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ABSTRACT
Cherries are fruits containing fiber and bioactive compounds (e.g., polyphenolics) with
the potential of helping patients with diabetes and weight disorders, a phenomenon
likely related to changes in the complex host-microbiota milieu. The objective of this
study was to investigate the effect of cherry supplementation on the gut bacterial
composition, concentrations of caecal short-chain fatty acids (SCFAs) and biomarkers
of gut health using an in vivomodel of obesity. Obese diabetic (db/db) mice received a
supplemented diet with 10% cherry powder (supplemented mice, n= 12) for 12 weeks;
obese (n= 10) and lean (n= 10) mice served as controls and received a standard diet
without cherry. High-throughput sequencing of the 16S rRNA gene and quantitative
real-time PCR (qPCR) were used to analyze the gut microbiota; SCFAs and biomarkers
of gut health were also measured using standard techniques. According to 16S
sequencing, supplemented mice harbored a distinct colonic microbiota characterized
by a higher abundance of mucin-degraders (i.e., Akkermansia) and fiber-degraders
(the S24-7 family) as well as lower abundances of Lactobacillus and Enterobacteriaceae.
Overall this particular cherry-associated colonic microbiota did not resemble the
microbiota in obese or lean controls based on the analysis of weighted and unweighted
UniFrac distance metrics. qPCR confirmed some of the results observed in sequencing,
thus supporting the notion that cherry supplementation can change the colonic micro-
biota. Moreover, the SCFAs detected in supplementedmice (caproate, methyl butyrate,
propionate, acetate and valerate) exceeded those concentrations detected in obese
and lean controls except for butyrate. Despite the changes in microbial composition
and SCFAs, most of the assessed biomarkers of inflammation, oxidative stress, and
intestinal health in colon tissues and mucosal cells were similar in all obese mice with
and without supplementation. This paper shows that dietary supplementation with
cherry powder for 12 weeks affects the microbiota and the concentrations of SCFAs
in the lower intestinal tract of obese db/db diabetic mice. These effects occurred in
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absence of differences in most biomarkers of inflammation and other parameters of
gut health. Our study prompts more research into the potential clinical implications of
cherry consumption as a dietary supplement in diabetic and obese human patients.

Subjects Biochemistry, Microbiology, Molecular Biology, Diabetes and Endocrinology, Gastroen-
terology and Hepatology
Keywords Microbiota, Diabetes, Akkermansia, Obesity, 16S sequencing, Gut health

INTRODUCTION
The digestive tract of humans and other animals has coevolved over millions of years with
a complex assemblage of many different types of microorganisms (gut microbiota). This
coevolution has brought benefits to both forms of life, with the latter sustaining life in the
former by helping regulate digestion of nutrients, behavior and the activity of the immune
system (Conlon & Bird, 2014). Importantly, some bacterial groups in the gastrointestinal
tract have become specialized at surviving upon host-derived compounds (De Vos, 2017),
while other groups are believed to be more dependent on dietary-derived compounds.

The membership of the gut microbiota (both at the mucus layer and in the lumen) is
relatively constant overtime and resilient to change. However, this complex host-microbial
ecosystem can also experience extensive variability (both over time within an individual
or among different individuals) depending on a variety of factors including the age of the
host, dietary patterns, body weight and physical activity. Expectably, diet has strong effects
on different aspects of health (Palmer et al., 2017; Dahan, Segal & Shoenfeld, 2017) and a
growing group of researchers have demonstrated that these effects are partly mediated by
a change in the composition and/or the metabolic activity of the gut microbiota (Noratto
et al., 2014; Garcia-Mazcorro, Mills & Noratto, 2016a; Garcia-Mazcorro et al., 2016b; Wu et
al., 2011). Although there is still a lot of room for understanding and most studies have
only analyzed the fecal microbiota, we now know that dietary modifications can change
the composition and activity of the gut microbiota which in turn may promote wellbeing
in the host (Sheflin et al., 2016; Velly, Britton & Preidis, 2016).

Each type of food contain a specific blend of nutrients and other bioactive compounds
that can be considered as part of medical strategies to help patients suffering with certain
health disorders. Useful examples of these health disorders are obesity, diabetes and
associated metabolic conditions (Via & Mechanick, 2016), which can be partly treated
using foods with more fiber and/or chemical compounds such polyphenols and other
anti-oxidants (Pérez-Jiménez et al., 2010). These bioactive compounds (i.e., anti-oxidants)
have beneficial effects on health and growing evidence suggest that these effects are partly
mediated by changes in the gut microbiota (Noratto et al., 2014; Rowland et al., 2017;
Henning et al., 2017). The benefits of studying this topic are wide and include a better
understanding of mechanisms of action thus widening the potential of certain foods to
treat specific health disorders.

