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Today's computer animators have access to many systems and techniques to
author high quality motion. Unfortunately, available techniques typically produce
a particular motion for a specific character. In this paper, we present a constraint-
based approach to adapt previously created motions to new situations and
characters.  We combine constraint methods that compute changes to motion to
meet specified needs, with motion-signal processing methods that modify signals
yet preserve desired properties.  This allows the adaptation of motions to meet
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1  Introduction

 

Creating high quality motion for animation is a tedious and difficult task [Las87].
Even with advanced computer animation tools, creating motion that is
purposeful, expressive and attractive requires considerable effort, typically
requiring skilled animators or actors and engineers using motion capture
equipment. The cost, difficulty, and talent required puts motion generation out of
the reach of many potential users.

Despite its high cost, generated motion is not commonly reusable.  More often
than not, motion will only be valuable for a particular model and is almost
certainly unusable for more than a particular scenario.  For instance, the motion of
a woman reaching for a doorknob will be precisely that – the motion will most
probably be useless for having the character pick up something from the ground,
or for a different character, or even for a different doorknob. 

Computer animation research has evolved 4 general strategies to the problem of
producing motion. The first is to improve the tools used for keyframing; for
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example, by adding inverse kinematics to control models. While such methods
can make it much less tedious to produce motion, they are predominantly a tool
for helping skilled animators produce single-use motions. Another strategy uses
algorithmic or simulation methods to generate motions based on descriptions of
goals. While such methods have the promise of generating motions for non-
experts by allowing them to simply specify their needs, they are, at present, of
limited use. A third approach tracks motion of real world actors or objects. This
approach requires having real motion to capture and typically requires
sophisticated sensors and processing.

A fourth, more recent, approach to the motion problem attempts to adapt existing
motion generated by some other method. Such methods could put animation
capabilities in the hands of inexperienced animators, allowing the use of motion
created by others in new scenarios and with other characters.  It can also enable
"on-the-fly" adaptation of motions. 

One promising approach to motion adaptation, presented by Bruderlin and
Williams

 

[BW95]

 

, treats motions as signals and applies some traditional signal
processing to adapt them, while preserving aspects of their character. A variant of
one of their most interesting methods, motion-displacement mapping, was
simultaneously introduced as “motion warping” by Witkin and Popovic[WP95].
Unfortunately, as initially presented the methods fall short of being able to realize
our goals. In particular, they fail to provide the types of control we desire over the
adaptations and provide no way to guarantee that desired properties are
maintained in the adapted motion. In this paper, we present an approach to
motion adaptation that extends the originally published methods to better
address these shortcomings.

This paper presents 

 

constraint-based motion adaptation, 

 

an approach that uses
numerical constraint techniques to alter motions so that they meet desired goals
while preserving as much of the original character as possible. We combine
elements of several prior approaches. We use motion signal processing methods
to alter motion signals in ways that preserve desired qualities. We couple this
with constraint-based direct manipulation (a generalization of inverse
kinematics) that provides a flexible mechanism for specifying goals. Together,
these provide an approach whereby a user can create new motions that have the
character of the original, but meet a set of new requirements.

The basic idea of our approach is to treat motion adaptation as a constrained
optimization problem: what is the smallest change that can be made to a motion
signal in order to meet a set of specified goals? Like the spacetime methods of
[Wk88][Coh92], we solve a constraint problem for the entire motion, unlike most
constraint methods that process each frame individually. The reward for solving
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these large numerical problems is a method that affords flexibility in the types of
controls we can provide and the types of alterations performed on the motions.
We can have the best of both worlds: easy to use inverse-kinematic controls with
smoothness-preserving motion warps. We can alter a character's walk by simply
specifying new foot plant positions – the system keeps as much of the character of
the original as possible and can insure that the feet never pass through the floor.

We begin this paper with a brief review of related work on motion for computer
animation. Discussion of our methods follows, first by describing how some
previous motion adaptation methods can be viewed under a common framework
and controlled using constraint solving. Extensions to these methods provide
additional flexibility in the types of control. We discuss a variety of applicable
constraints. Following a brief discussion of implementation details, we provide a
number of examples created with our approach, chosen both to illustrate the
benefits of our approach and to suggest the range of applicability of our methods.
We conclude with a discussion of these results and ideas for future exploration.

 

2  Previous Approaches

 

The simplest motion creation technique is the manual input of poses
(keyframing).  Input parameters such as positions, scale, and rotation angles are
interpolated to generate poses between key poses. 

Forcing the user to specify values for parameters is often inconvenient, especially
for tasks like controlling the position of the hand of an articulated figure. Inverse
kinematics methods provide the user control over end-effectors (like the hand) by
computing the configuration of the character required to achieve it.  Basic robotics
texts present methods for solving inverse kinematic problems [Cra86][Pau81].
Many commercially available animation systems, such as provided by Alias and
SoftImage, include this capability.

Inverse kinematics are a specific type of constraint-based method. Constraint-
based methods use a solver to compute configurations that meet specified
requirements, typically allowing many to be satisfied simultaneously. Constraint
solving has a long history in computer graphics, dating back to
Sketchpad[Suth63]. The utility of solving multiple constraints for positioning
figures in animations was first shown by Badler et al [BMB86]. The usefulness of a
more general class of constraints was first examined by Witkin et al [WFB87].

Physically-based methods attempt to create realistic motion by simulating the
laws of physics[AGL85][Ree83].  As the field has progressed, better and better
simulation methods, such as those discussed in [Bar91] permit more accurate
modeling of more complicated effects, such as collision and friction. Physically-
based approaches suffer from the drawback of having to always be physical. They
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also suffer from being hard to control, which has lead many to study how to
determine what forces and torques must be applied to achieve specified
requirements. Methods for this include Inverse Dynamics [AGL85][Wil87][IC87]
and dynamic constraints [BB88][Pla92].

