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Abstract: This paper gives necessary and sufficient conditions for an integral sequence
to be the signed degree sequence of a signed graph or a signed tree, answering a
question raised by Chartrand et al. (1994). (G. Chartrand, H. Gavlas, F. Harary, and M.
Schultz, On signed degrees in signed graphs, Czech. Math. J. 44 (1994), 677–690). c© 1997
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1. INTRODUCTION

All graphs in this paper, except those discussed in the last section, are finite, undirected, without
loops and multiple edges.

The concept of a signed graph was first introduced by Harary [4]. A signed graph is a graph in
which every edge is labeled with a ‘‘+’’ or a ‘‘−’’ . An edge uv labeled with a ‘‘+’’ (respectively,
‘‘−’’ ) is called a positive edge (respectively, negative edge) and is denoted by uv+ (respectively,
uv−). In a signed graph G = (V,E),

the positive degree of a vertex u is deg+(u) = |{uv : uv+ ∈ E}|,
the negative degree of u is deg−(u) = |{uv : uv− ∈ E}|,
the signed degree of u is sdeg(u) = deg+(u)− deg−(u), and
the degree of u is deg(u) = deg+(u) + deg−(u).

* Supported in part by the National Science Council under Grants NSC85-2121-M-001-026 and
NSC85-2121-M009-024.
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An integral sequence σ : d1, d2, . . . , dp is the signed degree sequence (respectively degree
sequence) of a signed graph (respectively graph) G = (V,E) if V = {v1, v2, . . . , vp} and
sdeg(vi) = di (respectively deg(vi) = di) for 1 ≤ i ≤ p.

Chartrand et al. [2] initiated a systematic study of signed degrees of signed graphs. They gave
characterizations of signed degree sequences of signed paths, signed stars, signed double stars,
and complete signed graphs. They also gave a necessary and sufficient condition under which an
integral sequence is a signed degree sequence similar to Hakimi's result for degree sequences [3].
They questioned whether Hakimi's procedure for degree sequences also works for signed degree
sequences. In Section 2, we answer this question with a modification of Hakimi's procedure.

It is well-known that a sequence of n ≥ 2 positive integers is the degree sequence of a tree
if and only if their sum is 2n − 2 ([1], p. 27). Section 3 characterizes signed degree sequences
of signed trees. In Section 4, signed degree sequences for signed graphs with loops or multiple
edges are discussed.

2. GENERAL SIGNED GRAPHS

This section gives a new characterization of signed degree sequences that yields an efficient
algorithm for recognizing signed degree sequences.

An integral sequence is s-graphical if it is the signed degree sequence of a signed graph. An
integral sequence σ : d1, d2, . . . , dp is standard if p − 1 ≥ d1 ≥ d2 ≥ · · · ≥ dp and d1 ≥ |dp|.
The following obvious lemma demonstrates that a signed degree sequence can be modified and
rearranged into an equivalent standard form.

Lemma 1. If σ : d1, d2, . . . , dp is the signed degree sequence of a signed graph G, then
−σ : −d1,−d2, . . . ,−dp is the signed degree sequence of the signed graph G′ obtained from G
by interchanging positive edges with negative edges.

The most important result in Chartrand et al. [2] is the following necessary and sufficient
condition under which an integral sequence is s-graphical.

Theorem 2. A standard integral sequence σ : d1, d2, . . . , dp is s-graphical if and only if

σ′: d2 − 1, . . . , dd1+s+1 − 1, dd1+s+2, . . . , dp−s, dp−s+1 + 1, . . . , dp + 1

is s-graphical for some s, 0 ≤ s ≤ (p− 1− d1)/2.