Cherries are fruits containing bioactive compounds with beneficial properties on
human and animal health. Some well-studied cherries compounds include polyphenolics,
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carotenoids, and tocopherols (Budak, 2017; Mikulic-Petkovsek et al., 2016; Redondo et
al., 2017). Polyphenolics can influence health because of their anti-oxidative, anti-
inflammatory, anti-mutagenic and anti-carcinogenic properties (Panche, Diwan &
Chandra, 2016). Despite the evidence in laboratory animals showing a potential of cherries
to help patients with weight disorders (Wu et al., 2014; Song et al., 2016; Wu et al., 2016),
and the likely involvement of the gut microbiota in this phenomenon (Faria et al., 2014), to
our knowledge there are no studies that have investigated the effect of cherry consumption
on the gut microbiota using obesity models. Therefore, the objective of this study was
to investigate the effect of cherry supplementation on the gut microbiota, SCFAs and
biomarkers of gut health using an in vivo rodent model of obesity.

MATERIAL AND METHODS
Study design
The experimental analyses carried out in thismanuscript were approved by the Institutional
Animal Care and Use Committee at Texas A&M University (IACUC 2013-0149). Two
diets were utilized in this study, one with and one without supplementation with
dark sweet cherry (Prunus avium) powder (Table 1 and Table S1). Both diets were
adjusted to contain the same amount of energy (Table 1). Leptin receptor-deficient obese
db/db mice (BKS.Cg-+Leprdb/+Leprdb/OlaHsd—fat, black, homozygous) received a diet
without cherry supplementation (obese control, n= 15) and with 10% cherry powder
supplementation (n= 15). Lean mice (BKS.Cg-Dock7m+/+Leprdb/OlaHsd—lean, black,
heterozygous, n= 10) were used as lean controls and fed a standard diet (i.e., without cherry
supplementation, Table 1). All mice were purchased from Envigo RMS, Inc. (Houston, TX,
USA). Agar based diets were prepared with AIN-93G diet ingredients as reported in detail
elsewhere (Noratto, Chew & Ivanov, 2016). The election of an agar-based diet allowed
fulfilling the food and part of the water requirement of mice and preserved bioactive
compounds in cherry because of the physical properties of agar that remains liquid at
40−45 ◦C. Food and water were provided ad libitum every day for 12 weeks. Food intake
and waste were daily recorded. Body weight was recorded once a week and body mass
indexes (BMIs) were calculated by dividing body weight (kg) by body length (m2) at the
end of the study (Jeyakumar, Vajreswari & Giridharan, 2006).

Blood and tissue collection
Mice were terminated at week 12 after∼12 h fasting by gradual exposure to CO2 inhalation
until the animal became unconscious, followed by cervical dislocation. Blood obtained by
cardiac puncture was collected into a tube containing 10 µL of heparin and centrifuged at
10,000 rpm at 4 ◦C to obtain blood plasma. Blood plasma samples were aliquoted and frozen
at−80 ◦C until analysis. The transverse colon was removed and divided into three sections;
one section was fixed in 10% neutral formalin buffer overnight and maintained in 70%
ethanol at 4 ◦C for histological analysis of wall layer thickness (see below) while the other
two sections were cleaned from intestinal content with 100 mM phosphate buffer solution
(PBS, pH = 7) and either kept in RNA later R© (Applied Biosystems, Foster City, CA, USA)
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Table 1 Diets utilized in this study without cherry supplementation (control) and with 10% cherry
supplementation.

