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SUMMARY

Sensitivity analysis has traditionally been applied to decision models to quantify the stability of a preferred
alternative to parametric variation. In the health literature, sensitivity measures have traditionally been based upon
distance metrics, payoff variations, and probability measures. We advocate a new approach based on information
value and argue that such an approach is better suited to address the decision-maker’s real concerns. We provide
an example comparing conventional sensitivity analysis to one based on information value. This article is a US
government work and is in the public domain in the United States.
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INTRODUCTION

Sensitivity analysis (SA) refers broadly to any
analytic method designed to quantify the impact
of parametric variation on model output. For
health-related decision models, measures of sensi-
tivity based upon threshold proximity, range of
value, and probability of decision change are well-
established but suffer from severe limitations. We
take the Bayesian position that all uncertainty
should be quantified by probability distributions,
including the uncertainty about parameter values
which motivates SA, and propose a SA method
based on information value which not only sur-
mounts the limitations of conventional SA, but
offers several advantages. We illustrate this ap-
proach using a published medical decision analy-
sis and compare the results with those of an
established SA method.

SENSITIVITY ANALYSIS

Sensitivity analysis methods have been partitioned
into four categories in the health economics litera-
ture [1]: simple SA, threshold analysis, analysis
of extremes, and probabilistic SA. The corre-
sponding measures of the degree of sensitivity
have typically been based on the distance between
parameter point estimates and points of decision
change (simple SA, threshold analysis), the range
of model output swings consequent to para-
metric variation (analysis of extremes), and the
relative frequency of an alternative’s optimality
(probabilistic SA). For context, suppose a deci-
sion-maker (DM) must choose among alternatives
a having expected payoffs E [Va ], and suppose
alternative a* is optimal, that is E [Va*]=
maxa E [Va ]. Let j be a problem parameter whose
precise value is uncertain, and let a*(j) be the
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optimal alternative given j, that is, E [Va*(j)�j ]=
maxa E [Va �j ].

Threshold proximity measures focus on prox-
imity to a threshold in parameter space. For
example, if a*(j)=a* only when j5j* then j*
is a decision threshold for j. If the DM believes it
sufficiently likely that j\j*, he would label a*
sensitive to j. Graphical analyses give the same
information, but illustrate the situation pictorially
(see Plante et al. [2] for an example).

Range-of-value measures are commonly pre-
sented as tornado diagrams, using horizontal bars
to illustrate the range of payoff values expected as
parameters vary. Any bar extending beyond a
predefined payoff threshold indicates potential
sensitivity. A bar extending sufficiently far beyond
the threshold raises concern about problem sensi-
tivity to that parameter (see Dippel et al. [3] for
an example).

Probabilistic sensitivity measures characterize
sensitivity in terms of the probability of decision
change. Because of the uncertainty in the parame-
ter j, the optimal decision a*(j) conditioned on j
is also uncertain. In probabilistic sensitivity analy-
sis one calculates P [a*(j)=a ] for all possible
alternatives a. If P [a*(j)=a*] is large, the DM
would not consider the problem sensitive to j,
regardless of how close j is to its threshold (see
Doubilet et al. [4] for an example). Probabilistic
approaches are consistent with the Bayesian per-
spective in that they require the DM to provide a
distribution for j.

Limitations to traditional sensitivity measures
include a lack of a formal definitions of ‘sensitiv-
ity’ [5,6] and difficulties in defining distance met-
rics [7,8], especially in the multiparametric case
when j is a vector of parameters [9,10]. Evidence
also suggests that conventional SA systematically
overestimates problem sensitivity [11,12].

THE EXPECTED VALUE OF PERFECT
INFORMATION

The expected value of perfect information on j,
which we denote EVPI(j), is the difference be-
tween optimal expected payoffs with and without
perfect knowledge of j prior to the time of deci-
sion [13,14]. That is, EVPI(j)=Ej [E [Va*(j)�j ]]−
E [Va*]. Because EVPI(j) represents the average
benefit consequent to resolving all uncertainty
surrounding j prior to the point of decision, we

contend that a decision problem should only be
considered sensitive to j when EVPI(j) exceeds
some minimally significant amount defined by the
DM [15–18].