Almost all constraint-based approaches apply constraints to individual instants in
time to either compute the needed configurations to meet specified constraints
(e.g. inverse kinematics), or required forces to apply at the current instant to meet
constraints sometime in the future (inverse dynamics). Spacetime constraints are
a very different variety that were first introduced by [WK88] and [BN88]. By
specifying  constraints on the motion like "jump from here to there, clearing a
hurdle in between" and "don't waste energy" (quotes taken from [WK88]), the
method uses physical laws to produce the motion from first principles.  To find
the optimal motions, constraints over the entire motion must be considered
simultaneously. Placement of a constraint at the end of a motion can affect the
behavior of a character at the beginning.

While they have produced some exciting results,  spacetime methods have been
limited to the creation of simple motions for simple characters. One limitation is
the size and complexity of the numerical calculations required to solve the
optimal control problems (although [LCG94] shows methods to improve the
tractability). A potentially more pressing issue is that an optimally efficient,
physically-correct motion is not always what is most desirable for animation. As
we will discuss in Section 3.6, our work has much similarity to spacetime
constraints, yet avoids these restrictions.

An alternative approach to spacetime attempts to design controllers for models,
rather than their motions. [NM93] and [VF93]

 

 

 

present methods that compute
controllers for different characters, but do not necessarily have these characters
produce controlled motions. [GT95] uses spacetime methods to design controllers
for more complex creatures that are more capable of meeting desired goals.
[Sims94] extends spacetime to design the creature as well as the controller.   We
will call these methods spacetime controller methods, to distinguish them from
the spacetime constraint methods of [WK88] and [LCG94].

For some specific cases, parametric methods have been developed to generate
motions that meet high-level goals. Some of these include motion planning
[KKKl94] [LWZB90], human walking and running [GM85] [BC89][HWBO95],
snake and worm locomotion [Mil88], and flocking [Rey87]. While many of these
methods meet our desires to produce high-quality, goal-directed motion without
the need for expertise, each of these has very specific (limited) utility.

The focus of all of the above techniques is the creation of motion, mainly from
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scratch. Some recent work deals more directly with the problem of altering
existing motions. [BW95] describes how motion editing can be viewed as a signal
processing problem and provides a menagerie of methods for manipulating
motions. In [WP95], the authors describe a method for adding displacements,
scaling and blending motions as well.  While these methods are quite powerful,
they have limitations that may make them hard to apply. In the following
discussion, we will review these methods, some of their shortcomings, and show
how these limitations can be addressed.

 

3  Basics

 

In this section, we discuss the basic methods used for our approach. We begin by
considering a single motion signal and describe how we combine prior
techniques for direct manipulation curve editing and motion signal processing.
Then we discuss controlling multiple signals using our method, using a 2D
particle and a 2D human figure as examples.   In the next sections we discuss our
objective function, describe some useful constraints, and compare our method
with other constraint-based methods. 

Throughout this paper, we use the notion of a graphical model that is to be
animated. The configuration of this model is determined by a vector of
parameters, for example consisting of the positions and joint angles of an
articulated figure. We denote this vector as 

 

p

 

 and the individual, scalar
parameters as 

 

p

 

i

 

, or simply as p if there is only one. To animate the model, we
vary the parameters over time, denoting the function of time that defines the
model's configuration by 

 

p

 

(t), or p(t) for a single signal. We will also refer to these
signals as motion curves.

 

3.1 A Motion Signal

 

We assume that motion for a model consists of signals (a signal being the time-
varying data for a single parameter) that are represented by a set of samples that
are potentially sparse.  We will call the samples keys, although we use the term to
describe sampled data from motion capture or generated algorithmically, as well
as those manually adjusted using keyframe tools.  

To begin, we consider a single parameter of a model.    To use a set of sparse
samples as motion, we must interpolate them to have a continuous signal which
will then be resampled at a target frame rate to produce the animation. Our
motion signal is therefore defined by

,
where 

 

keys[]

 

  is an array of samples.   In this paper we use linear and cubic
interpolation.

p ti( ) interp ti keys[ ],( )=
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3.1.1 Direct Manipulation curve editing

 

We now consider the problem of altering a motion curve. Suppose that we know
what value we would like the parameter to have at a particular time, e.g. we
would like to impose the constraint

,
where 

 

t

 

i

 

 

 

is a constant value of time and 

 

v

 

 is a valid value for the signal. To alter the
motion curve we can simply adjust the keys. If the time of the constraint happens
to coincide with a key, making this alteration is easy. Otherwise, we must adjust
nearby keys to achieve the desired effect. This has been termed "direct
manipulation curve editing" because the methods allow the user to alter a curve
directly, not just by its "controls." The methods, such as have been introduced by
[FB93][WW92][HHK92], solve

(1)
numerically for the values of the keys. For the types of interpolation typically
used in computer graphics, 

 

interp

 

 is evaluated at any given t

 

i

 

 by a linear
function of a small number of keys (1 or 2 for linear interpolation, up to 4 for
cubics), and the equation will be easy to solve, except for one small complication:
there may be many possible solutions. Methods must define a way of choosing
which of these is best, typically defining some measure which is optimized. What
seems to be most effective for editing is to choose a solution that minimizes the
change from the original state. Such an approach is attractive for editing because
we prefer to alter curves as little as possible to preserve as much of their original
nuances as possible. 

The decision of how we measure change is important. A wide range of choices in
concievable. At one extreme of the complexity scale are methods which effectively
minimize the amount of work required to find a solution (such as [FB93]). For
more control, we might prefer metrics that measure properties of the curve. Such
methods are termed variational methods because they minimize quantities that
are integrals over the curve. Variational methods are often approximated by
minimizing simple functions of the control points (keys). One simple approach is
to minimize the amount the control points move in a least-squares sense. For
simplicity, we consider this sum-of-squares objective and we will return to the
question in Section 3.4.