Control Cherry 10%

Ingredient Weight (g) Kcal Weight (g) Kcal

Casein 100 400 100 400
Maltodextrin 66 264 66 264
Sucrose 50 200 50 200
Cellulose 25 0 25 0
Mineral Mixa 17.5 0 17.5 0
Vitamin Mixb 5 0 5 0
L-Cysteine 1.5 6 1.5 6
Choline Bitartrate 1.25 0 1.25 0
t-Butylhydroquinone 0.007 0 0.007 0
Cornstarch 198.75 795 98.75 395
Soybean Oil 35 315 35 315
Cherry powderc 0 0 100 400
Agar 20 0 20 0
Water 480 0 480 0
Total 1,000 1,980 1,000 1,980

Notes.
aAIN-93G-MX supplied by Dyets Inc. (Bethlehem, PA, USA), containing (g/kg): Calcium Carbonate (357), Potassium Phos-
phate, monobasic (196), Potassium Citrate .H20 (70.78), Sodium Chloride (74), Potassium Sulfate (46.6), Magnesium Oxide
(24), Ferric Citrate, U.S.P. (6.06), Zinc Carbonate (1.65), Manganous Carbonate (0.63), Cupric Carbonate (0.3), Potassium
Iodate (0.01), Sodium Selenate (0.01025), Ammonium Paramolybdate .4H20 (0.00795), SodiumMetasilicate .9H20 (1.45),
Chromium Potassium Sulfate .12H20 (0.275), Lithium Chloride (0.0174), Boric Acid (0.0815), Sodium Fluoride (0.0635),
Nickel Carbonate (0.0318), Ammonium Vanadate (0.0066), Sucrose, finely powdered (221.026).

bAIN-93G Vitamin Mix supplied by Dyets Inc. (Bethlehem, PA, USA), containing (g/kg): Niacin (3), Calcium Pantothenate
(1.6), Pyridoxine HCl (0.7), Thiamine HCl (0.6), Riboflavin (0.6), Folic Acid (0.2), Biotin (0.02), Vitamin E Acetate (500
IU/g) (15), Vitamin B12 (0.1%) (2.5), Vitamin A Palmitate (500,000 IU/g) (0.8), Vitamin D3 (400,000 IU/g) (0.25), Vitamin
K1/Dextrose Mix (10 mg/g) (7.5), Sucrose (967.23).

cCherry powder contributed with 5.1 g fiber/kg diet and 759 mg GAE/100 g of total phenolics (629 mg GAE/100 g extractable
and 130 mg GAE/100 g non-extractable or bound phenolics). Cherry powder was processed by Powder Pure (The Dalles, OR,
USA) and contains 80% dark sweet cherry puree (Bing variety), 20% organic rice maltodextrin and 2% silicon dioxide.

or subjected to scraping the mucosa off and kept in RNA later R© (named colonic mucosal
cells). Samples maintained in RNA later R© were stored at −80 ◦C for further analysis.

Bioactive compounds in cherry powder
Dietary fiber was quantified by Retch laboratories (Arden Hills, MN, USA) following
standard analytical protocols. Total extractable phenolics were extracted as previously
reported (Condezo-Hoyos, Mohanty & Noratto, 2014). Briefly, cherry powder (0.5 g) was
homogenized with 3 mL acidic methanol (HCl)/water solution (50:50 v/v, pH 2) and
left for 1 h at room temperature and constant shaking, followed by centrifugation at
4,000× g for 10 min at 4 ◦C to obtain the acid methanolic extract in the supernatant. The
precipitate was extracted with 3 mL of acetone/water solution (70:30 v/v) (1:5 ratio, v/v)
by agitation for 1 h at room temperature, followed by centrifugation at 4,000× g for 10
min at 4 ◦C to obtain the acetone extract in the supernatant. The combined supernatants
were analyzed for total extractable phenolics by Folin Ciocalteu method (Condezo-Hoyos,
Mohanty & Noratto, 2014), using a standard curve of gallic acid (0 to 0.2 mg/mL) and
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expressed as gallic acid equivalents (GAE). The residues were subjected to alkali treatment
for extraction of non-extractable or bound phenolics as reported (Luo et al., 2016). Briefly,
3 mL of NaOH (4 M) were added to residues after extractable phenolics were recovered
and maintained in agitation for 2 h under nitrogen atmosphere in a screw capped vial,
followed by centrifugation at 4,000× g for 10 min at 4 ◦C. The recovered supernatant was
adjusted to pH 2 with HCl (6 M) and analyzed for non-extractable bound phenolics using
the Folin Ciocalteu method (Condezo-Hoyos, Mohanty & Noratto, 2014).

DNA extraction
Colon content and colonic mucosal samples scrapped from terminal colon were collected
from all mice at the end of the study and used to purify total genomic DNA using a
commercial DNA extraction kit (Zymo Research Corp, Irvine, CA, USA). DNA samples
were adjusted to 5 ng/µL and used for two different analyses (high-throughput 16S
sequencing and qPCR analyses).

