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Summary - This paper compares three statistical procedures for making probability
statements about the true transmitting ability of progeny-tested sires for an all-or-none
polygenic trait. Method I is based on the beta binomial model whereas methods II and
III result from Bayesian approaches to the threshold-liability model of Sewall Wright.
An application to lower bounds of the transmitting ability of superior sires with a high
twinning rate in their daughter progeny is presented. Results of different methods are in
good agreement. The flexibility of these different methods with respect to more complex
structures of data is discussed.

genetic evaluation - all-or-none traits - beta binomial model - threshold model -
Bayesian methods

Résumé - Enoncés probabilistes relatifs à la valeur génétique transmise de pères
testés sur descendance pour un caractère tout-ou-rien avec une application à la
gémellité chez les bovins. Cet article compare 3 procédures statistiques en vue de la
formulation d’énoncés probabilistes relatifs à la valeur génétique transmise de pères testés
sur descendance pour un caractère polygénique tout-ou-rien. La méthode I repose sur le
modèle bêta binômial alors que les méthodes II et III découlent d’approches bayésiennes
du modèle à seuils de S. Wright. Une application concernant la borne inférieure de la
valeur génétique transmise de pères d’élite présentant un taux de gémellité élevé chez leurs
filles est présentée. Une bonne concordance des résultats entre méthodes est observée. La
flexibilité de ces différentes méthodes vis-à-vis de structures de données plus complexes est
abordée en discussion.

évaluation génétique - caractères tout-ou-rien - modèle bêta binômial - modèle à seuils -
méthodes bayésiennes



INTRODUCTION

Genetic evaluation for all-or-none traits is usually carried out via Henderson’s mixed
model procedures (Henderson, 1973) having optimum properties for the Gaussian
linear mixed model. Even though a linear approach taking into account some
specific features of binomial or multinomial sampling procedures can be worked out
in multi-population analysis (Schaeffer & Wilton, 1976; Berger & Freeman, 1976;
Beitler & Landis, 1985; Im et ad., 1987), these methods suffer from severe statistical
drawbacks (Gianola, 1982; Meijering & Gianola, 1985; Foulley, 1987). Especially as
distribution properties of predictors and of prediction errors are unknown for regular
or improved Blup procedures applied to all-or-none traits, it would therefore be

dangerous to base probability statements on the property of a normal spread of
genetic evaluations or of true breeding values given the estimated breeding value.

The aim of this paper is to investigate alternative statistical methods for
that purpose. Emphasis will be placed on making probability statements about
true transmitting ability (TA) of superior sires progeny-tested for some binary
characteristic having a multifactorial mode of inheritance. Numerical applications
will be devoted to sires with a high twinning rate in their daughter progeny.

METHODS

The methods presented here are derived from statistical sire evaluation procedures
which are based on specific features of the distribution involved in the sampling
processes of such binary data. Three methods (referred to as I, II and III) will be
described in relation to recent works in this area. The first method is based on the
beta binomial model (Im, 1982) and the two other ones on Bayesian approaches
(Foulley et al., 1988) to the threshold-liability model due to Wright (1934 a and b).
All three methods assume a conditional binomial distribution B (n, Tr) of binary
outcomes (i.e. n progeny performance of a sire) given the true value 7r of a
probability parameter (here the sire’s true breeding value or transmitting ability).
The three methods differ in regard to the modelling of 7r itself, either directly (beta
binomial) or indirectly (threshold-liability model), and consequently in describing
the prior distributions of parameters involved, v.i.z. !r itself or location parameters
on an underlying scale.

Method I 
’

Let yij = 0 or 1 be the performance of the jth progeny ( j = 1, 2, ..., ni) out of the ith
sire (i = 1, 2, ..., q) and ni unrelated dams. Let Jri designate the true transmitting
ability (7ri ) of sire i.
A priori, the 7ri’s are assumed to be independently and identically distributed

(i.i.d.) as beta random variables with parameters (a&dquo;0).



Conditional on true value -7ri, the distribution of binary responses among progeny
of a given sire is taken as binomial B (ni, 7ri). These distributions are conditionally
independent among sires so that the likelihood is the product binomial

where the circle stands for a summation over the corresponding subscript (here
y2o = Ej Yij) and capital letters indicate random variables.