Note that Hakimi's theorem for degree sequence is the particular case s = 0 of Theorem 2. This
leads to an efficient algorithm for recognizing the degree sequence of a graph. However, the wide
degree of latitude for choosing s in Theorem 2 makes it harder to devise an efficient algorithmic
implementation. Chartrand et al. conjectured that Theorem 2 is also true for signed degree
sequences if s = 0. This is not an unreasonable proposition since signed degree sequences are
closely related to degree sequences. For instance, one can make the following correspondence
between signed degree sequences and degree sequences. Suppose G = (V,E) is a complete
signed graph. Consider the graph G′ = (V,E′) for which E′ = {uv : uv+ ∈ E}. Then
degG′(u) = (|V | + sdegG(u) − 1)/2 for all u ∈ V . So an integral sequence σ : d1, d2, . . . , dp
is the signed degree sequence of a complete signed graph if and only if σ′ : (p+ d1 − 1)/2, (p+
d2 − 1)/2, . . . , (p+ dp − 1)/2 is the degree sequence of a graph.

However, the following is a counterexample to the conjecture of Chartrand et al. Let G be the
signed graph in Figure 1. An edge is negative if and only if it is a thick segment. The signed
degree sequence of G is 4, 4, 4, 4, 4, 4,−4,−4,−4. On the other hand, sequential application of
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FIGURE 1. A signed graph G of 9 vertices.

Hakimi's procedure and standardization leads to the following list.

σ1: 4, 4, 4, 4, 4, 4,−4,−4,−4;
σ′1: 3, 3, 3, 3, 4,−4,−4,−4;
σ2: 4, 3, 3, 3, 3,−4,−4,−4;
σ′2: 2, 2, 2, 2,−4,−4,−4;
σ3: 4, 4, 4,−2,−2,−2,−2;
σ′3: 3, 3,−3,−3,−2,−2;
σ4: 3, 3,−2,−2,−3,−3;
σ′4: 2,−3,−3,−3,−3;
σ5: 3, 3, 3, 3,−2;
σ′5: 2, 2, 2,−2;
σ6: 2, 2, 2,−2;
σ′6: 1, 1,−2;
σ7: 2,−1,−1;
σ′7: −2,−2.

Note that σ′7 is not a signed degree sequence.
The following theorem provides a good candidate for parameter s in Theorem 2. It leads to a

polynomial-time algorithm for recognizing signed degree sequences.

Theorem 3. A standard integral sequence σ : d1, d2, . . . , dp is s-graphical if and only if

σ′m: d2 − 1, . . . , dd1+m+1 − 1, dd1+m+2, . . . , dp−m, dp−m+1 + 1, . . . , dp + 1

is s-graphical, where m is the maximum non-negative integer such that dd1+m+1 > dp−m+1.

Proof. Suppose σ is the signed degree sequence of a signed graph G = (V,E) with V =
{v1, v2, . . . , vp} and sdeg(vi) = di for 1 ≤ i ≤ p. For each s, 0 ≤ s ≤ (p− 1− d1)/2, consider
the sequence

σ′s: d2 − 1, . . . , dd1+s+1 − 1, dd1+s+2, . . . , dp−s, dp−s+1 + 1, . . . , dp + 1.

By Theorem 2, σ′s is s-graphical for some s. We may choose s such that |s −m| is minimum.
Suppose G′ = (V ′, E′) is a signed graph with V ′ = {v2, v3, . . . , vp} whose signed degree
sequence is σ′s.
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If s < m, then da > db by the choice of m, where a = d1 + s + 2 and b = p − s. Since
da > db, there exists some vertex vk of G′ different from va and vb that satisfies one of the
following conditions:

(1) vav
+
k is a positive edge and vbv

−
k is a negative edge.

(2) vav
+
k is a positive edge and vb is not adjacent to vk.

(3) va is not adjacent to vk and vbv
−
k is a negative edge.

For (1), remove vav
+
k and vbv

−
k from G′; for (2), remove vav

+
k from G′ and add a new positive

edge vbv
+
k to G′; for (3), remove vbv

−
k from G′ and add a new negative edge vav

−
k to G′. These

modifications result in a signed graphG′′ whose signed degree sequence is σ′s+1. This contradicts
the minimality of |s−m|.

If s > m, then dd1+s+1 = dp−s+1 and so dd1+s+1 − 1 < dp−s+1 + 1. An argument similar
to that above leads to a contradiction in the choice of s. Therefore, s = m and σ′m is s-graphical.