High-throughput 16S sequencing for colonic microbiota
DNA samples extracted from terminal colon contents were used to amplify a
small (∼300 bp) fragment of the 16S rRNA gene using the primers F515 (5′–
GTGCCAGCMGCCGCGGTAA–3′) and R806 (5′–GGACTACHVGGGTWTCTAAT–3′)
for further high-throughput sequencing as shown elsewhere (Garcia-Mazcorro, Mills &
Noratto, 2016a). PCR reactions and 16S sequencing were performed at the Molecular
Research LP (MRDNA, Shallowater, Texas USA). The MiSeq instrument (Illumina)
was used for sequencing the 16S amplicons following the manufacturer’s instructions
at MRDNA. This technology has been used in several studies and is recommended by
the Earth Microbiome Project (Caporaso et al., 2012). Raw 16S data was obtained from
MRDNA and analyzed using the freely available bioinformatics pipeline QIIME v.1.8 with
default parameters. MRDNA conveniently provides users with files containing joined
reads (full.fasta and full.qual files). These files were combined in one single fastq file using
QIIME. The resulting fastq file was then used to split sample libraries accordingly to the 8
nucleotide barcodes using the split_libraries_fastq.py in QIIME. Operational Taxonomic
Units (OTUs) are operational definitions used to classify 16S rRNA gene sequences from
related and unrelated microorganisms and there is debate regarding the best approach to
select OTUs from 16S sequences (He et al., 2015). In this study we used two approaches to
select OTUs. First, we used an open reference algorithm (Rideout et al., 2014), which has
the advantage of not discarding sequences that do not match the sequence database. The
OTU table generated by this approach was used for all diversity and taxonomic analyses.
Second, we used a closed reference approach where sequences are discarded if they do
not have a close match with the reference sequences. The OTU table generated using this
closed approach was used for predicting functional profiles using PICRUSt (see Prediction
of metabolic profile below). In this study we used the v. 13_5 of the GreenGenes OTU
representative 16S rRNA sequences as the reference sequence collection (DeSantis et al.,
2006). The phylogenetic method UniFrac (Unique Fraction metric, Lozupone & Knight,
2005) was used to investigate differences in microbial communities. Please note that it
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is important to investigate both quantitative (weighted) and qualitative (unweighted)
UniFrac diversity measures because they can lead to different insights into the factors
responsible for structuring microbial communities as shown elsewhere (Lozupone et al.,
2007). All sequence data and associated metadata was uploaded into the Sequence Read
Archive at NCBI (SRP117747).

qPCR for colonic microbiota and for colonic mucosal samples
Unlike high-throughput sequencing (which in this study was only used to analyze the
microbiota in colon contents), DNA samples from both colon contents and from colon
mucosal samples were used to perform quantitative real-time PCR (qPCR) using primers
targeting the 16S rRNA genes for specific groups ofmicroorganisms (Table S2) based on the
Gut Low-Density Array (GULDA, Bergström et al., 2012) approach and other publications
(Garcia-Mazcorro et al., 2012; Noratto et al., 2014; Yang et al., 2015). All qPCR reactions
were carried out at Texas A&MUniversity using the describedmethodology by Bergström et
al. (2012)withmodifications. Briefly, in this study all assays were ran using a standard curve
and these standard curves were constructed using different concentrations of DNA from
either the specific microorganisms (Bacteroides fragilis, Lactobacillus plantarum NRRL
No B-4496, E. coli NRRL No B-766) or from samples containing high amounts of the
desired organism (e.g., a standard curve for Ruminococcaceae was constructed using serial
dilutions of a sample with high amounts of Ruminococcaceae DNA as determined by
qPCR). DNA samples were adjusted to 5 ng/µL. qPCR data is expressed as log amount of
DNA (picograms of amplified DNA) for each bacterial group per 10 ng of total DNA (Bell
et al., 2014).

Prediction of metabolic profile
Phylogenetic investigation of communities by reconstruction of unobserved states
(PICRUSt, Langille et al., 2013) was used to predict the metabolic profile based on 16S
sequencing data. For this analysis, we used the OTU table obtained from the closed
reference approach described above. PICRUSt results were visualized and analyzed using
STAMP (Parks & Beiko, 2010) with default parameters. PICRUSt analysis was performed
using the OTU table containing all taxa (full OTU table) and also using filtered OTU tables
containing a subset of taxa to explore contributions of different taxa separately.

