

makes describing fully functional composed GUI views

(applied to m-banking applications or applications in other

professional domains) practically impossible.

On the basis of the gathered evaluation results, it can be

stated that MXML, AndroidXML, and OpenLaszlo are the

most expressive UIDLs. MXML has the highest scores in

two out of three measurements (expressiveness percentage

of all UI components and expressiveness as a number of

fully implemented composed GUI views), AndroidXML—

Fig. 4 UIDLs expressiveness score set together with total description

sizes

Fig. 5 SDCM values for all GUI descriptions bundled together (bars

filled with vertical lines) and average SDCM values for individual

composed GUI views (bars filled with checkered pattern)

Fig. 6 Average percentage expressiveness of independent composed

GUI views and expressiveness as a number of fully implemented

composed GUI views (out of 10)

Pers Ubiquit Comput (2016) 20:185–194 191

123

in one (average percentage expressiveness of indepen-

dentcomposed GUI views). In terms of clarity, Android

XML is the best language, OpenLaszlo is good, while

MXML is average. Generally, the differences between

UIDLs are observable, but not large, except for UIBinder,

which is definitely the least expressive UIDL (probably

since it is designed to be used in conjunction with imper-

ative Java GWT code), and for HTML, which has produced

compact but complex descriptions composed of many

specific elements.

5 Discussion

As it has been illustrated in the previous section, none of

the analyzed UIDLs enable full implementation of the

selected GUI views and of device-independent GUI views

for DIA-based applications in general. Declarative GUI

descriptions that are to be useful in the context of the DIA

should take into account three aspects: total number of

unique GUI elements provided by an UIDL, GUI element

appearance specification, and GUI behavior specification.

The DIA is based on the assumption that end-devices

can be thin clients—i.e., devices without or with little

processing power. Therefore, the interpretation of a GUI

description, necessary for GUI presentation on a device,

should be kept as simple as possible. In consequence, the

total number of unique GUI elements provided by an UIDL

should be as low as possible. More GUI elements mean

more complex GUI interpretation (e.g., HTML), but less

GUI elements will constrain the GUI design (e.g.,

AndroidXML). Potential solution is to follow the approach

adopted by graphic APIs (e.g., DirectX, OpenGL) and

compose GUI views using only graphic primitives (text,

line, rectangle, etc.). This would limit the number of unique

GUI element and simplify the GUI interpretation on end-

devices, but it would also have negative consequences. It

would result in bigger (multiple elements required to

express GUI constructs) and potentially complex GUI

descriptions (multiple interrelated GUI elements). There-

fore, the balance between the GUI interpretation com-

plexity and the GUI design complexity should be

investigated in the context of a specific GUI adaptation

method.

The second aspect of GUI description is the appearance

of GUI elements (i.e., element position, size, color, and

other formatting options). The majority of analyzed UIDLs

address this issue very well by providing formatting tools

based on the popular CSS specification. Only UIDLs

tightly related to programming environments have minor

formatting limitations, as they are designed to be used in

conjunction with imperative code that influences the GUI

formatting.

The third aspect of GUI description is related to GUI

behavior. Since the aim is to provide a GUI description for

an application used directly by users, it is necessary to

specify how to handle user input—i.e., what user actions

should be caught and what should happen in response.

Most of the analyzed UIDLs allow for describing what to

show to a user, but not how to interact with a user, espe-

cially, when such interactions may be triggered by events

that happen outside of the GUI (e.g., the back functionality

is usually triggered by a physical back button). Missing

features include also the ability to express interactive GUI

components (i.e., components that should change directly

in response to some user actions, e.g., Interactive infor-

mation form field, Map) and validation rules for input GUI

components (Amount, Date). Within DIA model, all user

actions could potentially be redirected to an application on

the server side and initiate generation of appropriate GUI

updates. But it would introduce additional delay in the

application response time and would make the application

GUI susceptible to connectivity problems. So it would be

practical to handle GUI related interactions directly on an

end-device.