As the prior and the likelihood are conjugate (Cox & Hinkley, 1974, p. 308), the
posterior distribution remains in the beta family and can be written as:

! , ¡’ , .......... -- I

with normalizing constant

The density in (3) is a product of q independent beta densities. Ignoring
subscripts, the posterior density for a given sire is:

This Beta distribution B (a, b) can be conveniently expressed with a reparame-
terization in terms of a prior mean 7r,, = a/(a + !3), an intra class correlation
pb = (a +,3 + 1)-1 and the observed frequency p = yo/n. The conditional distribu-
tion of 7r given n, p, 1r and pb is then

with expectation

which will be noted 7r so as to reflect both its interpretation as a Bayesian estimator
of 1f as well as its equivalence with the best linear predictor or selection index
(Henderson, 1973). Using 7r and letting ab = pb 1 - 1 with Àb interpretable as a
ratio of within to between sire components of variances, the distribution in (4b)
can be viewed as a function of n, 7r and Ab, that is, conditional on n, !6 and 1?, the
distribution of 7r is:

with expectation

and variance

Probability statements about true values of TA given the data (n and p or 7i’)
and values of the hyperparameters (!ro and pb or ab) can be easily made using



expressions (4b) or (5) of the posterior density of -7r. Notice that formula (6a) also
represents the probability of response Pr(Yik = 1 ni, pi) for a future progeny (k)
out of sire (i) with an observed frequency of response pi in ni offspring.

These probability statements can be made for specific sires given their progeny
test data (n, p or 11’) and the characteristics of the corresponding population, such
as the mean incidence 1f and the intraclass coefficient pb as a parameter of genetic
diversity. To allow for comparisons among methods, this pb, or equivalently the
ratio Ab, will be expressed according to Im’s (1987) results which relate intraclass
coefficients on the binary (pb) and underlying (p) scales in a population in which
the incidence of the trait is 7r,, (see next paragraph).

In the case of twinning, interest is usually in superior sires having estimated
transmitting ability (ETA) values above the mean 7ro. Attention will then be
devoted to the lower TA bound 1fm which is exceeded with a probability a i.e,
to 1fm, such that:

This involves computing x E [0, 1] values of the so-called incomplete beta
function defined as, in classical notations

Details about numerical procedures used to that respect are given in appendix A.
In addition, more general results can be produced for instance in terms of (n, 1?)

values such that formula (7) holds for given values of a&dquo;t (TA lower bound) and a
(probability level): see appendix A.

Method 11

This method is derived from genetic evaluation procedures for discrete traits
introduced recently by several authors. All these procedures postulate the Wright
threshold liability concept. We restrict our attention here to Bayesian inference
approaches proposed independently by Gianola & Foulley (1983), Harville & Mee

(1984), Stiratelli et al. (1984) and Zellner & Rossi (1984).
Although the methodology is very general vis-a-vis data structures, for the sake

of simplicity only its unipopulation version (p model) will be considered in this
paper.

Let lij be a conceptual underlying variable associated with the binary response
y2! of the jth progeny of the ith sire. The variable 12! is modelled as: .

where 1/i is the location parameter associated with the population of progeny out
of sire i and the eij’s are NID (0, o,’) within sire deviations.

Conditional on qj, the probability that a progeny responds in one of the two
exclusive categories coded [0] and [1] respectively is written as:

where T is the value of the threshold, a the within sire standard deviation and
4)(.) the normal CDF evaluated at (r -1}i)/ae’



It is convenient to put the origin at the threshold and set ue to unity, i.e.
&dquo;standardize&dquo; the threshold model (Harville & Mee, 1984)

the expression for 7ri[o] can be written as

and that for 7ri[l] as:

In what follows, and to simplify notation, Jrjpj will be referred to as 7ri .

Letting tt = fail be an (q x 1) vector, a natural choice for the prior distribution
of IL under polygenic inheritance, is:

where A is equal to twice Malecot’s genetic relationship matrix for the q sires
(A = I in method I), U2 is the sire component of variance and po the general
phenotypic mean in the underlying scale.