Short-chain fatty acids (SCFA) analysis
Caecal contents were homogenized with MilliQ water in a proportion of 1:1.5
(weight:volume) and centrifuged at 12,000 g for 10 min. Supernatants were then filtered
through a 0.45 µm Nylon filter (VWR R© Syringe Filters; VWR, Houston, TX, USA)
and analyzed by high-performance liquid chromatography (HPLC) as reported in detail
elsewhere (Campos et al., 2012; Garcia-Mazcorro, Mills & Noratto, 2016a). Butyric acid,
methyl-butyric acid, caproic acid, sodium acetate, sodium propionate, and valeric acid
were purchased from VWR and used as standards to quantify their caecal contents based
on retention time and area of peaks at λ= 220 nm.
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Histological analyses of colon tissue sections
Paraffin-embedded colon tissues were transversally cut (5 µm thickness) and stained with
H&E for microscopic analysis. The thickness of outer colon wall layer was calculated in
ImageJ (http://rsb.info.nih.gov/ij/) using 10 measurements (ratio of outer colon wall area
to total (outer and inner) colon wall area) from each individual mouse. Photomicrographs
were taken with Aperio CS2 digital pathology scanner (Leica Biosystems Inc, Buffalo Grove,
IL, USA) and blinded analyzed with regards to treatment group.

Endotoxin levels in caecal contents and plasma
Caecal contents and blood plasma were subjected to endotoxin analysis using the Endpoint
Chromogenic LAL Assay following the manufacturer’s protocol (Lonza Walkersville, Inc.,
Walkersville, MD, USA). Briefly, caecal contents were weighted, suspended in milliQ water
(1:1.5, w:v), centrifuged at 12,000 g for 10 min and supernatants transferred to a glass
vial for endotoxins quantification. Endotoxin units (EU) were calculated as EU/mg caecal
content.

mRNA levels in colonic tissue and mucosal cells
Biomarkers of inflammation, cellular stress, and gut barrier function were analyzed in
colonic tissue andmucosal cells. Briefly, tissues or scrappedmucosal cells weremechanically
pulverized in liquid nitrogen. RNA was extracted using TRIzol R© LS Reagent (Life
technologies, Carlsbad, CA, USA) according to the manufacturer’s protocol. Purification
was carried out with Direct-zolTM RNA MiniPrep (Zymo Research Corp, Irvine, CA,
USA) according to the manufacturer’s protocol. Quantification of mRNA was performed
using the ND-1000 spectrophotometer (Nanodrop Technologies, Rockland, DE, USA).
Purified mRNAwas used to synthesize cDNA using iScriptTM cDNA Synthesis Kit (BioRad,
Hercules, CA, USA). Quantitative real-time polymerase chain reaction (qRT-PCR) was
carried out with the SsoAdvancedTM Universal SYBR R© Green Supermix (BioRad, Hercules,
CA, USA) on a CFX384 Touch Real-Time PCR Detection System (BioRad, Hercules, CA,
USA). The reaction volume was 10 µL and all primers were used at a final concentration
of 100 nmol/L. The RT-PCR data was analyzed by the 2-11CT method in reference to
ribosomal protein L19 (RPL19) as housekeeping gene (Schmittgen & Livak, 2008). Primers
were purchased from Integrated DNA Technologies, Inc. (San Diego, CA, USA; Table S3).
Product specificity was examined by dissociation curve analysis.

Statistical analysis
Relative abundances of taxa based on sequencing data, mRNA expression, and qPCR data
were compared using the non-parametric Kruskal–Wallis test and multiple comparisons
were adjusted using Bonferroni in PAST (Hammer, Harper & Ryan, 2001). PAST was also
used to perform Principal Coordinate Analysis (PCoA) using the weighted and unweighted
UniFrac distance matrices obtained from QIIME. The Kruskal-Wallis test was also used
for comparison of predicted functional features in STAMP (Parks & Beiko, 2010). The
non-parametric ANOSIM and Adonis tests were performed for determining whether the
grouping of samples by a given category is statistically significant in QIIME. Spearman’s
correlations matrices featuring data from sequencing analyses, SCFAs, and mRNA levels
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in colonic mucosal cells identified by Kruskal-Wallis test as significant (p< 0.05), were
performed using R studio 3.4.0. SCFAs were compared using the Mann Whitney test when
comparing only two treatment groups due to lack of detectable values in one group.