Conversely, suppose σ′m is the signed degree sequence of a signed graph G′ = (V ′, E′) in
which V ′ = {v2, v3, . . . , vp}. If G is the signed graph obtained from G′ by adding a new vertex
v1 and new positive edges v1v

+
i for 2 ≤ i ≤ d1 + m + 1, and new negative edges v1v

−
j for

p−m+ 1 ≤ j ≤ p, then σ is the signed degree sequence of G.

3. SIGNED TREES

In this section, we study the signed degree sequences of signed trees. We give characterizations
of integral sequences that are signed degree sequences of signed trees.

To give necessary conditions for the signed degree sequence of a signed tree, we in fact
establish properties for general signed graphs in Lemmas 4 to 6. For Lemmas 4 to 6, we assume
that G = (V,E) is a signed graph of p vertices and q edges. We use q+ and q− to denote
respectively the numbers of positive edges and negative edges of G. We also use p+, p0, and p−
to denote respectively the numbers of vertices with positive, zero, and negative signed degrees.

Lemma 4. (Chartrand et al.). If G = (V,E) is a signed graph, then k =
∑
v∈V sdeg(v) ≡

2q (mod 4), q+ = 1
4 (2q + k), and q− = 1

4 (2q − k).

Lemma 5. For any signed graph G = (V,E) without isolated vertices,
∑
v∈V |sdeg(v)| +

2p0 ≤ 2q.

Proof. First, each |sdeg(v)| = |deg+(v) − deg−(v)| ≤ deg+(v) + deg−(v). Since G has
no isolated vertices, 2 ≤ deg+(v) + deg−(v) when sdeg(v) = 0. Therefore,∑

v∈V
|sdeg(v)|+ 2p0 ≤

∑
v∈V

(deg+(v) + deg−(v)) = 2q+ + 2q− = 2q.

Lemma 6. For any connected signed graph G = (V,E),
∑
v∈V |sdeg(v)| + 2

∑
sdeg(v)<0

|sdeg(v)| ≤ 6q + 4− 4δ − 4p+ − 4p0, where δ = 1 if p+p− > 0 and δ = 0 otherwise.

Proof. Consider the subgraphG′ = (V ′, E′) ofG induced by those edges incident to vertices
with non-negative signed degrees. We have∑
sdeg(v)>0

|sdeg(v)| ≤ 2(number of positive edges in G′)

− (number of negative edges in G′) ≤ 3q+ − |E′|.
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SinceG is connected, each component ofG′ contains at least one vertex of negative signed degree
except for the case of G′ = G. Therefore, p+ + p0 − 1 + δ ≤ |E′|. And so,∑

sdeg(v)>0

|sdeg(v)|+ p+ + p0 − 1 + δ ≤ 3q+ = 3

(
1
2
q +

1
4

∑
v∈V

sdeg(v)

)
.

Therefore ∑
v∈V
|sdeg(v)|+ 2

∑
sdeg(v)<0

|sdeg(v)| ≤ 6q + 4− 4δ − 4p+ − 4p0.

Theorem 7. Suppose σ : d1, d2, . . . , dp is an integral sequence of p ≥ 2 terms. Suppose σ
has p+ positive terms, p0 zero terms, and p− negative terms. Let δ = 1 if p+p− > 0 and δ = 0
otherwise. Then σ is the signed degree sequence of a signed tree if and only if (T1) to (T4) hold.

(T1)
∑p
i=1 di ≡ 2p− 2(mod 4).

(T2)
∑p
i=1 |di| ≤ 2p− 2− 2p0.

(T3)
∑p
i=1 |di|+ 2

∑
di<0 |di| ≤ 2p− 2− 4δ + 4p−.

(T4)
∑p
i=1 |di|+ 2

∑
di>0 |di| ≤ 2p− 2− 4δ + 4p+.

Proof. Note that Condition (T4) for σ is the same as Condition (T3) for −σ. The necessity
of the theorem follows from the fact that q = p− 1, and Lemmas 4 to 6.