These parameters po and u2 are linked to the overall incidence 7r via:
- . - .. ,

or, equivalently, defining Q2 = 0-; + U2 with Qe = 1,

Similarly, the sire variance Q!6 in the binary scale can be related to the underlying
distribution via

where !2(x, y; r) is the standardized bivariate cumulative density function with
mean 0 and correlation r, jl poj + Qu)i/2 and p in (13b) is the intraclass
correlation coefficient p = a;/a2. The variance in (13b) can be obtained directly by
a probability argument or as the limit of a formula given by Foulley et al. (1988) for
the variance of the observed frequency pi when the progeny group size n tends to

infinity. Notice also that it differs from the classical expression <p2(jí,)a; proposed
by Dempster & Lerner (1950), 0(.) designating the standardized normal density
function, which is a first order Taylor expansion of (13b) about p = 0.

The likelihood function has the same form (v.i.z. product binomial) as in method
I (formula 2) so that the posterior density reduces to:



where z! is a (1 x m) row vector having 1 in the ith column and 0 elsewhere.
The logposterior density L (p.; y, !Co, a2) can be minimized with respect to p. by

a scoring algorithm of the general form

The value of tL in the t-th iteration can be computed by solving the non-linear
system

where W and v are an (n x n) diagonal matrix and an (n x 1) vector respectively
having elements

Define A = &OElig;; / &OElig;; = 1/ &OElig;; and u= (L - pol as an (m x 1) vector of sire deviations.
Then the system to be solved AIL = A u becomes

An interesting feature of the posterior distribution in (14) is its asymptotic
normality

where (.1.* is the mode of the posterior density of IL in (14) and I (IL) is defined as

lim [I (Et) / no!-1 can be replaced for test statistics by a consistent estimator such
as -no[I(!*)!-1 where I (tL) is evaluated at tL _ tL*.

The variance of the limiting normal distribution is usually taken to be (Berger,
1985, p. 224)

The form shown in (18a and b) applies as well to the asymptotic variance since
both of them tend to the same limit as no = Eni tends to infinity. This involves
the use of the following large sample distribution:



where wi stands for wi evaluated at the mode /-Li. *
Letting pm _ <I>-l (1I&dquo;m) be the parameter value in the underlying scale cor-

responding to 1I&dquo;m in (7), the probability that the true sire TA, pz of sire i

(ETA = tt*) exceeds tt (or equivalently !r > 1I&dquo;m) can be expressed as

For given values of n, p (or 7?) and Àb( 7f 0, 011), this probability can be computed,
given 7fm, and compared to the corresponding probability level obtained with the
beta binomial model. Alternatively, one can determine the lower bound 7f m such
that Pr (7ri > 7fm) = a fixed, by taking pm = f-Li - Î;/2ép-l(0:).

Notice that computing the probability in (20), based on the posterior distribution
of the true TA, f (p n, p, po, A) is equivalent to computing Pr (7r > 7fm) over
the distribution of the probability of response 7r = 4)(,U) for a future progeny of
sires having an ETA equal to tt* and a true TA distributed according to (19).
This distribution in the observed scale would probably be more appealing for
practitioners. This is especially clear as far as ETA’s are concerned and one may
alternatively to tt*, consider as a sire evaluation, the expectation of !r = !(!) with
respect to the density of A in (19), say !!2. This expectation is:

However, the whole distribution of 7r = 4b(/,t) remains less tractable numerically
than that of p in (19) due to its following form:

Method III

This method is also derived from the threshold liability model but employs
asymptotic properties at an earlier stage.

Let us consider, as previously, the observed frequency of response pi in ni
progeny of sire i. Conditionally to the true TA, (7ri), pi has an asymptotic normal
distribution, i.e.:

The normit transformed of pi, mi = 4D-1 (pi) has a conditional distribution which
is also asymptotically normal. Following a classical theorem in asymptotic theory
(see for instance, formula 6a.23, page 386 in Rao, 1973) and knowing that:

one has, given ai

Assuming as in section II B that, a priori, the f-Li’S are i.i.d !N (p.!, oD leads
to a posterior for f-Li with is also normally distributed.



The expectation (jiz) and variance (ci) of the distribution in (25) can be easily
expressed analytically as (see for instance Cox & Hinkley, 1974, formula 22, page
373).

with

Alternative formulae can be derived so as to mimic usual selection index expressions,
which are, ignoring subscripts
... ,- - !

where CD is given by the usual formula for the coefficient of determination, i.e. CD
= n/n + k) where the scalar k is defined as:

In method II and with a definition of CD restricted to var (f-Lly,a-;) = (1- C D)a;,
this coefficient is:

Notice that k can be interpreted as in selection index theory as the ratio of a
within sire to a sire variance, since p(l - p)/(p2(.) is the asymptotic variance of
the normit transformation of the frequency of response in progenies of a given sire,
conditionally on the sire’s true underlying TA.