Direct manipulation curve editing with the simple objective gives us a
constrained optimization problem: subject to the curve meeting the constraints,
minimize the amount the keys are moved from their initial configuration, e.g.

minimize (2)

subject to .

p ti( ) v=

v p ti( ) interp ti keys[ ],( )= =

keys i[ ] oldkeys i[ ]–( )2

i
∑

v j
j constraints∈

∪ interp t j keys[ ],( )=
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Because this problem has linear constraints and a quadratic objective function, it
can be easily solved, for example using an iterative solver like the one that
appears in [PTVF92]. 

Because we have decided to solve the curve editing problem with a numerical
solver, we can submit multiple constraints and solve them simultaneously.  This is
different than solving for each constraint independently because the solver can
find the best solution that satisfies all the constraints. A complication here is that if
we specify too many constraints, there might not be any solution. In such a case,
we prefer to choose a solution that comes as close as possible (again in a least-
squares sense) to meeting the constraints. The bi-conjugate-gradient solver from
[PTVF92] does this for us as well.

 

3.1.2 Additive Motion Editing

 

Direct manipulation curve editing provides a way to adjust a motion curve at
arbitrary points. However, simply adjusting the keys has a severe drawback: the
nature of the alteration is an artifact of the key times. Consider an example of a
signal that has a constant value over a time interval for which we would like to
meet 2 constraints. Figure 1 shows 2 possible problematic outcomes. In the case
on the left, the motion is has just two keys (just at the beginning and end), and in
the case on the right, the motion is described with a very dense set of keys.  The
constraints are shown by x's in the figure.

The left case may arise when an animator manually creates the motion and does
the obvious thing of creating a key at the beginning and end of the sequence. The
right case can arise when constant motion has been generated by a motion
tracking system (providing a key at every frame).  Such differences arrise because
key spacing was determined for some reason other than later adaptation.  Because
editing the curve, by either inserting new keys or adjusting existing keys,
depends on the key spacing, different results occur (Figure 1b and 1c). 

Moving or inserting new keys edits the motion to meet new constraints, but often
does not provide the desired control.  What we really want is to pass through the
two points, while maintaining control over the spread of the changes.  When
adding or moving keys, the actual change that occurs is dependent on how the
curve was originally constructed, not on the users needs.
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Figure 1: Editing a motion signal

a) Two straight line curves are to be adapted to pass through goals (denoted
by X). The curve on the left has two keys, the curve on the right has
many.

b) New keys are inserted into the curves so that the new goals are
interpolated. The results vary depending on the initial key
setup.

c) Existing keys are altered so that the goals are interpolated. The
minimal change to the keys is used. Depending on the key
setup, the results vary.

d) A displacement curve is chosen with keys that produce the desired
effects, and zero values elsewhere.

e) Adding the displacement curve to the original curves gives a result
independent of the original key setup.
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Motion displacement curves provide a solution to this problem. Rather than
editing the keys of the motion curve, which may be inconveniently placed, we
modify the curve by adding a new curve, 

 

d(t)

 

 to the motion so
,

and alter the parameters of this new curve instead. This provides freedom to
choose functions which alter the motion in desirable ways that do not depend on
the representation of the original signal.

Motion displacement maps are a successful variety of displacement curve. As
introduced in [BW95] and [WP95], the method uses an interpolating spline for the
displacement curve. The keys of this spline can be placed at convenient locations
to specify where changes are to occur. By choosing the key spacing for the
displacement curve appropriately, the animator can have frequency control over
the changes made to the motion. The bottom of Figure 1 shows such a
displacement curve, d, that allows us to get the desired shape for both case A and
case B.  

Many other motion editing techniques can be viewed as variants of the
displacement curve approach. For example, motion blending [BW95][Per95] uses
another motion signal as the displacement map. Common to all these approaches
is the editing of a signal by adjusting the parameters of a secondary signal. The
control of this secondary curve might be a scaling factor, in the case of blending,
or the displacement curve's control points. Note that the interpolating spline
displacement curves are a special case of blending where the blended functions
are the basis functions of the spline.

 

3.1.3 Additive Editing with Constraints

 

So far, we have reviewed two previous approaches to motion editing: constraint-
based direct manipulation approaches, that provide freedom in specifying goals
to be met, and motion displacement mapping, that provides control over how
motions are affected.

 

  

 

We introduce a novel technique that combine these two to
provide the controls of the former with the effects of the latter.

The problem of motion editing with a displacement method involves finding
values for the parameters of the displacement map. If we have some requirements
for the resulting signal, this may be easy or difficult depending on the type of
function representing the displacement curve.  For a displacement curve that is a
spline with keys at the times of the constraints (as in [WP95]), determining the
required changes is easy. In other cases, it might be more difficult (how much
running motion do we mix into a walk to make a character clear a hurdle?). 

We could choose our displacement curve representation based on how easy the
curve is to control, but we also must choose it based how the curve affects the

p t( ) interp t keys[ ],( ) d t( )+=
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motion. These can be conflicting goals: we might need a displacement map curve
with distant keys to prevent adding high frequencies, but also need to place a
number of constraints at nearby times, or we might want to choose a curve other
than an interpolating spline for its smoothness properties.

 

 

 

It is our premise that
flexibility in what types of displacement curves we choose is important, and their
design must be decoupled from our need for an effective interface. Evidence for
this is provided in the examples of Section 5. 