RESULTS
Cherry powder contributed with phenolics and dietary fiber as bioactive compounds
that might reach the lower intestinal tract because of their low bioavailability and most
likely modulate microbial populations in the large intestine. Cherry powder had 5.1%
fiber and 759 mg GAE/100 g of total phenolics (Table 1). A recent study has thoroughly
analyzed the profile of phenolics in dark sweet cherry varieties using mass spectrometry and
reported approximately 86 compounds including phenolics, anthocyanins, flavan-3-ols
and flavonols (Martini, Conte & Tagliazucchi, 2017).

Host physiology
Several obese animals died for reasons unrelated to the study (five animals from obese
control group, three animals from cherry group), all other mice remained visually healthy
throughout the study. Body weight, BMIs, the percentage of adiposity, epidydimal and
mesenteric fat as well as liver weight were similar in all obese mice (with and without
cherry supplementation) and significantly higher compared to lean controls (Table S4).
The weight of cecum contents was significantly higher in cherry supplemented mice (314
mg, 198–439 mg, median and interquartile ranges respectively) compared to lean (128
mg, 93–152 mg) and obese controls (191 mg, 104–234 mg) (p= 0.003, Table S4), in part
reflecting the higher amount of fiber in the cherry-supplemented diet (Table 1).

High-throughput 16S sequencing for colonic microbiota
High-throughput 16S sequencing allows a deep analysis of complexmicrobial communities
such as the gut microbiota. In this study, the split libraries script yielded a total of 3,171,568
good-quality 16S sequences for analysis (n= 32 across all treatment groups, median
sequence length: 300 nucleotides). The number of sequences per sample varied from
61,284 (lowest) to 142,829 (highest). All analyses were performed using a rarefaction depth
of 61,000 sequences per sample.

Overall the colonic microbiota was dominated by six main taxa at the order
level representing four phyla: Bacteroidales (phylum Bacteroidetes), Clostridiales and
Lactobacillales (phylum Firmicutes), Verrucomicrobiales (phylum Verrucomicrobia),
Desulfovibrionales and Enterobacteriales (phylum Proteobacteria). Together, these taxa
comprised about 20 different bacterial families which accounted for over 95% of all
sequences in most samples (Fig. 1). The results of sequencing and/or qPCR showed
significant differences in the relative abundance of several members of all these main taxa
in supplemented mice.

The phylum Bacteroidetes contains several bacterial groups associated with health
and this group is usually highly abundant in feces and intestinal contents of human and
laboratory mice (Karlsson et al., 2010). The family S24-7 (a group of fiber degraders) was
very similar in lean (median = 19.8%) and cherry-supplemented (median = 20.3%) and
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Figure 1 Bar plots showing relative abundance (percentages, x axis) of the most abundant bacterial
taxa at the family level. (A) Lean; (B) Obese; (C) Cherry supplemented group. Please note the noticeable
difference in the abundance of the S24-7 group, Bacteroidaceae, Lactobacillaceae, Akkermansia (family
Verrucomicrobiaceae), and Enterobacteriaceae (highlighted for better visualization). Statistical significant
differences were found for these groups using either 16S sequencing, qPCR analyses, or both (see main
text for details).

Full-size DOI: 10.7717/peerj.4195/fig-1
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both were about 3 times higher when compared to obese mice (median = 7.9%, p< 0.005
for both comparisons) (Fig. 1). While this result supports the observed higher weight of
cecum contents in supplemented mice, it also opens up the question of why lean controls
(not supplemented) also showed similar levels of S24-7 compared to supplemented mice.
The family Bacteroidaceae was similar in all obese mice but only supplemented mice
had higher abundance (median = 13.5%) compared to lean controls (median = 6.6%,
p= 0.0124). This is interesting because Bacteroides has been linked to production of
SCFAs (Chen et al., 2017; Rios-Covian et al., 2017) and at least one group of Bacteroides (B.
acidifaciens) has been shown to also use host compounds (Berry et al., 2013; Sonnenburg et
al., 2005) similarly to Akkermansia.

The phylum Firmicutes is also a highly abundant member of the gut microbiota and
contains many groups associated with health, for example producers of SCFAs (Barcenilla
et al., 2000). Interestingly, we did not find any difference in the abundance of the two
most abundant families within the Firmicutes: Ruminococcacea and Clostridiaceae. On
the other hand, Lactobacillus was much lower (∼10 times lower) in cherry-supplemented
mice (median = 0.8%) compared to both lean (median = 12.4%) and obese (median =
13%) controls (p< 0.005 for both comparisons), a finding that was also noticeable at the
family level (Fig. 1) and that was confirmed using qPCR (see qPCR below).