Substituting jiz and ci for (26a and b) or (27 a and b) for p* and Ii respectively
in (20) enables us either to determine 1rm for a given a probability level knowing
po, ufl (or equivalently 7r,, and !), p and n, or to compute the probability level a
such that p.i exceeds a given threshold Again, the distribution of 7r = iI?(f-L) in
the observed scale corresponding to the density of p, in (25) can be obtained using
the formula (22). Its expectation has the same expression as in (21) with Îii and ci
replacing f-Li and 7z respectively.

NUMERICAL APPLICATION

Procedures described in this paper are applied to the problem of screening superior
sires with a high twinning rate in their female progeny.

There are relatively large differences among cattle populations with respect to
the prevalence -7r,, of twinning (see for instance Maijala & Syvajarvi, 1977). Two
values of 7r,,, say 2.5 and 4% are considered in this application.

These values of twinning rate are those observed in 2nd and mature (3rd to
7th) calvings respectively in such breeds as Charolais and Maine-Anjou (Frebling
et al., 1987). The first value of 1ro (0.025) can be viewed as a progeny test of young
bulls based on second calvings. Twinning in heifers was not considered because



of its extremely low rate (0.007). The second value (0.04) is an illustration of an
evaluation system of service sires based on mature calvings.

Genetic variation for occurrence of multiple births in cattle was assumed to
have an heritability coefficient in the underlying scale equal to 0.25, according to
estimates published by Syrstad (1974). In this study, h2 values of the underlying
continuous variable are higher than those in the observed scale and, especially more
stable over parities as theoretically expected for such binary traits. Using this value
in (13a and b) leads to !o equal to -2.0242 and -1.8081, and h2 in the binary scale
equal to 0.0394 and 0.053 for 7!-o equal to 0.025 and 0.04, respectively. Notice, as
already pointed out by Im (1987) that h2 values reported here are slightly higher
than those which would be obtained (0.0350 and 0.0483) from the classical formula
of Dempster & Lerner (1950).

First application

The first application deals with 5 specific sires known for their high twinning rate
in daughters. Table I shows lower bounds (TTm) of the TA in twinning of these 5
sires knowing their progeny test performance (!,, p) in mature calvings at 2 different
probability levels, a = 0.90 and 0.95. In both cases, results are in good agreement
across methods with, as expected due to asymptotic approximations, higher values
of 7r m being obtained with method II and, to a larger extent with III. Differences
between I and II, however, are of little importance given the large values of n.
Differences among methods are also reflected in ETA values on the observed scale
with values for methods II and III very slightly less regressed towards the mean
incidence 7r = 0.04 than in method I. On the other hand, this is a good example
of a change of ranking according to criteria used. B and C have close ETA and !r,&dquo;,,
values although they differ largely in frequency (p). E is lower than D in p, close to
D in ETA but larger in Tfm due to a greater number of progeny.

Second application

For the two 7r frequencies, tables II and III show the values of progeny group size
(n) which provides an a = 0.9 probability level for different combinations of !r&dquo;t,
the TA taken as a minimum and 7i’, the ETA value according to formulae (5b)
and (6). Minimum TA and ETA values were expressed in percent as well as, for
practical purposes, deviations from 7r in Qub units (uub = 1 standard deviation in
true TA in the 0 &mdash; 1 scale). Results are shown in tables II and III for !&dquo;,, varying
from +0.25 to +2.75 Qub and ETA from +1.00 to 3.00 oub with an elementary
increment of 0.25.

The higher the ETA’s, the lower are progeny numbers for a given value of Tfm-
For instance, for 7ro = 0.025 and !r&dquo;,, = 0.048 (or equivalently +1.50o-itt,) progeny
numbers providing a 0.9 probability level are 5199, 1291, 546, 279, 152 and 81
when the ETA goes from + 1.75 to 3.00 uub. Corresponding figures are 3631, 895,
375, 188, 100 and 51 respectively when 7ro = 0.04, i. e. about 60-70% of previous
quantities. This special case is illustrated for 7r = 0.025 in figure 1 with a graph
of the beta prior density and posterior distributions corresponding to 7rm = 0.048
and n varying from 81 to 1291.