Fortunately, we can provide convenient controls for any displacement curves
using the direct manipulation curve techniques of section 3.1. The problem is only
slightly different: rather than necessarily solving for new key values, we solve for
the parameters of the displacement curve, whatever they may be. All of the
extensions discussed previously still apply: we can use minimization to provide
smallest change solutions when our problems are underdetermined, and use
least-squares-error to provide best-fit solutions for cases where too many
constraints have been specified so that no solution can meet them all. Notice that
this provides a uniform interface to whatever type of displacement curve we
desired, on the condition that the solver is capable of handling the equations.

The core of our method is to create a curve that is the summation of the original
motion and displacement curves, specify constraints on these summed curves,
and then solve for the parameters of the displacement curve to achieve the goals.
We pose this as a single constraint problem over the whole motion.  It is "global"
in the sense that the solution considers all constraints simultaneously, not just
solutions that only consider each frame independently. 

 

1

 

3.2 A Particle

 

Most graphical models have more than one parameter. We consider the simplest,
a particle in 2D. To animate the particle, we need 2 motion signals (which we can
view as a vector signal). All motion editing approaches in section 3.1 treated these
signals independently. 

With a constraint-based approach, we are able to handle all signals (or all the
elements of a vector signal) simultaneously. This lets us place constraints on
signals that do not just depend on a single parameter. For example, we might
want our particle to be a particular distance away from a particular place at a
particular time. This doesn't necessarily specify the particle's location, it just
places a constraint on it. Specifying the coordinates of the particle, which is all

 

1. In the constrained-optimization literature, the term "global" sometimes has a 
different meaning.  In the sense other than ours it denotes a class of solving 
algorithms that exhaustively search for extrema.
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independent control of its parameters affords, may not be sufficient. For example,
at time 

 

t

 

1

 

, we might desire that the particle meets a distance constraint, but where
exactly on the circle it lies may be determined by other things, such as other
constraints or the location of the particle at other times. 

All that we have added is the ability to place a richer variety of constraints on the
motion signals. Rather than simply being able to specify

,
we add the freedom to specify

.
The set of variables we must solve over, the state vector, is the concatenation of all
of the parameters of the displacement curves for each parameter. The machinery
of the previous sections requires little alteration, except that the function f is likely
to be non-linear, which means we need a solver capable of handling such
equations. Another useful extension to the solver is to add the facility for
inequality constraints such as

.  
It is also desirable to be able to add constraints that are enforced over an interval
of time

.
To solve such constraints in the continuous time domain requires solving
variational calculus problems. To approximate these using the machinery
presented, we add an individual constraint for each frame in the time interval. For
animations we only sample the resulting signal at discrete frame times, so this
approximation seems reasonable. 

 

3.3 A Character

 

Most interesting animations require models that are more complicated than a
particle. For these problems the methods of the previous section still work, but the
number of input variables and the set of useful constraints (and their complexity)
grows. 

Consider editing the motion of an articulated figure. The parameters of this figure
are most likely to include a set of joint angles and a position for the root of the
hierarchy. We prefer not to specify these parameters directly. Instead, we prefer to
control quantities of interest, such as the position of a hand.  Since this position is
a function of the model parameters, we can place a constraint on the hand by
placing a constraint on the function which calculates the hand position.

Mathematically, the inverse kinematics problem solves
,

p ti( ) v=

f p t( )( ) v=

f p t( )( ) v>( )

f p t t0 t1–∈[ ]( ) v=

pt f qt( )=
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where  is the desired position of the end-effector at time t, f is the function that
computes the position of the end-effector from the characters parameters (e.g.
joint angles), and  is the parameters for time t (e.g. a key). We alter the problem

by instead solving for the parameters of the displacement curve, replacing  with
the function that computes the value of the displaced motion curve,

,

where  is the original motion sampled at time 

 

t

 

,  is the displacement curve
sampled at time time 

 

t

 

, and 

 

q

 

 is now the parameters of the displacement curve.

There is a difference between traditional inverse kinematics and the placement of
positional constraints on motion signals. Traditional methods use a solver to
adjust the parameters at a particular instant in time, while our proposed scheme
uses the solver to adjust any parameters of the motion, which may be keys at
nearby times, scalings for blended motions, or any other parameters of the motion
signals. It is important to see that the two approaches are not equivalent: our
approach allows constraints at different times to affect one another. 

Figure 2 illustrates the difference. A human figure must reach for two different
goals at nearby times.  In an interactive system with inverse kinematics (IK), the
user would first use IK to position the figure to meet the first constraint, then
similarly interactively pose the figure at the second (later) key time.  Because the
figure doesn't know it will be reaching with the second hand until it has reached
with the first hand, the second arm doesn't start moving forward until after the
first arm meets its goal.  With our technique the figure will more smoothly move
its arms to satisfy the second constraint because we solve for the motion over the
entire time range.  This results in smoother motion that can be more realistic, if the
character knows about its future goals. For cases where we prefer the character to
be surprised, the windowing methods of [Coh92]  prevent the solution for time t1
to "see" the later constraint. 

 

3.4 Sensitivity Scaling

 

We now return to the question of what is the "smallest" difference. For our global
optimization of motion signal parameters, there are two places where we "choose"
among solutions, requiring us to have a notion of what is the best solution:
1. to adjust a motion curve at a non-key time, it may be possible to have the curve

meet a desired value by adjusting the set of keys in more than one way.  
2. at a particular time, there may be many configurations of the parameters that

meet the constraints.

As we mentioned in Section 3.1.1, the simplest approach to constraint-based
curve editing is to minimize the amount of change in the keys. Such anapproach

pt

qt

qt

p f st dt q( )+( )=

st dt q( )
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is undesirable because each parameter may affect the resulting animation by a
different amount. For example,
1. if a signal is created by linearly interpolating between keys at time 0, 5, 10 and

100, an adjustment of key 5 will cause a much smaller change to the resulting
animation than a similar change at key 100, because changing key 5 will affect a
much smaller interval of time;

2. an adjustment to the character's hand angle will make much less of a difference
than a similar adjustment to the torso, because changing the torso will affect a
large part of the body (including the hand);

3. an adjustment of equal numerical magnitude in parameters that are measured
in different units, for example millimeters and miles, will have wildly different
effects. Comparison between units can be especially difficult when the two
parameters do not measure similar quantities, such as meters and radians.

