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ABSTRACT16

We have developed a machine learning approach to predict context specific enhancer-promoter interac-

tions using evidence from changes in genomic protein occupancy over time. The occupancy of estrogen

receptor alpha (ERα), RNA polymerase (Pol II) and histone marks H2AZ and H3K4me3 were measured

over time using ChIP-Seq experiments in MCF7 cells stimulated with estrogen. A Bayesian classifier

was developed which uses the correlation of temporal binding patterns at enhancers and promoters and

genomic proximity as features to predict interactions. This method was trained using experimentally

determined interactions from the same system and was shown to achieve much higher precision than

predictions based on the genomic proximity of nearest ERα binding. We use the method to identify a

genome-wide confident set of ERα target genes and their regulatory enhancers genome-wide. Validation

with publicly available GRO-Seq data demonstrates that our predicted targets are much more likely to

show early nascent transcription than predictions based on genomic ERα binding proximity alone.
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INTRODUCTION28

Gene expression is dependent upon the binding of transcription factor (TF) proteins to genomic regions29

which regulate transcriptional initiation (Nagarajan et al., 2014). In eukaryotic cells, these regulatory30

genomic regions are referred to as promoters and enhancers. The transcriptional competence of DNA in31

eukaryotes is determined by its organization in chromatin. Chromatin structure is dynamically regulated32

at multiple levels, including ATP-dependent chromatin remodelling and histone modifications (Bernstein33

et al., 2005; Bannister and Kouzarides, 2011; Zhu et al., 2013; Stasevich et al., 2014). Enhancers can act34

upstream or downstream of their target gene promoters and are often distal, separated by large inter-genic35

regions (Schoenfelder et al., 2010; Sanyal et al., 2012; Shen et al., 2012). Enhancer-promoter interactions36

require protein-mediated physical contact through formation of chromatin loops (Tolhuis et al., 2002).37

Although most contacts are intra-chromosomal, there are some interactions between loci from different38

chromosomes (Fullwood et al., 2009; Li et al., 2010, 2012). Interactions can also exist as part of large39

multi-gene and multi-enhancer complexes (Fullwood et al., 2009; Li et al., 2012).40

Recent progress in experimental techniques such as ChIA-PET, 3C and its derivatives 4C, 5C, and41

Hi-C (Fullwood et al., 2009; Dekker et al., 2002; Hagège et al., 2007; Zhao et al., 2006; Dostie et al.,42

2006; Simonis et al., 2007; van Steensel and Dekker, 2010; Nagano et al., 2013; Jin et al., 2013) have43

mapped large numbers of chromatin interactions, including enhancer-promoter interactions. However,44

these methods are technically challenging and genome-wide methods, such as HiC, typically lack the45



resolution required to identify individual interacting enhancer elements. Some methods are also thought to46

produce a high false negative rate (in case of ChIA-PET, 5C; Li et al., 2012; He et al., 2014) or cannot be47

applied on a genome-wide scale (3C,4C; Simonis et al., 2007). Capture-HiC methods have recently been48

developed (Mifsud et al., 2015; Javierre et al., 2016) to improve genomic resolution through focussing on49

predetermined genomic regions, e.g. promoters, and show promise but are not yet widely used. Data from50

these technologies can also be noisy and subject to various sources of bias which can be problematic to51

correct (van Steensel and Dekker, 2010). In addition, the physical contact between two chromatin regions52

does not determine a functional interaction (Shlyueva et al., 2014) with stimulus-dependant behaviour of53

chromatin looping adding a further layer of complexity (Drissen et al., 2004; Vakoc et al., 2005). For54

these reasons, complementary approaches to infer enhancer-promoter interactions by exploiting readily55

available sources of genomic data, such as ChIP-Seq and RNA-Seq data, are of interest.56

ChIP-seq experiments enable the discovery of the genomic location of transcriptionally relevant57

proteins such as TFs, RNA polymerase and modified histones. Multiple ChIP-Seq datasets can be58

combined with data from other relevant genomics assays to identify active promoters and enhancers59

using genomic segmentation algorithms (Zhu et al., 2013; Ernst et al., 2011). Others have also used60

ChIP-seq and RNA-seq datasets to infer enhancer-promoter interactions. For example, Ernst et al. (2011)61

used histone mark data from multiple cell-types to identify active enhancers and promoters from which62

enhancer-associated data was correlated with expression data from genes within 125kbp to identify likely63

interactions. Thurman et al. (2012) used DNase I hypersensitivity (DHS) data from multiple cell-types to64

correlate and link distal DNase hypersensitivity sites (within 500kbp) to those within putative gene targets.65

Similarly, Andersson et al. (2014) predicted enhancer-promoter links by correlating CAGE enhancer RNA66

to CAGE promoter RNA.67

Approaches for discovering cell-type specific interactions include PreSTIGE (Corradin et al., 2014),68

RIPPLE (Roy et al., 2015), and the method developed by Marstrand and Storey (2014). PreSTIGE uses a69

method based on the Shannon entropy to identify cell-type specific interactions between enhancers and70

genes using H3K4me1 and RNA-seq data respectively. The regions are linked within promoter-centric71

domains, bounded on each side by the minimal distance of 100kbp up to the first CTCF binding site from a72