For a given ETA value, the closer this value to 7r,n, the higher the progeny group
size needed to reach a probability level of 0.9. For such a difference (ETA minus
7rm) taken as fixed in uub units, variations in the progeny number n are rather less
pronounced. These variations (An) in n are proportional to variations (A£) in ETA
within the range of values considered. For instance, for 7? - 7r m = 0.75 uub, An
= 504 - 330 = 174 when 7? varies from + 1.00 to + 2.00 uub at 7r, = 0.025 and
An = 671 - 504 = 167 with 7? going from + 2.00 to + 3.00 (TUb. Clearly, these
variations result from the dependency of the posterior variance on ETA as reflected
in formula (6b) contrarily to what happened in the Gaussian linear model. For
?!-! = 0.025 and h2 = 0.25 and a = 0.9, 73 to 167, 157 to 325, 330 to 671, 904 to
1663 and 4041 to 7062 progeny are required to exceed a minimum TA value equal to
ETA minus 1.25, 1.00, 0.75, 0.50 and 0.25 (TUb, respectively. Corresponding figures
can be found in table III for 7r = 0.04. Coming back to the case of twinning,
practical interest will be for 7rm values around +1.50 Qub. This corresponds to sires
having an ETA equal to 2.25 to 2.50 (TUb (A difference ETA -7rm of 1.00 to 1.25
Qub seems reasonable in practice). A progeny number of 279 to 546 and 188 to 375
is needed depending on 7? - 7r! for 7r... = 0.025 and 0.04, respectively.

For each n, 7rnt, ETA, Àb(7ro) combination, the corresponding probability that
the true TA (pj) of sire i exceeds f-Lm = !-1(!’&dquo;,) given n, p = 1? + Àb(1? -7ro)/n
and A is calculated for methods II and III according to formula (20). As a matter



of fact, methods I, II III can be compared only when using the same amount of
information, v.i.z. the same n and p values on the one hand, and the same prior
expectations and variances (formulae 13a and b) on the other hand. Probability
values for methods II and III are shown in Tables II and III.

The agreement between the 3 methods is generally good, especially between
the beta, binomial model and the Bayesian approach of the threshold model. For
71&dquo;m < +2.00 and ETA < +2.25 uub , the difference between the 2 probabilities never
exceeds 0.01. As pointed out previously (first application), distributions employed
to make probability statements in II and III are both asymptotically normal on
the underlying scale, and consequently underestimate the real posterior variance
and overestimate the probability that the true TA is higher than 71&dquo;m. Clearly, this
drawback is more severe for method III than method II, especially for high values of
the ETA as shown in Tables II and III and in figure 2 with the graph of distributions
corresponding to Jro = 0.025, hz = 0.25, n = 38 and p = 5/38.

DISCUSSION-CONCLUSION

Adaptation for other practical situations

The situation adressed in this paper was to make probability statements about the
true TA of &dquo;superior&dquo; sires vis-a-vis a minimum (71&dquo;m) value for a rare interesting
cha,racteristic. The procedure described can also be viewed as making probability
statements about TA’s of &dquo;inferior&dquo; sires vis-h-vis an upper TA limit for a frequent
unfavourable trait. This is likely to occur in practical animal breeding, especially
for the so-called secondary traits (e.g. fertility or dystocia in cattle) where selection
usually operates against the poorest sires and dams. In some instances for such
detrimental traits at a low prevalence, interest might be towards the occurrence
of TA’s in the lower tail of the distribution. The procedure reported here can be
easily accomodated for this case in changing the inequality sign in formula (7) and
in taking an opposite argument for «1>(.) in (20).