All of these issues can be addressed by choosing an optimization criteria that
minimizes a measure of how much the resultant animation changes, rather than
just how much the parameters change. This criterion offers a mechanism for
defining the kinds of effects various manipulations will have. Currently, we use a
weighted least squares metric, as described in [Glei94]. Rather than minimizing
the magnitude of the parmeter changes (as in Equation 2), we weight the least
squares, giving each individual scalar variable a different weight. That is, we
minimize

,

where  is a weighting factor for variable 

 

j

 

 of key 

 

i.

 

 We pick the weights such

that each of the  variables that we control have the same effect. For example,
by computing

,

which computes a weight for each variable that computes the sum (over all times

 

t in the animation and points p on the character) of the magnitude of the change
on the animation due to the variable. This weighting approximates the objective
function that minimizes the difference between the original and resulting
animation by measuring points on the characters, using only the diagonal
elements of the matrix to speed computation. We propose other objective
functions in Section 6.

3.5 A Menagerie of Constraints
Although we have not experimented extensively with varying optimization
objectives to control the resulting motion, we have employed a variety of
constraints both to specify our requirements for the resulting motion, and to

1
wij
------- keys i[ ] j[ ] oldkeys i[ ] j ][ ]–( )

j
∑

2

i
∑

wij

i j×

wij

f p t( )∂
keys i[ ] j[ ]∂

----------------------------
f p t( )∂

keys i[ ] j[ ]∂
----------------------------⋅

p
∑

t
∑=
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guide the solver to motions that we prefer. With our general non-linear solver,
many constraints are possible (see [WFB87] or [Glei94] for some examples of the
utility of the generality of non-linear constraints). Some constraints that we have
used in our examples include:
• constrain a 2D point to be a particular place at a particular time
• constrain a point to be above the floor
• constrain a point to be at another point's location at a particular time 
• constrain a point to follow another point's motion path
• constrain two points to have a particular distance (at a particular time or over a 

range of times)
• constrain an angle between two vectors to be within a range of values (good for 

joint limits).

3.6 Comparison with other constraint-based methods
Like many other approaches in computer graphics and animation, we use
numerical constraint solving to provide a convenient set of controls. As we
mentioned in Section 2, most constraint methods perform solving for individual
times, with the notable exception of spacetime constraint methods. Our method is
like spacetime constraints in this regard. We solve a single, potentially large,
constraint problem to compute the entire motion. 

Our method is a variant of the spacetime motion synthesis approach [WK88]
[Coh92]. We use a similar set of constraints, and similar implementation
techniques. The fundamental difference between the previous methods and ours
is that we do not necessarily generate physical motions, but instead adapt pre-
existing motions. For this reason we do not need to include the constraints that
insure physical motion, do not need to pose our problems as control instead of
placement, and choose objective functions based on motion similarity rather than
energy optimality. We believe that this eliminates many of the concerns that
hinder the spacetime approach: it is simpler to implement (since we do not need
to derive equations of motion), constraint solving is more tractable, it is applicable
across a broader domain (not just physically correct motions), and it is potentially
easier to use (picking a motion seems a more reasonable task than designing a
physical control system). 

4  Implementation

One issue that we share with the previous spacetime motion (as opposed to
controller) approaches is that we must set up large, complex constrained
optimization problems. How this is accomplished is not important to the method
– in fact, we would prefer to hide it as much from the user as possible. What is
important is that the methods are fast, robust and that the problems can be
defined on the fly in response to the user's requests. We therefore only describe
implementation strategies briefly.
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4.1 Solver
Our methods rely on the use of a solver for non-linear constrained optimization
problems. Good, general methods for such problems are an unsolved problem.
[PTVF92] argues that not only does no reliable, general, non-linear solver exist,
but that one cannot exist. The difficulty of the general problem has lead to an
extensive literature and a wide variety of methods (we suggest [Fle87][Gil81] or
even [PTVF92] for a practical introduction). 

Non-linear constraint solving has been used in many computer graphics
applications, such as inverse kinematics. Solvers used this way are applicable to
the problems of our methods with some extensions:
•the equations are more complicated as the end-effector positions at a given time
depend not just on a single configuration vector, but some function combining
displacement curve controls;
•the problems are larger as we must solve for all time frames simultaneously;
•we are a little bit more demanding about finding reasonable solutions to
overdetermined problems. 
We been using a solver that was originally designed for generalized inverse
kinematics [Gle94] with trivial modification. The algorithm linearizes the
constraints, solves a linear least-squares problem to define a search direction, and
does a line search. The linear subproblems are solved with a damped Lagrange
multiplier method [Wam86][Nak91]. A more traditional sequential-quadratic
programming solver (SQP)[Fle87] is likely to be more appropriate.

The numerical problems that must be solved for our approach would appear
large enough to be beyond the capabilities of desktop computers. However, the
problems have many properties that allow efficient solutions, such as sparsity and
partitioning. Many of these properties, and methods to exploit them, are
discussed in [Gle95]. By paying careful attention to these implementation details
we can build a system that is interactive, is capable of solving interesting
problems in reasonable amounts of time, and that runs on modest computers.
Timings for our prototype implementation are given in the examples.