TSS. RIPPLE uses ENCODE data from four cell-lines each with 11 ChIP-Seq datasets (RNA-seq, CTCF,73

RAD21, DNAse1, TBP and histone marks) to train a random forest classifier which predicts enhancer-gene74

interactions within 1MB distance. The features used are two joint binary vectors of presence/absence of75

dataset signal peak over a promoter and enhancer, correlation of entries of the vectors, as well as gene76

expression of the promoter controlled gene. Marstrand and Storey (2014) developed a method to aggregate77

RNA-seq data over genes and DHS data over ± 200kb regions surrounding them for twenty different cell78

lines. The method searches through each gene and cell-line for unexpected DHS/RNA-seq ratios and79

once found, scans across the gene vicinities in search of causal, local DHS variabilities. Lastly, a method80

proposed by He et al. (2014) uses a random forest classifier to find enhancer-gene interactions. The81

method uses three features: evolutionary conservation, correlation of enhancer scores derived from histone82

marks from RNA-seq data, and an average of correlations between TF ChIP-Seq and gene expression83

across 12 cell-types. A distance constraint is also imposed to aid inference.84

The majority of the above methods require data from multiple cell-types and therefore do not allow85

discovery of interactions given data from one cell-type. Most existing methods also assume a stringent86

distance constraint and are therefore unable to discover distal links beyond this constraint. Finally, these87

methods do not take into account evidence from time course data.88

We show how ChIP-Seq time course data that reports TF and RNA polymerase occupancy at multiple89

time points after cellular stimulation can be used to predict enhancer-promoter interactions within90

chromosomes. We have developed a Bayesian classifier that combines evidence from the correlation91

of ChIP-Seq time course data at enhancers and across gene bodies with the genomic separation of92

interacting elements as features. We apply our method to time course data from MCF7 breast cancer cells93

after stimulation with estradiol and we benchmark performance against publically available ChIA-PET94

data from this system. We show that our method performs much better than association by proximity,95

identifying many more interactions than predictions based on proximity alone. Estrogen Receptor (ER-α)96

and RNA polymerase (Pol II) ChIP-Seq time course data are shown to be highly informative for predicting97

interactions. We also stratify our predicted interactions to those that lie within Topologically Associating98

Domains (TADS; Dixon et al., 2012) and those that span TADs, showing that our classifier can make99

useful predictions in both categories. Finally, we use our predictions to provide a highly confident list of100
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directly ER-regulated target genes in this system and validate it against a GRO-seq dataset. Our predicted101

targets are much more likely to show early nascent transcription than predictions based on genomic ER-α102

binding proximity alone and predicted targets are involved in many biological processes associated with103

breast cancer. Our model thus offers biologically meaningful insight into the early transcriptional response104

to ER-α .105

MATERIALS AND METHODS106

Data Preparation107

The aim of our experiment was to uncover the early response to estradiol (E2) in MCF7 breast cancer cells.108

Our previous studies included only the Pol-II and RNA-Seq time course data from these experiments109

(wa Maina et al., 2014; Honkela et al., 2015) and here we include additional ChIP-Seq datasets. The first110

step was to create a reference sample in a ligand free environment. For that, the cells were placed into111

estradiol free media for 3 days, which reduced the binding between ER-α and E2. The cells were then112

ready to be re-exposed to E2. Following the introduction of E2, the resultant changes were tracked by113

multiple ChIP-seq experiments. The experiments were performed at 0, 5, 10, 20, 40, 80, 160, 320, 640 and114

1280 minutes after the stimulation. Each ChIP-seq experiment was carried out with a different antibody to115

measure genome-wide changes in genomic occupancy of their specific protein targets. Specifically, the116

studied protein factors and histone modifications were: ER-α , H3K4me3, and H2AZ (data available from117

GEO: accession GSM2467201). Other previously published data from the same set of experiments are118

available for Pol-II ChIP-Seq and RNA-Seq (GEO accession GSE62789 and GSE44800; wa Maina et al.,119

2014; Honkela et al., 2015).120

Preparation of MCF-7 cells: The MCF-7 human breast cancer cell line originates from a 69-year old121

Caucasian woman and is estrogen receptor (ER) positive, progesterone positive (PR) and HER2 negative.122

Here MCF-7 cells (a clonal isolate obtained from the ATCC (catalogue number HTB-22) kindly provided123

by Prof. Edison Liu, Jackson Laboratories, Maine, USA) were grown in 15cm plates to 80% confluency.124

Plates were then washed 2 times with PBS and overlaid with 20 ml of phenol-red free high glucose125

DMEM (Gibco) containing 2% charcoal stripped FCS (Sigma). After 24 hours of incubation, the cells126

were again washed with PBS and fresh media containing 2% charcoal stripped FCS was added. This127

process was repeated over a three day period to generate cells devoid of estrogen. The time course (5, 10,128