Based on the specificity of the DIA, the results of the

presented experiment, and lessons learned during the

implementation of the experimental GUI views, it is pos-

sible to formulate a set of guidelines that could be used to

improve some characteristics of the existing UIDLs or

develop a new device-independent UIDL. The optimal

device-independent UIDL should be able to provide all

details necessary for automatic GUI adaptation for DIA-

based applications, without constraining UIDL expres-

siveness available to a GUI designer. Such optimal UIDL

should follow the following guidelines:

• To maintain independence of device display pixel

density, all positioning and sizing measurements of

GUI components should be expressed only using

device-independent values (percentage) and units

(mm, pt, etc.). This guideline results from device

independence requirements imposed by DIA.

• To inform the end-device about how to handle user

actions, every GUI component should enable specifi-

cation of user interaction handlers and the UIDL should

allow for attaching user interaction handlers to external

triggers (e.g., physical buttons). DIA-based applications

use the input redirection [14] paradigm, so to optimize

the client–server communication it is necessary to

specify which user actions should trigger user input

events redirected to the application on the server side.

Moreover, to preserve device independence of the

UIDL in the context of future end-devices, the

dictionary of supported user interactions (UI handlers)

should be extensible.

192 Pers Ubiquit Comput (2016) 20:185–194

123

• Another optimization axis is the volume of data

transferred between a client device and application on

a server side. So, for the purpose of application-to-

middleware communication performance, the size of

GUI descriptions should be as small as possible.

• To enable flexible layouts, position and size specifica-

tion should support not only fixed values but also

mathematical expressions with references to position

and size parameters of other GUI components. This

guideline is a direct lesson from our experiment.

Descriptions of GUI components that use fixed values

may provide a sub-optimal or even unusable final GUI

on some devices - e.g., devices with very large or very

small screens. Also, fixed values make it difficult to

reuse GUI components within different containers.

With mathematical expressions instead of fixed values,

it is possible to relate component dimensions to

dimensions of its parent container or other components

on the screen, which helps to avoid the mentioned

problems.

• Another lesson learned from the presented experiment

is related to the perceived designer workload while

building a UI. According to experiences gathered from

the development of test UI views, the job was easier

with UIDLs that have low number of unique elements

and attributes. This correlates with values of the clarity

measure reported in Sect. 4. Therefore, to allow GUI

designers to work with compact and clear descriptions,

the total number of elements and attributes in the

description documents and the number of unique

elements should be as low as possible.

• Additionally, based on experiences from the experi-

ment, it can be assumed that to provide the highest

possible expressive power (in terms of GUI design) the

UIDL should employ low-level graphical primitives,

instead of high-level abstract GUI components.

The last guideline is an assumption that have been derived

from lessons learned from the experiment. However, it

should be noted, that despite the fact that informal obser-

vations allow formulating this guideline, it should be

treated as a hypothesis that need further evaluation. Such

evaluation will be carried out after formulation of a UIDL

optimized for DIA-based applications.

6 Conclusions

This paper presents results of an experiment in which eight

popular UIDLs have been used to build device-independent

descriptions of GUI views, reflecting requirements of a

practical mobile application. The descriptions used to

express composed GUI views and individual GUI

components have been assessed using a set of qualitative

and quantitative criteria.

The gathered results confirm the formulated research

hypothesis that selected popular declarative UIDLs are not

capable of fully describing mobile GUI views in a device-

independent manner for DIA-based applications, where the

GUI description is supposed to be unambiguously and

automatically processed by a GUI adaptation middleware.

None of the analyzed UIDLs can be directly used for DIA-

based applications that employ a GUI adaptation middle-

ware to automatically generate a device-specific version of

application GUI. Therefore, there is a need to either

develop a new UIDL adopting the best solutions, or extend

one of the best suited UIDLs. Such new solution should

follow the set of guidelines inferred from lessons learned

during the implementation of test GUI views and from the

evaluation results.