4.2 Setting up systems
The constraint solver must be given functions that compute the errors of the
constraints and the magnitude of the objective function. For most solvers, we
must not only have the facility to evaluate these functions, but also their
derivatives.  Symbolic approaches that generate code and require recompilation
are undesirable. We would rather generate these systems of equations on the fly
in response to user interactions.  Thus, we use an approach first introduced by
[WK88] and further developed and encapsulated in[GW93]. This snap-together-
math system provides data structures that represent functional elements that are
"wired together" with composition. We extend this idea to wire together entire
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motions, allowing us to build constraint problems using primitives such as
interpolation of keys and time warps in addition to more basic mathematical
functions.

We should emphasize that the user of our system never need see an equation.
Unlike [WK88], [FW88], or [Kass92], our function blocks are only data structures
inside the system – graphs are created or altered in response to direct
manipulation graphical operations on the animation itself. We believe the
availability of such an interface is crucial to meet the needs of our target audience. 

5  Examples

We now consider a number of examples to illustrate our approach. All were
created using our prototype system.  In cases where prior approaches are shown
for comparison, these approaches have been implemented in our system. For
many of the examples, we include solution times on a Power Macintosh 8500/
120. For most of the examples, the character being animated is a stick figure with
12 joint angles, a position for the pelvis, and 12 limb lengths which are not
permitted to vary in any of the presented examples. Unless otherwise noted, we
use cubic interpolation and the objective function that minimizes the sum of the
squares of the endpoints of each line segment of the figure.

5.1 Jumping Example
For out first example, we consider altering a jumping motion to meet a desired
goal. An animator provided us with a motion of a stick figure jumping. We would
like to alter this motion such that the character touches a particular point (denoted
by the small cross) at a particular time (frame 20 of the 32 frame sequence). The
user can specify this single constraint of this example interactively. The only other
thing which must be specified is the type of displacement curve. Figure 3 shows
results for a variety of displacement curves, and Figure 4 shows a graph of the X
coordinate of the pelvis (the root of the hierarchy).

Figure 3a shows an attempt to use traditional inverse kinematic keyframe editing
on the sequence (e.g. no displacement curve). Dragging the position of the hand
at time 20 is easy, and provides a good result for this frame. However, because the
original motion has a key for every frame of the motion, the alteration only
affected one frame, failing to create an acceptable motion.

Figure 3b and 3c show the use of [WP95] and [BW95]'s motion displacement
technique. The displacement curve has a key at time 20 whose value is computed
with inverse kinematics. Two additional zero valued keys limit the effect of the
alteration. In Figure 3b, we simply chose to place the new keys 5 frames from the
edited key (so there are two zero keys at times 15 and 25, and the constraint key at
time 20). In Figure 3c, we place the keys at the takeoff and landing points of the
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jump so only the flight of the jump is affected (zero valued keys at times 13 and
29).  This, in effect, broadened the scope of the change, and introduced uneven
key spacing for the displacement curve. 

Figure 3d shows the use of our method on our system's default displacement
curve with 5 evenly spaced keys over the entire motion. Figure 3e shows a curve
with 4 keys evenly spaced only over the time of the jump. 

While the creation of Figure 3d and Figure 3e require the generality of our
method, it admittedly provides little advantage in this case. The motions are all
similar enough that none is definitively best. A subjective poll of some colleagues
didn't result in a consistent preference. However, several people complained none
seemed realistic because the character is pulled back to the original position, as if
connected to the left edge of the frame by a rubber band. We could correct this
problem by placing a constraint on the final position of the character, although
this would require us to know the length of the jump. We can also correct this flaw
by choosing a different displacement map. 

Figure 3f and Figure 3g show the use of our method with a contrived
displacement map. We wish to have the character move continuously in the X-
direction throughout its flight.  To enforce this, we use a displacement curve for
the X position of the pelvis that has only two keys – one at the beginning of the
flight and one at the end. We permit only the end key to be altered. If the character
moves forward while jumping, it must do so continuously across the flight. With
our objective function, altering this last key of the x position curve causes more of
a change to the animation than other variables because it effects a larger time
interval. Due to this, the solver will prefer to change it less than the other
variables, resulting in a shortened jump. Manually adjusting the weight on the
variable for the X-displacement key adjusts the length of the jump (Figure 3g). 

Developing the contrived displacement curve of the last paragraph is beyond the
skills of much of our potential audience, but so would manually tweaking the
motion to generate a good jump. While it did take effort to devise the curve, it is
reusable: we could place different constraints on the jump and resolve. In effect,
we have created a procedure for creating goal-directed jumping motions. When
the effort to devise the displacement map is compared to approaches for
generating paramterized motion, the approach seems more reasonable.

We emphasize that for this example, we merely took an existing motion and
added a single constraint. The only other thing specified was the type of the
interpolating curve used for the displacement. Each variant described can be
created by specifying a different displacement map. Solution times for all were
less than a quarter of a second, allowing for real-time, direct manipulation
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dragging.

5.2 Hand Gestures
To show the advantages of solving the inverse kinematics problems on the
displaced motion we consider a simple example with two initial motions. We
begin with a stick figure standing still, and a point which moves in a square path
(linear` interpolation between the corner points). We would like the character to
trace the path of the point with its hand. In Figure 5a the motion is generated by
solving the inverse kinematics problem independently for each frame. This
motion accurately tracks the square, but is not smooth – in fact, it contains
"jigglies" where the elbow alternates between solutions where the elbow is either
straight or bent.  In Figure 5b, motion displacement maps from [WP95] are used,
placing a displacement key at the corners of the square and solving the inverse
kinematics at these 5 keys to determine their values. This creates a motion that is
smooth, but does not approximate the square well. In contrast, Figure 5c shows
the use of our methods applying a pseudo-variational constraint that ties the
figure to the moving point. Because we have chosen a cubic displacement curve
with only 5 keys, the figure cannot track the square exactly. However, it gets as
close as possible given the limitations. To better approximate the path, a
displacement curve with more keys can be used.