20, 40, 80, 160, 320, 640 and 1280 minutes) was initiated by replacing media with prewarmed media129

containing 10 nM E2. In addition, an untreated sample was included in the experiment as a zero time130

point.131

ChIP-seq protocols and methods: Cells were fixed for 10 minutes at room temperature by the addition132

of formaldehyde to a final concentration of 1%, after which glycine was added to a concentration of 100133

mM. Cells were then washed twice with PBS and collected into 2 ml of lysis buffer (150 mM NaCl, 20134

mM Tris pH 8.0, 2 mM EDTA, 1% triton X-100, protease inhibitor [complete EDTA free, Roche, 04 693135

132 001], 100 mM PMSF). The lysate was sonicated for 3×30 seconds using a Branson ultrasonicator136

equipped with a microtip on a power setting of 3 and a duty cycle of 90%. Samples were cooled on137

ice between rounds of sonication. Alternatively, a Bioruptor sonicator was used (power high, 15 mins138

total, 30 s on 30 s off; total volume of sample –1 ml) to fragment chromatin. In either case, the resulting139

sonicate was centrifuged at 4000xg for 5 minutes, an aliquot of 10% retained for input and the remaining140

material transferred to a fresh tube. Four mg of anti-ERaantibody (HC-20, rabbit polyclonal, Santa Cruz,141

sc-543), 2 mg of anti-RNA Polymerase II antibody (AC-055-100, monoclonal, Diagenode, 001), 3 mg142

of anti-H3K4me3 antibody (pAb-MEHAHS-024, rabbit polyclonal, Diagenode, HC-0010) and 2 mg143

anti-Histone H2A.Z (acetyl K4+K7+K11) antibody (ab18262, sheep polyclonal, Abcam, 659355) were144

added to the samples, which were then incubated overnight at 40C with rotation. Chromatin antibody145

complexes were isolated, either by addition of 10 ml of protein G labeled magnetic beads (Millipore146

Pureproteome protein G magnetic beads, LSKMAGG10) prewashed in lysis buffer or with 20 ml protein147

A/G beads (Santa Cruz). Afterwards, the complexes obtained with protein G magnetic beads were washed148

three times with lysis buffer, then reverse crosslinked in 0.5 ml 5 M guanidine hydrochloride, 20 mM149

Hepes, 30% isopropanol, 10 mM EDTA for a minimum of 4 hours at 650C. Recovered DNA was then150

purified using a Qiaquick spin column and eluted in 50 ml of 10 mM Tris pH 8.0. Where protein A/G151

beads were used, the complexes were washed sequentially with three different buffers at 40C: two times152

with solution of composition 0.1% SDS, 0.1% DOC, 1% Triton, 150 mM NaCl, 1 mM EDTA, 0.5 mM153

EGTA, 20 mM HEPES pH 7.6, once with the solution as before but with 500 mM NaCl, once with154
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solution of composition 0.25 M LiCl, 0.5% DOC, 0.5% NP-40, 1 mM EDTA, 0.5 mM EGTA, 20 mM155

HEPES pH 7.6 and two times with 1 mM EDTA, 0.5 mM EGTA, 20 mM HEPES pH 7.6. A control156

library was generated by sequencing input DNA (non-ChIP genomic DNA). Immunopurified chromatin157

was eluted with 200 ml of elution buffer (1% SDS, 0.1 M NaHCO3), incubated at 650C for 4 h in the158

presence of 200 mM NaCl, isolated using a Qiaquick spin column and eluted in 50 ml of 10 mM Tris159

pH 8.0. Libraries were prepared for Illumina sequencing according to the manufacturer’s protocols160

(Illumina). Briefly, DNA fragments were subject to sequential end repair and adaptor ligation. DNA161

fragments were subsequently size selected (approx. 300 base pair [bp]). The adaptor-modified DNA162

fragments were amplified by limited PCR (14 cycles). Quality control and concentration measurements163

were made by analysis of the PCR products by electrophoresis (Experion, BioRad) and by fluorometric164

dye binding using a Qubit fluorometer with the Quant-iT dsDNA HS Assay Kit (Invitrogen, Q32851)165

respectively. Cluster generation and sequencing-bysynthesis (36 bp) was performed using the Illumina166

Genome Analyzer IIx (GAIIx) according to standard protocols of the manufacturer (Illumina).167

Alignment to a reference human genome168

Raw reads from the experiments were mapped onto the human reference genome (NCBI build37) using169

the Genomatix Mining Station (version 3.5.2) to enable further analysis. The sequencing depth, i.e. the170

total number of sequenced reads, was very similar for each dataset, however, on average only 81%, 76%,171

67%, 61%, 64% of ER-α , Pol-II (rep 1), Pol-II (rep 2), H3K4me3, and H2AZ ChIP-seq reads were172

mapped uniquely to the genome. The non-uniquely mapped reads were discarded from further analysis.173

Using the statistical criterion provided by MACS, we established that our sequencing depth allows for no174

duplicates of reads, thus we discarded any duplicated reads as they are most likely an artefact in ChIP-Seq.175

ER-α Binding Locations176

The MACS package (v2.0, p-value: 1e-7, no control, estimation of λlocal off) Zhang et al. (2008) was used177

for peak-calling and applied to each of the 0,5,10,20, ...,320 min time course datasets to estimate ER-α178

binding locations. The last two time points (640 and 1280 mins) were not included as the number of ER-α179

mapped reads was found to be very low at these times compared to earlier times. Persistent co-occurring180