There are several advantages to EVPI-based
sensitivity measures [12]. Because EVPI calcula-
tion requires parameter distributions, the DM’s
beliefs about parameter behaviour must be for-
malized sooner rather than later in the decision
process. Also, EVPI calculation remains tractable
when j is a vector. While these two advantages
are also intrinsic to probabilistic SA, an EVPI
analysis offers two additional benefits. First,
EVPI(j) can be expressed as the product of the
probability of a change in the optimal alternative
due to variation in j and the average foregone
payoff given such a change, encapsulating likeli-
hood and value issues in a single measure. Sec-
ond, the DM’s ultimate assessment of sensitivity
is based on values in natural units (e.g., dollars,
quality adjusted life years) representing expected
marginal benefits commensurate with complete
resolution of parametric uncertainty.

AN EXAMPLE OF EVPI-BASED SA

A decision analysis of treatment options for pyri-
form sinus cancer [2] is provided in Figure 1. In
addition to probabilities (e.g., dr and mr), the
authors employed quality adjustment factors and
tolls to weeks of survival awarded. Quality adjust-
ment factors were assigned for surgery (qs) and
radiation (qr); for mixed treatment strategies, the
product of the pure treatment quality adjustment
factors was used. Tolls represented direct reduc-
tions in quality adjusted life duration for surgery
(Ts) and morbidity following surgery (Tsm) and
radiation (Trm).

Baseline analysis shows Surgery Then Post-Op-
erative Irradiation to be the optimal alternative
with an expected value of 108 additional quality-
adjusted weeks of survival (QAWS). The authors
performed traditional one-way, graphical SA on
the probability of surgical mortality (ds), the
probability of disease-free survival with surgery
(ps), the fold-increase in disease-free survival for
combined surgery/irradiation therapies ( fi), and
the short-term morbidity of surgery (Ts). They
also provided three graphical, two-way SAs: ps

versus ds ; fi versus qs (quality of life after surgery);
qs versus qr (quality of life after radiation ther-
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Figure 1. The decision tree for selecting a treatment for pyriform sinus cancer (Plante et al. [2]). In the outcome subtree, the
probability pi is the probability of disease-free survival, where i designates a pure treatment alternative: surgery (i=s) or
radiation therapy (i=r). If the treatment strategy includes both irradiation and surgery then pi= fi ·ps, where fi is the
‘fold-increase’ in disease-free survival.
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apy). They concluded the optimal alternative to
be quite sensitive to fi, somewhat sensitive to ds,
ps, qr, and qs, and insensitive to Ts.

To compare these sensitivity conclusions with
an EVPI analysis, we assigned parameter distribu-
tions (Table 1) based on the information the
authors provided (including statements of plausi-
ble parameter ranges, ranges of values used in SA,
and informal commentary) and used Monte Carlo
simulation to estimate EVPI(j)=
Ej [E [Va*(j)�j ]]−E [Va*] for parameter sets j (for a
detailed description of the simulation procedure,
see Felli and Hazen [11]). We assumed parametric
independence. (This assumption does not affect
our comparisons between one-way SA and one-
way EVPI, and is unlikely, we believe, to affect
comparisons in the multiway case—see Felli and
Hazen [12].) Table 2 presents the EVPIs for all
one- and two-element parameter sets j, as well for
the entire parameter set. The parameters the au-
thors judged sensitive according to their SAs are
shaded.