The phylum Verrucomicrobia is usually low in abundance in the lower gut but it also
contains important bacterial groups that have been associated with health such as the
mucin-degrader Akkermansia (Derrien et al., 2008). In this study, the genus Akkermansia
(family Verrucomicrobiaceae) was lower in obese mice (median = 0.07%) compared to
lean (median= 0.31%, p= 0.0402) but especially to cherry-supplemented mice (median=
4.9%, p= 0.0003), a result that was also confirmed by qPCR. This result was also confirmed
using qPCR (see qPCR below).

The phylum Proteobacteria (main order Enterobacteriales) contains bacteria that are
usually associated with harmful effects on intestinal health such as several strains of
Escherichia and Salmonella. In this study, the family Enterobacteriacea was more similar
between lean (median= 0.08%) and cherry-supplemented (median= 0.3%)mice and both
were much lower compared to obese mice (median= 7.3%, p< 0.05 for both comparisons,
Fig. 1), a finding that could be considered a positive effect of cherry supplementation. The
lower abundance of Enterobacteriaceae in supplemented mice was also confirmed using
qPCR (see qPCR below). In this study Enterobacteriaceae was the only family within the
order Enterobacteriales but most sequences belonged to an unknown genus. The family
Alcaligenaceae (Betaproteobacteria) was higher in supplemented mice (median = 1.1%)
compared to both lean (median = 0.06%) but especially to obese (median = 0.01%)
controls (p< 0.005 for both comparisons). There was no significant difference in the
abundance of Desulfovibrionales (class Deltaproteobacteria).

Finally, the family Bifidobacteriaceae (order Coriobacteriales, phylum Actinobacteria)
was not detected at all with our sequencing effort. Nonetheless, supplemented mice
showed similar abundance of the order Coriobacteriales (median = 0.1%) compared to
lean (median= 0.3%) but only lean mice was higher compared to obese (median= 0.08%,
p< 0.0001).
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Figure 2 Alpha rarefaction plot for all treatment groups. A flat line would indicate that the analysis of
more sequences would not be able to detect more species (OTUs at 97% similarity).

Full-size DOI: 10.7717/peerj.4195/fig-2

Alpha diversity analyses
The comparison of relative abundances help determine differences in groups of
microorganisms (e.g., Akkermansia) but it does not help shed light into the diversity
of microbial life among the different samples. Interestingly, cherry-supplemented mice
showed the highest Shannon diversity indexes (index= 8.1) compared to both obese (index
= 7.4) and lean controls (index = 6.9, p= 0.0141 Kruskal-Wallis). Also, the number of
species (OTUs at 97% similarity) was higher in obese controls (5,407) and lower in
lean (4,078), with supplemented mice having intermediate values (4,838, p= 0.0078,
Kruskal-Wallis test) but overall the number of OTUs did not reach a plateau for any
treatment group, particularly in obese mice with and without cherry (Fig. 2). This means
that the sequencing effort in this study was not enough to fully describe the total number
of species in our samples; however, it is important to remember that these OTU measures
were obtained from an open OTU picking approach that does not discard sequences based
on matching with reference database.

Beta diversity analyses
The analysis of individual taxa such as Akkermansia or Lactobacillus yields valuable
information about the membership of the bacterial communities; however, the differences
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Figure 3 PCoA plots of weighted (A) and unweighted (B) UniFrac distance matrices. Please note that
the clustering of samples according to treatment is stronger (i.e., show less overlap) in the plot using the
unweighted UniFrac distance matrix (p= 0.001, R= 0.844, ANOSIM test) compared to the plot using the
weighted UniFrac distance matrix (p= 0.001, R= 0.716, ANOSIM test).

Full-size DOI: 10.7717/peerj.4195/fig-3

in individual taxa may or may not be sufficient to generate a distinctive microbial
community. UsingweightedUniFrac distances (which takes into account both phylogenetic
divergence and the numbers of sequences associated with eachOTU), there was a significant
clustering of samples according to treatment (p< 0.001, Adonis test; p= 0.001, R= 0.716,
ANOSIM test) (Fig. 3). There was also a significant difference using unweighted UniFrac
(p< 0.001, Adonis test; p= 0.001, R= 0.844, ANOSIM test), which does not take into
account the number of OTUs (Fig. 3). Please note that these tests often have a low sensitivity
(they usually detect a difference when there is none), therefore it is also informative to look
at the R values in the ANOSIM test to investigate the strength of clustering (the closest to
1 the strongest the clustering of samples). Therefore, the higher R value in the ANOSIM
test for the unweighted UniFrac implies that the clustering is stronger compared to the
clustering using weighted UniFrac, meaning that each treatment is mainly associated with
phylogenetic distinct bacterial populations rather than the numbers of these populations.
This result can easily be appreciated in the PCoA plots of UniFrac metrics (Fig. 3).