ER-α binding locations (i.e occurring at least twice across two time points after t = 0) were merged by a181

union operation (similar to the mergeBED method from BEDTools (Quinlan and Hall, 2010)), otherwise182

they were discarded. The method is illustrated in Figure S1. Since our analysis is aimed at intergenic183

ER-α-bound enhancers, we ignored the consensus peaks which overlapped with either gene bodies or184

upstream 300bp-long regions by which the genes were extended to account for a promoter region.185

Time-Series Construction186

We calculated the mapped read counts for each individual time point ChIP-seq dataset over the consensus187

ER-α binding sites to create time series over enhancer regions for each of our antibodies. To normalise188

the counts, we divided each read count over the total number of uniquely mapped and non-duplicated189

reads across all time points and multiplied the resultant values by the total number of mapped reads in190

the t = 0 min dataset. We concatenated the normalised counts to produce time series for each ChIP-seq191

dataset. We refer to each enhancer time series as XXX j,n, where j ∈ J (number of intergenic enhancers) and192

n ∈ N (number of time course ChIP-seq datasets). We repeated the process for the gene regions to create193

the analogous time series over gene regions, extending the genes by 300bp upstream from their canonical194

TSS. We refer to each time series over gene as YYY k,n where k ∈ K (number of genes). We filtered out genes195

and intergenic enhancers from consideration if the total number of mapped reads across any time series196

was less than 30.197

Clustering198

To help visualise the occupancy dynamics of Pol II and ER-α at enhancers and genes we clustered the199

data with the R-implementation of Affinity Propagation (AP) (Frey and Dueck, 2007). AP is a clustering200

method based on belief propagation and works iteratively by passing messages between data points201

until exemplars (cluster centres) automatically emerge. A preference parameter p has an effect on the202

final number of clusters. The R implementation of AP can search through values of p to achieve an203

approximately pre-specified number of clusters. The method is similar to k-means but can achieve much204

better optimisation of the k-means objective function than the standard EM algorithm.205
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To reduce the effect of noise, for Pol II we clustered only the pairs of the time series for which the206

Pearson correlation coefficient was at least 0.2 between replicates and the total number of mapped reads207

was at least 30. For ER-α , due to lack of replicates, we only clustered the time series with more than 100208

reads in total across all times. Prior to the clustering we standardized each time series to z-scores to bring209

all time series onto the same scale. We obtained 20 and 22 clusters for Pol II time series over enhancer210

and genes, respectively. Similarly we obtained 21 and 21 clusters for ER-α time series over enhancer and211

genes. We also jointly clustered time series of PolII and ER-α . The results of the clustering can be seen212

in Figure S2.213

Enhancer-centric model214

Suppose that an enhancer j = 1, . . . ,J regulates a gene k = 1, . . . ,K at a number of time points, and215

that their contact is mediated by a protein. We can expect that the time course data of ChIP-seq data at216

an enhancer j i.e. XXX j = (x j,1, . . . ,x j,D) and gene k i.e. YYY k = (yk,1, . . . ,yk,D) would on average be more217

correlated for interacting pairs than their non-interacting counterparts. Here, we intend to learn the218

underlying distribution of correlations of the two classes of pairs for four complementary datasets and on219

their basis jointly classify a new unobserved instance. In addition, we combine the time course derived220

attributes with the corresponding distribution of genomic separation for interacting and non-interacting221

elements.222

Definition of the model223

Our model is defined in terms of two K-dimensional random variables III j = I j,1, . . . , I j,K and DDD j =224

D j,1, . . . ,D j,K . The first variable III j encodes a structure of simultaneous contacts of a given enhancer j225

with its surrounding K putative target genes. It has K binary entries I j,k indicating whether (E j,Gk) forms226

an interacting (I j,k = 1) or non-interacting pair (I j,k = 0). The variable DDD j is a K ×N-dimensional matrix227

of observed attributes with each row (D j,k) consisting of N values of pair-wise comparisons between228

time series of an enhancer j and a gene k, and their genomic location. The first set of comparisons229

rely on Pearson correlation and involves calculating its value c j,k,n for each pair (E j,Gk), i.e. its time230

series (XXX j,n,YYY k,n), and for each dataset n ∈ N, where N is a number of time course ChIP-seq datasets.231

Additionally, the data vector also contains the Euclidean distance d j,k calculated between the genomic232

coordinates of the canonical TSS of a gene k to the centre of an enhancer j.233

The joint likelihood of the model can be written as:

P(DDD j, III j) = P(DDD j|III j)P(III j) . (1)

The model provides a probability of observing a particular DDD j under a given structure III j. Due to its234

regulatory role, an enhancer is unlikely to regulate a high number of genes, thus we can expect that the235

true P(III j), which in the Bayesian treatment is a prior distribution over the structures, would be sparse.236

Moreover, we could expect that D j,k and D j,k′ of any two interacting pairs k,k′ would be interlinked, as237

correlations between gene-enhancer pairs are not independent variables. These dependencies would be238

reflected in a true form of the likelihood P(DDD j|III j). Lastly, we could also expect that the N +1 attributes239

i.e correlations c j,k,n and distance d j,k of a pair j,k of the vector D j,k would also be correlated.240