To what parameter combinations does EVPI
indicate sensitivity? The total-parameter EVPI of
6.066 QAWS constitutes 5.62% of the base-opti-
mal 108 QAWS. This seems significant, so the
problem appears sensitive to its parameter set as a

whole. The parameter sets {pr, qr} and {pr, ds}
possess EVPIs constituting 3.29% and 2.95% of
the base optimal 108 QAWS. It is not clear
whether improvements of this magnitude are sig-
nificant, so it is questionable whether the problem
is sensitive to these parameter sets. All remaining
parameter sets have EVPIs less than 2.7%. Sensi-
tivity in these cases seems marginal at best.
Granted, these judgements are but reasonable
conjectures on our part—the final word would
rest with the DM. Even so, the parameters the
authors judged sensitive via conventional SA
(shaded in Table 2) are clearly inconsistent with
our EVPI results. The single parameter with the
highest EVPI (pr) was not deemed sensitive, and
all of the five parameters which were have infor-
mation values less than 1.2% of the optimal 108
QAWS. This low rate of ‘missed sensitivity’ and
high rate of ‘false sensitivity’ relative to an EVPI
analysis is consistent with our general findings
that conventional SAs typically overstate problem
sensitivity to input parameters [12]. In this exam-
ple, we compared threshold proximity based SA
to an EVPI analysis. For a contrast between
probabilistic SA and EVPI, we refer the reader to
Felli and Hazen [11].

Table 1. Parameter distributions based on the information including statements of plausible parameter ranges,
ranges of values used in SA, and informal commentary)

Model parameter examined Symbol Min Lower Base Upper Max Distribution used

Surgery Mortality ds 0 Piecewise Linear (·, 0.05)0.01 10.10.05
0dsrCombined Surg/Rad Mortality Piecewise Linear (·, 0.05)10.140.050.03

0.055 0.01 0.15 1 Piecewise Linear (·, 0.05)Disease-Free Survival, Radiation Pr 0
0Disease-Free Survival, Surgery 0.24 0.25 0.55 1 Piecewise Linear (·, 0.05)Ps

0 0 1.3 1.5 —Fold-Increase in Disease-Free 0.878 Gamma (6.392, 1)0.216fi

Survival
Uniform (0.01, 0.03)0.030.030.010.010mrMorbidity, Radiation

0.50.30.130 1msMorbidity, Surgery Piecewise Linear (·, 0.05)
Quality of Life Adjustment, qr 0 0.75 0.9 1 1 Piecewise Linear (·, 0.05)

Radiation
Quality of Life Adjustment, qs 0 0.5 Piecewise Linear (·, 0.05)0.7 0.95 1

Surgery
500TsHospitalization, Surgery 4.645 Gamma (2.041, 1)0.962—24.5

Min (Max) denote a parameter’s minimum (maximum) feasible value; Lower (Upper) designate the lower (upper) bound of the
parameter’s plausible range; Base refers to the parameter’s base value. We selected parameter distributions so that the mode
corresponded to Base and 95% of the probability mass fell within [Lower, Upper]. A Piecewise Linear (·, 0.05) function is a
density function linear between the parameter’s breakpoints (i.e., its Min, Lower, Base, Upper, and Max values) with 95% of
probability mass falling within [Lower, Upper] and 5% equally divided between [Min, Lower] and [Upper, Max]. The exceptions
were the parameters mr, which was uniformly distributed over its plausible range, and the parameters dr, Tsm and Trm, which
were held fixed at base values for the analysis.
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Table 2. EVPIs for parameter sets j

The table entry for row ji and column jj is EVPI(ji, jj); table entries for row ji and column ji depict
EVPI(ji). The optimal policy at base parameter values was Surgery Then Post-Operative Irradiation,
which yielded an expected value of 108 additional quality adjusted weeks of survival.

CONCLUSION

The stability of the DM’s preferred alternative to
parametric variation has classically been ad-
dressed by SA measures based on threshold prox-
imity, range of value, and probability of decision
change. Only the latter approach adopts the
Bayesian perspective that uncertainty should be
probabilistically quantified. However, ‘How far?’,
‘How much?’ and ‘How likely?’ address only par-
tial aspects of the sensitivity issue. The real issue
is compound: ‘How likely and with what effect?’
To address both concerns, we recommend the use
of information value as a sensitivity measure.
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