We shall prove the sufficiency by induction on p. For p = 2, by (T1) and (T2), d1 = d2 = 1 or
−1. So σ is the signed degree sequence of K2 with a positive edge or a negative edge. Suppose
the theorem is true for p− 1. Now consider the case of p ≥ 3.

By (T2), σ has at least two terms in which |di| = 1. After rearranging the terms in σ or taking
−σ, we may assume without loss of generality that dp = 1 and one of the following holds.

(1) |di| ≤ 1 for 1 ≤ i ≤ p, d1 ≥ 0, and d1 = 0 if p0 > 0.
(2) d1 ≥ 2.
(3) di ≤ 1 but di /= −1 for 1 ≤ i ≤ p and d1 = 0 and δ = 1.
(4) di = 1 or di ≤ −2 for 1 ≤ i ≤ p and d1 = δ = 1.

For any of the above, we consider the sequence σ′ : d′1, d
′
2, . . . , d

′
p′ , where p′ = p − 1 and

d′1 = d1 − 1 and d′i = di for 2 ≤ i ≤ p− 1.

Note that
∑p′

i=1 d
′
i = (

∑p
i=1 di) − 2 ≡ (2p − 2) − 2 ≡ 2p′ − 2 (mod 4), i.e., (T1) holds for

σ′. We shall check Conditions (T2) to (T4) for σ′ according to the four cases above.
Case 1. |di| ≤ 1 for 1 ≤ i ≤ p, d1 ≥ 0, and d1 = 0 if p0 > 0. In this case, since |d′i| ≤ 1

for 1 ≤ i ≤ p− 1, we have

p′∑
i=1

|d′i| = p′+ + p′−,
∑
d′
i
>0

|d′i| = p′+,
∑
d′
i
<0

|d′i| = p′−.

Thus, (T2) to (T4) hold for σ′ as p′+ + p′− ≥ 2.
Case 2. d1 ≥ 2. In this case, since d1 ≥ 2 and dp = 1, we have

p′ = p− 1, p′+ = p+ − 1, p′0 = p0, p
′
− = p−, δ′ = δ,

p′∑
i=1

|d′i| =
p∑
i=1

|di| − 2,
∑
d′
i
>0

|d′i| =
∑
di>0

|di| − 2,
∑
d′
i
<0

|d′i| =
∑
di<0

|di|.
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(T2) to (T4) for σ imply that (T2) to (T4) for σ′ hold.
Case 3. di ≤ 1 but di /= −1 for 1 ≤ i ≤ p and d1 = 0 and δ = 1. In this case, since d1 = 0

and dp = 1, we have

p′ = p− 1, p′+ = p+ − 1, p′0 = p0 − 1, p′− = p− + 1, δ′ ≤ δ,

p′∑
i=1

|d′i| =
p∑
i=1

|di|,
∑
d′
i
>0

|d′i| =
∑
di>0

|di| − 1,
∑
d′
i
<0

|d′i| =
∑
di<0

|di|+ 1.

(T2) and (T3) for σ imply that (T2) and (T3) for σ′ hold. Since d′i ≤ 1 for 1 ≤ i ≤ p −
1,
∑
d′
i
>0 |d′i| = p′+. By (T3) for σ and the fact that di ≤ −2 when di < 0,

p+ + 6p− ≤
p∑
i=1

|di|+ 2
∑
di<0

|di| ≤ 2p− 2− 4δ + 4p− = 2p+ + 2p0 + 6p− − 6

and so 6 ≤ p+ + 2p0. Therefore, 3 ≤ p′+ + 2p′0 and then 4 ≤ 2p′+ + 2p′0. This together with
(T2) for σ′ and

∑
d′
i
>0 |d′i| = p′+ implies (T4) for σ′.

Case 4. di = 1 or di ≤ −2 for 1 ≤ i ≤ p and d1 = δ = 1. In this case, since d1 = dp = 1,
we have

p′ = p− 1, p′+ = p+ − 2, p′0 = p0 + 1 = 1, p′− = p−, δ′ ≤ δ,
p′∑
i=1

|d′i| =
p∑
i=1

|di| − 2,
∑
d′
i
>0

|d′i| =
∑
di>0

|di| − 2,
∑
d′
i
<0

|d′i| =
∑
di<0

|di|.