Simplifying the likelihood and Naive Bayes241

The modelling of all dependencies however is difficult given the relative sparsity of our training data.242

We therefore restrict the form of the joint distribution and construct an approximate joint probability243

of enhancer-gene contacts. Pairwise correlations provide a valid likelihood if we restrict our model to244

consider one gene per enhancer.245

a) The joint distribution factorises246

We assume that the likelihood P(DDD j|III j) can be factorised and written in the form:

P(DDD j|III j) = ∏
{k:I j,k=1}

P(D j,k|I j,k = 1) ∏
{k:I j,k=0}

P(D j,k|I j,k = 0) (2)

where III j = I j,1, . . . , I j,K and DDD j = D j,1, . . . ,D j,K . Hence the distribution of each D j,k is conditionally247

independent of other allocations and conditional only on the indicator variable I j,k.248
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b) An enhancer regulates a single gene249

We assume further, that an enhancer j can interact with only one gene k. We restrict the event space of

P(D j, I j) to its subspace P(D j, III
(1)
j,k ), where III

(1)
j,k = 0, . . . , 1

kth
, . . . ,0 . From (2) the events are given by:

P(DDD j|III
(1)
j,k = 0, . . . , 1

kth
, . . . ,0) = P(D j,k|I j,k = 1) ∏

{l:l 6=k}

P(D j,l |I j,l = 0) . (3)

The prior distribution P(III j) follows a multivariate Bernoulli distribution, and thus the restriction is

equivalent to setting the probabilities of all the structures III j with non-singular number of contacts i.e.

III
(2)
j , III

(3)
j , . . . , III

(K)
j to zero. For the remaining III

(1)
j,k we assume that the prior is uniform across these sparse

vectors, i.e.

P(III
(1)
j,k = 0, . . . , 1

kth
, . . . ,0) = 1/K , (4)

so that each III
(1)
j,k is equally likely a priori.250

c) The distribution of attributes is independent251

Assuming that the attributes are conditionally independent, the likelihood component P(D j,k|I j,k) be-

comes:

P(D j,k|I j,k) = P(d j,k,c j,k,1, . . . ,c j,k,N |I j,k) = P(d j,k|I j,k) ∏
n∈N

P(c j,k,n|I j,k) (5)

where d j,k is a distance from the centre of an enhancer j to the TSS of a gene k, whereas c j,k,n is a252

correlation between the time series of the nth time course dataset between an enhancer j and gene k.253

Combining the assumption of the factorisable likelihood (2) with the conditional independence of
attributes (5) yields,

P(DDD j|III j) =
K

∏
k=1

P(D j,k|I j,k) =
K

∏
k=1

[

P(d j,k|I j,k) ∏
n∈N

P(c j,k,n|I j,k)

]

. (6)

Restricting the event space to single enhancer-gene events (3) results in,

P(DDD j|III
(1)
j,k ) =

[

P(d j,k|I j,k = 1) ∏
n∈N

P(c j,k,n|I j,k = 1)

]

∏
{l:l 6=k}

[

P(d j,l |I j,l = 0) ∏
n∈N

P(c j,l,n|I j,l = 0)

]

. (7)

The assumption of conditional independence of features in (5) and the fact that each vector III
(1)
j,k is a 1-of-K254

(i.e one-to-one relation) representation of K class indicators makes this algorithm a special case of Naive255

Bayes (NB) model.256

Posterior257

The posterior distribution under the model is:

P(III
(1)
j,k |DDD j) =

P(DDD j|III
(1)
j,k )P(III

(1)
j,k )

∑
K
k=1 P(DDD j|III

(1)
j,k )P(III

(1)
j,k )

. (8)

The posterior distribution can be used to find the probability of each structure III
(1)
j,k given the pair-wise258

comparisons in DDD j, i.e. the values of the data-specific correlations and distance for each pair (E j,Gk) and259

all complementary pairs (E j,G{l:l 6=k}). The posterior probabilities can be used to infer the most likely260

target of an enhancer j out of K genes.261

Positive set of interactions and background negatives262

We overlap the distal enhancers and promoter-extended-genes with the combined set of ChIA-PET263

predicted links using both ER-α and Pol II antibodies from ENCODE/GIS-Ruan (Li et al., 2012)[GEO264

accession numbers GSM970209 and GSM970212]. The overall design and processing of the datasets is265

described under GEO accession number GSE39495. The sources contain the high-confidence binding266

6/17



sites and protein-mediated chromatin interactions with 3 and 4 replicates for ChIA-PET with antibodies267

for ER-α and Pol II respectively. Overlapping the enhancers and genes with the concatenated set of268

empirically confirmed interactions revealed a total of 2733 enhancer-promoter links, and shows that 2087269

of our distal enhancers interact with at least one promoter.270

To define the negative set, we restricted ourselves to all enhancer-gene pairs involving known interact-271

ing enhancers coming from the positive set and all the remaining non-targeted genes. Enhancers without272

any confirmed interactions from ChiA-PET data were not used for training as we have no information273

about their target genes.274

Data features and their distributions275

The method uses five features of two types, i.e. four correlations and one distance. To obtain the first276

four we correlated ChIP-seq time series at enhancers with those at promoter-extended genes, for each277

dataset, for all enhancer-gene pairs in the positive and negative set (as defined above). For Pol II we278

used the average correlation across the two replicates. For the distance feature we used the log10 of279

genomic distance between the centre of the enhancer and the canonical TSS of an extended gene. We used280

the training set to estimate the distributions P(c j,k,n|I j,k) and P(d j,k|I j,k) using kernel density estimation281