To solve this problem we placed two constraints: one ties the hand to a given
motion path, and one keeps the pelvis stationary.  Our system then generates a
positional constraint for the pelvis and hand at each of the 21 frames.  Each
positional constraint is 2 scalar constraints, so this results in 2 x 2 x 21 = 84 scalar
constraints.  Our method solves this problem in under a second.

5.3  Switching characters
This example of Figure 6 starts with two base motions: short and tall figures
walking.  We wish to make the short man walk in the tall man's footsteps.  The
period of the footfalls match by design.  However, if they didn't, we could make
them match by using the dynamic time-warping algorithm presented in [BW95].
The constraints provided to our method were:
1. tie the x-position of the short figure's torso to that of the tall figure
2. make the short figure's footpaths (specifically, the ankles) follow the taller fig-

ure's foot paths
3. maintain realistic joint angles (the arms, knees, feet and hands can't bend back-

wards).
4. maintain all body parts above the floor.

This example shows how the presented algorithm is used to modify an original
motion so that end-effectors meet user-supplied goals, while retaining much of
the original character of the motion. Figure 6d shows the resulting motion
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Figure 6e shows a similar example, the only difference being that for our initial
motion we have the short figure running (figure 6c). The final motion is noticeably
different, appearing much more like a running motion than the motion of figure
6a. Computation times are shown in Table 1.

5.4 Turning a human into a kangaroo
In this example we map motion from animals onto human stick figures.  In Figure
7 we generate motion solely from the motion of a kangaroo... there is no starting
motion for the human stick figure.  This shows that the technique presented here
can map motion from one character to another even when there is no original
motion for the target figure.  

We also demonstrate that animators are allowed to pick and choose what motion
they want to have mapped to their character.  In this example we ignore the knees
and elbows of the kangaroo and let the constraint solver fill in that data for the
human figure.  At each frame we have tied the ankles of the human figure to the
feet of the kangaroo, the hands to the hands, pelvis to pelvis, shoulder to
shoulder, and head to head.  The constraints cannot all be met, but the solver does
its best, and produces reasonable motion. 

Note that the kangaroo video is not have a true cycle: the first and last frames are
not identical. To create a cyclical motion, we have ignored the position of the
hands in the first and last frames of the video and placed them in a reasonable
position (this explains why the hands of the stick figures do not accurately track

Walk adaptation Run Adaptation

Number of 
Frames

101 101

Total Scalar 
Constraints

2929 2929

Displacement
Keys

20 50

Time to solve
(seconds)

17 21

Table 1: 



Constraint-Based Motion Adaptation  – 20

the video).

Figure 8 uses the same set of constraints to constrain the human figure to the
motion of the feet, pelvis, shoulder and head of a horse.  The result is a human
that crawls like a horse gallops.  For the 33 frame cycle there are 1551 scalar
constraints. Our solver took 11 seconds on this example.

6  Discussion, Conclusions and Future Directions

In this paper, we have presented a constraint-based approach to motion
adaptation. With these methods, we can specify a set of goals that a motion needs
to meet, and have a pre-existing motion adapted to meet these needs in a way that
preserves the initial motion. Such methods can empower users without animation
skill, allowing them to create animations by selecting motions from libraries. The
methods also enable scenarios where motions are created on the fly, without the
intervention of an animator.

In the course of developing our prototype implementation, experimenting with it
on a number of examples, and assessing the methods, we have identified a
number of issues that might be better addressed:

Usability – Our approach offers advantages in that it allows the use of convenient
constraint-based controls, like inverse kinematics. However, it also requires a
variety of new control types to adjust the motions. To achieve a desired motion,
one may need to change the key spacing or function type for the displacement
curve, select an alternate initial motion, or adjust the parameters of the objective
function.  Changing displacement curve type is often easy to determine
empirically – we typically would try one or two of the default choices and pick
the motion we liked best.  A good interface which allows defining more
complicated functions or key spacings for the displacement curves is an open
question.

We believe that choosing an initial motion is an intuitive control over the resulting
motion. As seen in the examples, we can pick initial motions with properties that
we want to see in the final animation. For the kangaroo of Section 5.3 we
originally started with a figure with straight legs which gave unsatisfactory
results. It was fairly easy for us to decide what to change, since the resulting
motion never really had bent knees. Starting with the figure with bent knees
solved the problem, producing the motion shown.

Objective Functions – The choice of objective function provides a way to control
the types of motions the solver will find. [WK88] suggest how proper choice of
objective functions might translate into high level goals. While objective like "as
cautiously as possible" seem out of reach for current methods, basic hints such as
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making the solver prefer to keep the knees bent or the figure balanced, could be
added to our system, although may prove difficult to present to users. 

Better objective functions can also simplify the problem of choosing
representations for the displacement curves. If the objective is well tuned to
desireable motions, for example to prefer smooth displacements,  there is less of a
need for the displacement function to provide the preferences.

Performance – On simple examples, our prototype is capable of providing real-
time, direct manipulation with feedback.  The user can drag a single frame and
continuously see the changes made to the entire motion.  Faster hardware and
more sophisticated implementation techniques might make such interactions
possible for more complicated problems. 

Robustness – Solving general non-linear constrained optimization problems is an
intractable problem. Any method we use cannot guarantee solving every problem
we pose. So far, we have had good results with a relatively simple solver. Better
ones are both publicly and commercially available. We are less concerned,
however, with cases where our solver cannot find any solution, and more
concerned with cases where the solver finds a correct solution that is not the
desired motion. Usually, this requires better specification of the problem, by
adding more constraints or providing other hints to the solver. 