Threshold liability concept and beta binomial approaches

In the example studied and within the range of parameters considered, probability
statements made by methods I and II were very similar as clearly illustrated by
figure 2. This may help reconcile the beta binomial approach praised by statisticians
(see, among others Im, 1982) with the threshold liability concept put ahead
by quantitative geneticists especially those working in human genetics (see for
instance Curnow & Smith, 1975; Falconer, 1965; Fraser, 1980), even under complex
segregation patterns (Lalouel et al., 1983). However, the threshold liability model
offers more flexibility than the beta binomial. In particular, it can be easily adapted
to mixed model structures involving a multipopulation analysis as well as several
random sources of variation. Foulley et al. (1988) highlighted how inferential issues
in such structures can be handled from a unified perspective using the Bayesian
paradigm. Thus, taking into account several records per animal (e.g. multiple vs
single births at different parities) can be achieved with this methodology using
either a repeatibility model or a multiple trait approach (H6schele et al., 1986)



with possible missing data patterns (Foulley & Gianola, 198G) as well as correlated
information on normal continuous traits (Foulley et al., 1983). Unfortunately, the
beta binomial model in its present state of development remains confined to a single
population analysis with one random factor (Williams, 1988).

Gilmour’s approach

Although the approach of Gilmour et al., (1985) to the threshold model has its
own rationality via its connection to the methodology of generalized linear models
and quasi-likelihood, its justification for predicting breeding values as compared
to Bayesian methods is still questionable (Foulley et al., 1988; Knuiman & Laird,
1988). This is especially true with respect to distribution properties of TA predictors
or those of prediction errors for which no formal statistical properties can be claimed
for Gilmour’s method.

Distribution properties

Distribution properties of the true TA given the data were derived in this study
under the implicit assumption that the beta binomial model is true in method I
and the threshold concept is also true in methods II and III. Another issue on

comparing these methods is to investigate which is the best. Ways of challenging
models is a difficult topic which is beyond the scope of this paper (see for instance
Smith, 1986). For categorical data and in an animal breeding context, suggestions
on how to compare non-nested models were made by Foulley (1987), which are
based on the predictive distribution of a future data set given the data observed at
present.

Genetic charges

The reasoning followed throughout this paper is a conditional view knowing the
progeny test data information on sires. This leads to probability statements about
the true TA of specific sires. Discussing progeny group numbers for a planned
progeny test programme can involve a different approach (e.g. Curnow, 1984)
especially when looking a priori at this issue with no specific progeny-test results.
One could make some statements about a distributional form for ETA’s and values
of the selection differential and point of truncation. As pointed out by Hill (1977),
genetic change due to selecting superior sires on their ETA’s under extra constraints
with respect to such factors as inbreeding levels, testing facilities and other costs
appears to be a natural approach (e.g. Curnow, 1984). Response (R) to one
generation of upward truncation selection on 1?(1? > 1?s) is a random variable 1r
having in the beta binomial model the following conditional density given 7T > 1rs.

A similar expression can be written when postulating a threshold model (Foulley,
1987). Clearly, the problem becomes more complex since we have to take into



account, not only the posterior density of 7r given progeny test results but also the
marginal density of the ETA’s and integrate 7r out in the latter and their product
over the selection space.

These are not easy manipulations from an analytical point of view, especially
with the threshold model. More research is therefore needed to derive original results
in that area.
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APPENDIX A: ALGORITHM FOR SOLVING EQUATION (7) .

Analytical approximations to the inverse function of the incomplete data function
are proposed in calculus books: see, for instance, formula 26.5.22, page 945 in
Abramowitz & Stegun (1972). To improve the accuracy of these approximations, we
employed an algorithm based on finite difference techniques. It consists in iterating
from (t) to (t + 1) with

Starting values are xo = 0; Io(a, b) = 0 and xl = value of the inverse probability
function given by e.g. Abramowitz & Stegun.

In this equation, the incomplete beta function is calculated from Peizer and
Pratt’s approximation as recommended by Pearson (1968, formulae 47, 48, 49 page
XXX) and Johnson & Kotz (1972, vol. III, pp. 48, 49). For the values of a and
b encountered in this study, this approximation is very accurate; the difference
Itrue-approximated values) is less than 10-3 according to the previous authors.

Computationally, solving equation (7) in terms of (n,1?) requires obtaining the
parameter a = (n + ’xb)1? of the incomplete beta function Iz (a, b) = 1 - a, given
x values of a, x and the ratio a/b = !r/(1 - 7r). This can be worked out with an
algorithm similar to [Al] in which a is substituted for x.

For the sake of comparison, n was predicted in the fashion described, and
also, using a second approximation to the incomplete beta function (formulae
26.5.21, page 945) in Abramowitz & Stegun (1972). In the examples considered, the
agreement between both approximations was excellent; results obtained differed by
no more than one progeny.
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