As a follow-up to the presented analysis, we plan to

prepare a prototype of an optimal device-independent

UIDL for DIA-based applications and to evaluate it on a

practical use case.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Abrams M, Phanouriou C, Batongbacal AL, Williams SM,

Shuster JE (1999) UIML: an appliance-independent XML user

interface language. Comput Netw 31(11):1695–1708

2. Android XML (2014) http://developer.android.com/guide/topics/

ui/index.html

3. Barry P (2008) Introducing OpenLaszlo 4. Linux J 2008(171):4

4. BZWBK mobile application (2014) https://play.google.com/

store/apps/details?id=pl.bzwbk.bzwbk24

5. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L,

Vanderdonckt J (2003) A unifying reference framework for

multi-target user interfaces. Interact Comput 15(3):289–308.

doi:10.1016/S0953-5438(03)00010-9

6. Chmielewski J (2013) Towards an architecture for future internet

applications. In: The future internet. Springer, Berlin Heidelberg,

pp 214–219. doi:10.1007/978-3-642-38082-2_18

7. Chmielewski J (2014) Device-independent architecture for

ubiquitous applications. Pers Ubiquitous Comput 18(2):481–488.

doi:10.1007/s00779-013-0666-y

8. Cisco: The Internet of things. How the next evolution of the

Internet is changing everything (2011). https://www.cisco.com/

web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

9. Cisco: VNI forecast highlights (2015). http://www.cisco.com/

web/solutions/sp/vni/vni_forecast_highlights/index.html

10. Coenraets C (2004) An overview of MXML. The Flex markup

language. Adobe Systems, New York

11. Dalal M, Ghoda A (2011) XAML developer reference. Microsoft

Press, New York

Pers Ubiquit Comput (2016) 20:185–194 193

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/guide/topics/ui/index.html
https://play.google.com/store/apps/details?id=pl.bzwbk.bzwbk24
https://play.google.com/store/apps/details?id=pl.bzwbk.bzwbk24
http://dx.doi.org/10.1016/S0953-5438(03)00010-9
http://dx.doi.org/10.1007/978-3-642-38082-2_18
http://dx.doi.org/10.1007/s00779-013-0666-y
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html
http://www.cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html

12. Guerrero-Garcia J, Gonzalez-Calleros JM, Vanderdonckt J,

Munoz-Arteaga J (2009) A theoretical survey of user interface

description languages: Preliminary results. In: Proceedings of the

2009 Latin American Web Congress (La-web 2009), LA-WEB

’09, IEEE Computer Society, Washington, DC, USA, pp 36–43.

doi:10.1109/LA-WEB.2009.40

13. HTML5 (2013) http://www.w3.org/TR/html5/

14. Johanson B, Hutchins G, Winograd T, Stone M (2002) Point-

Right: experience with flexible input redirection in interactive

workspaces. In: Proceedings of the 15th annual ACM symposium

on user interface software and technology, UIST’02, ACM, New

York, NY, USA, pp 227–234. doi:10.1145/571985.572019

15. Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-

Jaquero V (2004) UsiXML: a language supporting multi-path

development of user interfaces. EHCI/DS-VIS 3425:200–220

16. McFarlane N (2004) Rapid application development with

Mozilla. Prentice Hall Professional, New York

17. Model-based user interfaces (MBUI) Working Group (2014)

http://www.w3.org/TR/2014/NOTE-mbui-intro-20140107/

18. Paternò F (2003) Models for universal usability. In: Proceedings

of the 15th French-speaking conference on human-computer

interaction on 15eme Conference Francophone sur l’Interaction

Homme-Machine, ACM, pp 9–16

19. Paternò F (2005) Model-based tools for pervasive usability.

Interact Comput 17(3):291–315

20. Paterno F (2013) User interface design adaptation. In: Soegaard

M, Dam RF (eds) The Encyclopedia of human-computer inter-

action, 2nd edn. Interaction Design Foundation. https://www.