3D – We see no major difficulties in extending our prototype to handle 3D
animations, with the exception of user interface – it will be considerably harder to
construct a direct manipulation interface for adjusting characters, specifying
constraints, and providing feedback to the user. All of the methods that are
combined to create our approach have been demonstrated by others to be useful
for 3D animation.  Our solver has already been used to solve generalized inverse
kinematics problems in 3D.

Time-dependent constraints and objectives – We could add constraints and
metrics that compute functions of the motion, rather than the configurations. For
example, we might place a limit on the velocities of a point, or prefer that a point
follow a smooth path. Such functions would depend on a number of adjacent
frames. Requiring that a point follow a physically valid path seems to be a special
case of this, which offers the potential of integrating our methods with traditional
spacetime methods.  

In conclusion, we have described a method which extends previous work on
motion editing by combining motion warping with constraint satisfaction,
resulting in a system that provides retention of the original qualities of a motion
while mapping it into a new scene or onto a new character.  This technique will
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empower the novice animator, and provide better starting motion for the
experienced animator.  While not quite yet real-time, we envision a system which
will provide "on the fly" animation for interactive scenarios, as well as providing
tools for animation authoring systems.
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Figure 2: An articulated figure reaches for two points.
 An articulated figure is instructed to grab the first dot at time 6 and the second dot at time 9 of a16
frame animation. Frames 0, 6, 9 and 15 are shown for two different methods. In the upper sequence,
traditional inverse kinematics are used to position the figure to meet the goals. Because the con-
straints are solved indepently, they do not take each other into consideration. In the lower sequence,
our method is used with a displacement curve that uses cubic interpolation on 4 evenly spaced keys.
Notice how the character "plans ahead" by starting to move towards its later goal (look at the posi-
tion of the non-grabbing hand in frame 6)

Traditional
Inverse

Kinematics

Global
Optimization
for 4 evenly-
spaced keys

Frame 0 Frame 6 Frame 9 Frame 12
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Figure 3: Adapting a jumping motion.
A vertical jumping motion (shown in faint blue)is altered so that it touches a spot at frame 20. 
a) Inverse kinematics is used to pose figure.  Only 1 frame is affected because of the dense samples.
b) displacement mapping with constraint at time 20 and zeros at times 15 and 25.
c) same as b, but with zeros at beginning and end of flight, at times 13 and 29.
d) our method with 4 evenly spaced keys for the displacement curve. All keys may move.
e) our method with 4 evenly spaced keys for the flight, the first and last are held to be zero-valued.
f) x-displacement has two keys, one at the beginning and end of the flight, but only the last key is allowed to move.  Displacement

curves for other parameters are as in (e).
g) same as (f), but optimization function is modified allow longer flight.

G:0 G:5 G:10 G:15 G:20 G:25 G:31

F:0 F:5 F:10 F:15 F:20 F:25 F:31

E:0 E:5 E:10 E:15 E:20 E:25 E:31

D:0 D:5 D:10 D:15 D:20 D:25 D:31

C:0 C:5 C:10 C:15 C:20 C:25 C:31

B:0 B:5 B:10 B:15 B:20 B:25 B:31

A:0 A:5 A:10 A:15 A:20 A:25 A:31

Frame 0 5 10 15 20 25 31

A

B

C

D

E

F

G
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Figure 4: Timeline curves for the jumping motion. 
These curves graph the pelvis-x-position parameter of the jumping motions shown in Figure 3
Sequences B through G. In each, the blue curve represents the resulting motion, the red curve the ini-
tial motion, and the displacement is shown in green. The keys of the displacement curves are shown
with diamonds: green represents keys that are permitted to change, while red keys are locked at
their zero values.

Figure 5: Tracing a square.
 An articulated figure's hand is tied to a moving point that traces a square point. The magenta line
shows the path actually traced by the character's hand, and the characters position is shown strobed
from time 5 to 10. 
a) Inverse kinematics applied to each frame individually. Although the character traces the path pre-
cisely, the motion is “jiggly.” Note that the arm oscillates between being bent and straight.
b) prior motion displacement techniques are used, with displacement keys set with inverse kinemat-
ics at the four corners. This figure uses an interpolating cubic spline with 5 keys.
c) Our method with 5 keys for the displacement map and a variational constraint tying the hand to
the square motion path. The resulting motion is smooth and approximates the square. Because the
displacement has limited degrees of freedom, the square cannot be traced perfectly. This figure also
uses an interpolating cubic spline with 5 keys. A displacement curve with more keys would produce
a curve that better traced the path.

B C D E F G
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Figure 6:Tracing footpaths
The walking motion of the tall character (a) is used to adapt the motion of the smaller character (b
and c). Figure (d) shows the result of adapting the initial walking motion (b) to have the same foot-
falls of the taller figure’s walk (a). Figure (e) shows the same process applied to the running motion
(e). Notice how the two adapted motions retain much of the character of their original motions,
despite being heavily altered to meet the constraints.
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Figure 7: Mapping the motion of a kangaroo
We manual trace the locations of key points on the kangaroo (a). 
The end effectors of the human figure (shown in yellow) are connected to the corresponding features
of the kangaroo (e.g. we connect each of the person’s hands to the kangaroo’s paws).
Figure (b) shows the results of solving these constraints for a human figure approximately as tall as the
kangaroo. 
Figure (c) shows the results with a much shorter human figure. In this case, the figure is unable to meet 
the constraints so the least-squares-error solution’s deviation (shown in blue) are much more pronounced.
Figure (d) shows the motion mapped onto a cartoon drawing.
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Figure 8:  Making a person crawl like a horse gallops
a) Horse motion traced by hand.
b) Tall human figure adapted to follow the horse motion.  Blue lines show constraints that are not completely satis-
fied.
c) Same as (b), but with a shorter human figure.
d) motion mapped to a cartoon character