(KDE) with a Gaussian kernel. To ensure that the bandwidths of positive distributions are biologically282

meaningful and robust, we used cross-validation. As part of the approach, we sequentially removed all283

features of each chromosome from their total set across all chromosomes and at each time calculated284

the log-likelihood of KDE for the reduced set of features. We then used the value of the bandwidth with285

the highest log-likelihood over left-out data. In contrast, due to a large number of negative examples286

and computational cost associated with KDE, employing the same approach for negatives was infeasible.287

Their size, however, also entails less requirement for optimised fitting, and thus to select the bandwidth288

we resorted to the Scott’s rule (Scott, 2015).289

Model Validation290

We trained the classifier on the odd chromosomes and estimated the training error. Similarly, we tested291

the method on the even chromosomes and obtained the test error. Since the test data is not used to build292

the classifier (i.e. fit the feature densities), its predictions on the test data can be considered unbiased.293

We measured the performance in two ways. Firstly, we evaluated and plotted precisions against the True294

Positive Rate (TPR or recall) of 10%, 20%, and 30% for various combinations of features. Secondly, we295

used an alternative MAP measure. Under our model each enhancer possesses a maximum a posteriori296

(MAP) gene which is our best guess of enhancer’s target. The MAP measure is the percentage of times297

the MAP inferred target gene is confirmed by the positive set of interactions in the ChIA-PET data.298

Performance within and outside TADs299

We stratified our predicted interactions at 10%, 20%, and 30% thresholds into those that lie within300

domains and those that crossed domain boundaries. Each TPR threshold maps to a subsets of negative301

and positive links, and therefore each subset was partitioned into inter- and intra- domain interactions. We302

then tested precisions for each of the subsets. For details of TAD preparation refer to the Supplementary303

Material (suppl: Domains conserved between mESC, mouse Cortex, hESC and IMR90 converted from304

hg18 to hg19 using http://www.ncbi.nlm.nih.gov/genome/tools/remap)305

Prediction of target genes306

We used our model to infer gene targets with strong evidence of being regulated by at least one enhancer.

The probability of gene k having at least one active regulatory link from an enhancer under our model is

defined,

P(card({ j ∈ J : I j,k = 1})> 0) = 1− ∏
{ j∈J:I j,k=1}

(1−P(III
(1)
j,k |DDD j)) (9)

where the product above is equal to the probability that no enhancers regulate the gene.307

Hah et al. (2011) carried out GRO-Seq experiments (GEO accession number GSM678536) to detect308

whether Pol II molecules are engaged in transcription at the start of the experiment. The experiments309

were performed with the same cell-line and stimulation as ours and were used to determine the early310

transcriptional response of genes following E2 treatment. Using these data and the regulation probability311
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scores defined in Eqn. (9), we assessed how many of our predicted distally regulated genes were differen-312

tially expressed at early time points. Using the EdgeR processed GRO-seq data we filtered the GRO-seq313

determined DE genes at 10, 40, 160 min after E2 stimulation with q-value (multiple hypotheses testing314

adjusted p-values from EdgeR) of less than 0.05, 0.01, 0.001. For each q-value, we combined the DE315

genes from each of the time points into a single list.316

RESULTS AND DISCUSSION317

We demonstrate our method using ChIP-Seq time course data collected from the MCF7 breast cancer318

cell-line stimulated by estrogen. After stimulation, the ER-α TF associates with numerous enhancers to319

regulate transcription of target genes. ER-α , encoded by the ESR1 gene, is a particularly well studied320

example of a nuclear receptor due to its role in breast cancer development. Its genome-wide binding321

pattern under stimulation with estrogen has been established through ChIP-seq experiments (Liu and322

Cheung, 2014; Magnani and Lupien, 2014; Ross-Innes et al., 2012). Here, the genome-wide occupancy of323

ER-α along with RNA polymerase (Pol II) and two histone marks (H3K4me3 and H2AZ) associated with324

transcriptional competence, were measured via ChIP-seq at eight consecutive time-points after exposure325

of cells in estrogen free media to estradiol. ChIA-PET data are also available in this system and were326

used to evaluate our method’s performance (Fullwood et al., 2009; Li et al., 2010, 2012).327

ER-α bound enhancers overlap experimentally determined promoter interaction regions328

To locate binding events formed after stimulation with estradiol, we determined a set of genomic loci329

associated with ER-α in at least two time points. Among these 47921 regions, 21336 overlapped with330

a known gene or within a 300bp region upstream from its TSS (promoter-extended gene region) while331

26585 were distant from genes (distal enhancers).332

Next, we determined how many of our distal ER-α-bound enhancers are known to form links with333

promoter-extended genes. Overlapping regions with interactions derived from two public ChIA-PET334

datasets that used the same ER-α and Pol II antibodies revealed a total of 2733 enhancer-promoter links.335