interaction-design.org/literature/book/theencyclopedia-of-human-

computer-interaction-2nd-ed

21. Paterno F, Santoro C, Spano LD (2009) MARIA: a universal,

declarative, multiple abstraction-level language for service-ori-

ented applications in ubiquitous environments. ACM Trans

Comput Hum Interact (TOCHI) 16(4):19

22. Pohja M (2010) Comparison of common XML-based web user

interface languages. J Web Eng 9(2):95–115

23. Rumiński D, Walczak K, Chmielewski J (2014) Generating user

interfaces for XML Schema documents with a presentation lan-

guage. In: Computer networks communications in computer and

information science, vol 431. Springer, pp 328–337. doi:10.1007/

978-3-319-07941-7_33

24. Silva CE, Campos JC (2012) Can GUI implementation markup

languages be used for modelling? In: Proceedings of the 4th

international conference on human-centered software engineer-

ing, HCSE’12, Springer-Verlag, Berlin, Heidelberg, pp 112–129.

doi:10.1007/978-3-642-34347-6_7

25. Souchon N, Vanderdonckt J (2003) A review of XML-compliant

user interface description languages. In: Interactive systems.

design, specification, and verification, Springer, pp 377–391

26. Tacy A, Hanson R, Essington J, Tökke A (2013) GWT in action.

Manning Publications, Greenwich

27. Thelin J (2011) Quick user interfaces with Qt. Linux J

2011(204):7

28. Trewin S, Zimmermann G, Vanderheiden G (2003) Abstract user

interface representations: How well do they support universal

access? In: Proceedings of the 2003 conference on universal

usability, CUU’03, ACM, New York, NY, USA, pp 77–84.

doi:10.1145/957205.957219

29. Vanderdonckt J, Calvary G, Coutaz J, Stanciulescu A (2008)

Multimodality for plastic user interfaces: models, methods, and

principles. In: Multimodal user interfaces. Springer, pp 61–84

30. Walczak K, Wiza W, Chmielewski J (2012) Adaptation of user

interfaces in SOA applications. e-Minds. Int J Hum Comput

Interact 2:3–17

31. Wolfram S (2014) Launching the Wolfram connected devices

project, stephen wolfram blog. http://blog.stephenwolfram.com/

2014/01/launching-the-wolfram-connected-devices-project/

194 Pers Ubiquit Comput (2016) 20:185–194

123

http://dx.doi.org/10.1109/LA-WEB.2009.40
http://www.w3.org/TR/html5/
http://dx.doi.org/10.1145/571985.572019
http://www.w3.org/TR/2014/NOTE-mbui-intro-20140107/
https://www.interaction-design.org/literature/book/theencyclopedia-of-human-computer-interaction-2nd-ed
https://www.interaction-design.org/literature/book/theencyclopedia-of-human-computer-interaction-2nd-ed
https://www.interaction-design.org/literature/book/theencyclopedia-of-human-computer-interaction-2nd-ed
http://dx.doi.org/10.1007/978-3-319-07941-7_33
http://dx.doi.org/10.1007/978-3-319-07941-7_33
http://dx.doi.org/10.1007/978-3-642-34347-6_7
http://dx.doi.org/10.1145/957205.957219
http://blog.stephenwolfram.com/2014/01/launching-the-wolfram-connected-devices-project/
http://blog.stephenwolfram.com/2014/01/launching-the-wolfram-connected-devices-project/

	Declarative GUI descriptions for device-independent applications
	Abstract
	Introduction
	Background
	Device-Independent Architecture
	User interface description languages

	Experiment design
	Experimental GUI views
	UIDLs selection
	Assessment criteria

	Results of the experiment
	Discussion
	Conclusions
	Open Access
	References