(T3) for σ implies that (T3) for σ′ holds. As in the argument for Case 3, we have
∑
d′
i
>0 |d′i| = p′+

and 6 ≤ p+ + 2p0. Therefore, 4 ≤ p′+. Adding 2
∑
d′
i
>0 |d′i| = 2p′+ to the equality in (T3)

for σ′ and dividing the resulting equality by 3, we get (T2) for σ′ as 2p′0 ≤ 2p′+. Adding
2
∑
d′
i
>0 |d′i| = 2p′+ to the equality in (T2) for σ′, we get (T4) for σ′ as 4δ′ ≤ 2p′0 + 2p′+.

From the above discussions, σ′ satisfies (T1) to (T4). By the induction hypothesis, there exists
a signed tree T ′ with the vertex set {v1, v2, . . . , vp−1} and sdegT ′(vi) = d′i for 1 ≤ i ≤ p − 1.
Suppose T is the signed tree obtained from T ′ by adding a new vertex vp and a new positive edge
v1v

+
p , then T has signed degree sequence σ.

Corollary 8. Suppose σ : d1, d2, . . . , dp is an integral sequence of p ≥ 3 terms. Suppose σ
has at least two terms in which |di| = 1, dp = 1, and one of the following conditions holds:

(1) |di| ≤ 1 for 1 ≤ i ≤ p, d1 ≥ 0, and d1 = 0 if p0 > 0.

(2) d1 ≥ 2.

(3) di ≤ 1 but di /= −1 for 1 ≤ i ≤ p and d1 = 0 and δ = 1.

(4) di = 1 or di ≤ −2 for 1 ≤ i ≤ p and d1 = δ = 1.

Then σ is the signed degree sequence of a signed tree if and only if σ′ : d1 − 1, d2, . . . , dp−1 is
the signed degree sequence of a signed tree.
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4. CONCLUDING REMARKS

The main results of this paper are conditions under which an integral sequence is the signed degree
sequence of a signed graph or a signed tree. We can also get results for signed graphs with loops
or multiple edges.

In the proofs of the following theorems, for any integer k, by ‘‘k copies of vivj’’ we mean
‘‘k copies of positive edges viv

+
j ’’ when k > 0, ‘‘no edges’’ when k = 0, and ‘‘−k copies of

negative edges viv
−
j ’’ when k < 0.

Theorem 9. An integral sequence d1, d2, . . . , dp is the signed degree sequence of a signed
graph with loops if and only if

∑p
i=1 di is even.

Proof. The necessity follows from Lemma 4, the sufficiency from the observation that since∑p
i=1 di is even, the number of odd terms is even. Say di = 2ei + 1 for 1 ≤ i ≤ 2k and di = 2ei

for 2k + 1 ≤ i ≤ p. Then d1, d2, . . . , dp is the signed degree sequence of the signed graph with
vertex set {v1, v2, . . . , vp} and edge set

{viv+
i+k: 1 ≤ i ≤ k} ∪ {ei copies vivi: 1 ≤ i ≤ p}.

Theorem 10. For p ≥ 3, an integral sequence d1, d2, . . . , dp is the signed degree sequence of
a signed graph with multiple edges if and only if

∑p
i=1 di is even.

Proof. The necessity follows from Lemma 4, the sufficiency from the observation that since∑p
i=1 di is even, d1, d2, . . . , dp is the signed degree sequence of the signed graph with vertex set

{v1, v2, . . . , vp} and edge set{
−d3 +

1
2

p∑
i=1

di copies of v1v2

}

∪
{
d2 + d3 − 1

2

p∑
i=1

di copies of v2v3

}

∪
{
d1 + d3 − 1

2

p∑
i=1

di copies of v1v3

}
∪{di copies of v3vi: 4 ≤ i ≤ p} .
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