These interactions were used as a positive set for the purpose of developing our classifier. Missing336

interactions involving the same enhancers and other promoters in the same chromosome were used as337

the negative set. When training and testing the classifier, we did not include enhancers that did not have338

any interactions according to the ChIA-PET data. These enhancers are most likely not detected by the339

ChIA-PET method due to its limited sensitivity and their inclusion would introduce many false negatives340

into our training and testing data. However, we apply the classifier to all enhancers when making target341

gene predictions.342

ChIP-seq time series data343

We calculated the number of mapped reads for each of our ChIP-seq datasets over promoter-extended-gene344

bodies and over our consensus ER-α binding sites to create time series data for genes and enhancers (see345

Materials and Methods). We clustered the ER-α and Pol II data to help visualise the occupancy dynamics346

at enhancers and genes. As shown in Fig. 1, the clusters show substantial differences in occupancy347

dynamics across both genes and enhancers. This is expected for Pol II which shows a broad range of348

response profiles in this system (Honkela et al., 2015). Additionally, some differences in ER-α profiles349

were also detected, suggesting that occupancy is not solely determined by the nuclear concentration of350

ER-α .351
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Figure 1. ChIP-seq time course data show a variety of dynamic profiles which are exploited by our

classifier. (a, c) show profiles of the first (blue) and the second (magenta) replicate of Pol-II for enhancers

and genes, respecively. (c, d) show profiles of ER-α for enhancers and genes, respectively. X-axis shows

time, Y-axis shows +/- one standard deviation of z-scores in each cluster. The headers show the number

of time series in each cluster.

Time series correlation and distance-based features are informative about enhancer-352

promoter interactions353

We calculated the Pearson correlation coefficient between enhancer and gene time series data for every354

enhancer-promoter pair in the positive and negative set. Figure 2 shows the distribution of correlations for355

each dataset in our training data (odd chromosomes). The distribution for positive interactions differs356

substantially from the background for all four datasets, with interacting regions more highly correlated357

on average. This difference is most pronounced for ER-α and Pol II (Fig. 2a and Fig. 2b) while there358

is a much smaller difference for the histone marks H2AZ and H3K4me3 (Fig. 2c and Fig. 2d). We359

also compare the distribution of genomic separation for interacting and non-interacting promoters and360

enhancers in Fig. 2e. Although a highly informative feature, there is a substantial overlap in the positive361

and background distance densities due to a large separation of many ER-α bound enhancers from their362

target promoters; therefore, distance alone is insufficient for accurate prediction of interactions. We note363

that our ChIA-PET data does not contain very short ChIA-PET links. Links of a size shorter than 4.5kB364

are usually considered to be the result of self-ligations and are filtered out Li et al. (2010). In Figure S3 we365

plotted the corresponding histograms using data from all chromosomes. We observe that the distribution366
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does not change with the addition of data from even chromosomes.367

Naive Bayes classifier performance368

We developed a Naive Bayes classifier which integrates several discriminative features to estimate the369

probability of interactions between enhancer and putative target genes. Fig. 3 shows predicted interactions370

with only a small number confirmed by ChIA-PET (green). Interactions are shown using different shading371

for classification probabilities above 0.72, 0.54, 0.49 thresholds corresponding to 0.2, 0.25, 0.3 FDR levels372

(posterior probabilities with the highest TPR which are associated with the selected FDRs (1-precision))373

estimated using the training data (combination of features: Pol II, ER, distance).374

We evaluated classifier performance using precision-recall (PR) curves (Fig. 4a and Fig. 4b). The375

classifier was trained on data from odd chromosomes and the results were used to establish which376

combination of features is most informative. Data from even chromosomes was then used as an unbiased377

test set to establish the performance of the selected model and to estimate decision cut-off levels. However,378

we do not observe significant over-fitting, probably due to the small number of features used by the379

classifier. Comparison of different combinations of correlations and distance features, including distance-380

alone and correlation-alone variants, shows that data from ER-α can be combined with distance to381

greatly enhance predictive performance (results for all possible feature combinations are shown in the382

Supplementary Material) while data from Pol II provides a smaller improvement in performance. The383

H2AZ and H3K4me3 time course data were found to not be particularly informative, consistent with384

Fig. 2 which shows these histone marks to have a less pronounced difference in distribution for positive385

and negative links. Table 1 shows that using the probability cut-offs to infer links across 23 chromosomes386

our model (combination of features: PolII, ER, distance) consistently outperforms the distance-alone387

model in terms of the number of uncovered true links. We show that at FDR equal to 0.20 our model388

infers 26.7 times more interactions than predictions based on proximity alone (see Table 1). In addition to389

considering precision-recall curves, we also tested how often using maximum a posteriori probabilities390

(MAP) to link all enhancers (in the training and test data) to their most probable promoters would result in391

correct assignments according to the ChIA-PET data (right-most column of plots in Fig. 4a and Fig. 4b).392

The mean performance in the MAP case is reduced and the added value of the ChIP-Seq data relative393

to the proximity information is also reduced. This is because for many enhancers the ChIP-Seq data394

signal is relatively weak and therefore focussing on the enhancer-promoter pairs with higher classification395

probabilities (as in the PR curves approach) produces better quality prediction on average than when we396

make predictions for all enhancers.397

Inter-domain and Intra-domain predictions398

Most enhancer-promoter interactions are thought to occur within the same Topologically Associating399

Domain (TAD) and we were interested in whether our method can discover interactions across TAD400

boundaries. In order to assess the performance of the model on discovery of intra-domain interactions and401

the ones involving elements from two different domains, we stratified our predicted interactions into those402

two groups, and recomputed precision-recall and MAP performance (Fig. 4c/d-4e/f).403

The majority (79%) of enhancer-promoter interactions lie within domains. The PR curves in Fig. 4d404

and Fig. 4e show that the ER-α and distance features provide the greatest contribution to performance.405

The Pol-II feature is also informative but does not add much to performance when combined with the406

ER-α data. Interestingly, within domains the “data-alone” model possesses much higher predictive407

power than in the chromosome-wide model. By excluding the possibility of long-range interactions408

FDR data/distance distance ratio

0.4 14217 6041 2.4

0.3 7531 1124 6.7

0.2 2800 105 26.7

0.1 109 49 2.2

Table 1. True links uncovered at decreasing false discovery rates for distance alone and distance assisted

models.
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Figure 2. Distribution of correlation of time series data (a,b,c,d) and genomic distance (e) for

promoter-enhancer pairs and for non-interacting pairs. Here we define positive links as those confirmed

by ChIA-PET experiments while negative links are defined as those not supported by ChIA-PET and

involving the same set of enhancers. We observe that positive links tend to have higher correlations in the

ChIP-Seq data compared to negative links, with the effect strongest for ERα and Pol-II.
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Figure 3. An example of predictios with posterior probabilities above cut-off thresholds with FDR of

20%,25%,30% (indicated by different shades of green/gray). The green/grey colour of each link

indicates whether the prediction is confirmed/unconfirmed by the ChIA-PET data.

beyond domain boundaries, the number of false positives is greatly reduced. Nevertheless, we see that409

incorporation of the distance feature still improves classification performance within domains.410

On the contrary (see Fig. 4e and Fig. 4f) focusing on the remaining inter-domain interactions we411

notice that, in consequence of a large number of negative interactions, the correlation data alone is412

insufficient for classification. The proximity data, despite being much better than the data-alone, also413

does not offer the performance that we achieved for the intra-domain cases. However, distance-assisted414

models perform much better than data-alone and distance-alone models and the top-ranked links have415

similar precision than in the intra-domain case. Note however that the MAP results are much lower for the416

inter-domain predictions, suggesting that many enhancers linking to promoters across TAD boundaries417

according to the ChIA-PET data do not have this as their top-scoring interaction according to the model.418

Testing alternative dataset design choices419

Our selection of data features involved some arbitrary choices and therefore we considered robustness420

to varying some of the parameters used. We first investigated alternative promoter region sizes for421

promoter-gene regions, their effect on test and training sets and the effect on the performance of the422

model. The comparison between the distributions of features in Figures 2 and S4 and between PR curves423

in Figures S5, S6 and S7, S8 show that increasing the promoter size up to 1500bp upstream from a424

gene causes neither no changes to the distributions of features nor to the overall performance, and thus425

the model is robust to changes in promoter region size. Similarly, Figures S9 and S10 show that using426

alternative parametrisation of MACS in which we switched on λlocal parameter produces similar results to427

our default parametrisation where we switched that parameter off. Figure S11 shows that the distributions428

of features remain similarly unchanged.429

Validation of ER-regulated target gene predictions430

Finally, we used our method to provide a highly confident (FDR of 0.25) list of directly ER-regulated431

target genes in this system. This list (Table S1) includes 1978 genes with at least one predicted enhancer432

link. In Fig. 5 we compared our set of predicted distally regulated genes against a list of early differentially433

expressed genes obtained from GRO-seq experiments (Hah et al., 2011). PR curves showed that the larger434

the value of the score (see Materials and Methods), which is roughly proportional to the number of times435

a gene is predicted to be a target of distal enhancer, the higher the chance that the gene is differentially436

expressed. Using a score based only on proximity of ER-α binding events is much less predictive of early437

differential expression.438

CONCLUSIONS439

We have developed a Bayesian method which is capable of integrating genomic distance with a correlation440

of ChIP-seq time series in order to predict physical interactions between enhancers and promoters.441

We evaluated the performance of our method against ChIA-PET predicted links and using different442

combinations of features. Using complementary GRO-seq data from the same cell-line and experimental443
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Figure 4. Graphs (a, b, c, d, e, f) show the performance of the model, measured by Precision-Recall and

MAP scores. The precisions are plotted againsts TPR of 0.1, 0.2, 0.3. Each column shows the

performance of the model with a variant of correlation-based feature/s (i.e. data, see header) and

proximity-based feature (i.e. distance, see header). The first five columns of each row show the

performance on the training data. The last column shows the performance on the test data.
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the confidence of each prediction.

context we show that our model can accurately predict distally regulated, differentially expressed genes444

under stimulation with estrogen. Our model can therefore serve as a complementary approach to445

chromosome conformation capture techniques and offers insight into context-specific, and cell-type446

specific transcriptional regulation.447
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