Predicted metabolic profile
PICRUSt is useful at predicting the metabolic profile of the microbiota based on 16S
sequencing data. In this study, a great number of features showed statistical significance
among treatment groups (Table 2), especially within metabolism and genetic information
processing pathways. In our experience, these differences are not due to stochastic variations
(e.g., other studies from our research group have shown no differences in any feature using
a very similar methodological approach, Garcia-Mazcorro et al., 2017). Interestingly, for
almost all features cherry-supplemented mice showed abundances that were in between
those abundances in obese and lean controls (Table 2). Lean mice had higher weighted
Nearest Sequenced Taxon Index (weighted NSTI) scores compared to obese controls and
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Table 2 PICRUSt results (average percentages) for the statistically significant features (p< 0.05 adjusted p-values*).

Level 1 Level 2 Level 3 Obese
controls

Obese
supplemented

Lean
controls

Adjusted
p values

Metabolism Amino acid
metabolism

Amino acid related
enzymes

1.56↓ 1.64 1.74↑ 0.008

Metabolism Amino acid
metabolism

Histidine
metabolism

0.61↓ 0.72 0.79↑ 0.011

Metabolism Biosynthesis of
other secondary
metabolites

Stilbenoid,
diarylheptanoid and
gingerol biosynthesis

0.00↓ 0.00 0.01↑ 0.020

Metabolism Carbohydrate
metabolism

Ascorbate and
aldarate metabolism

0.21↑ 0.19 0.13↓ 0.023

Metabolism Carbohydrate
metabolism

Butanoate
metabolism

0.85↑ 0.74 0.73↓ 0.038

Metabolism Carbohydrate
metabolism

Pentose and
glucuronate
interconversions

0.70 0.73↑ 0.62↓ 0.049

Metabolism Carbohydrate
metabolism

Pentose phosphate
pathway

0.98↓ 1.09↑ 1.01 0.033

Metabolism Energy metabolism Carbon fixation
in photosynthetic
organisms

0.68↓ 0.74↑ 0.73 0.013

Metabolism Enzyme families Peptidases 2.08↓ 2.14 2.32↑ 0.026
Metabolism Enzyme families Protein kinases 0.49↑ 0.40 0.34↓ 0.004
Metabolism Glycan biosynthesis

and metabolism
Peptidoglycan
biosynthesis

0.83↓ 0.84 0.94↑ 0.039

Metabolism Lipid metabolism Alpha-linolenic acid
metabolism

0.03↑ 0.01 0.01↓ 0.025

Metabolism Metabolism of
cofactors and
vitamins

One carbon pool by
folate

0.64↓ 0.72 0.76↑ 0.036

Metabolism Metabolism of
cofactors and
vitamins

Thiamine
metabolism

0.51↓ 0.56 0.58↑ 0.035

Metabolism Metabolism of
terpenoids and
polyketides

Terpenoid backbone
biosynthesis

0.54↓ 0.61 0.69↑ 0.003

Metabolism Xenobiotics
biodegradation
and metabolism

1,1,1-Trichloro-
2,2-bis(4-
chlorophenyl)ethane
(DDT) degradation

0.00↓ 0.00↑ 0.00 0.015

Genetic information
processing

Replication and
repair

Mismatch repair 0.84↓ 0.92 0.97↑ 0.005

Genetic information
processing

Translation Ribosome 2.26↓ 2.46 2.82↑ 0.006

Genetic information
processing

Replication and
repair

DNA replication
proteins

1.28↓ 1.38 1.49↑ 0.006

(continued on next page)
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Table 2 (continued)

Level 1 Level 2 Level 3 Obese
controls

Obese
supplemented

Lean
controls

Adjusted
p values

Genetic information
processing

Translation Translation factors 0.54↓ 0.59 0.66↑ 0.006

Genetic information
processing

Replication and
repair

Base excision repair 0.47↓ 0.51 0.55↑ 0.011

Genetic information
processing

Replication and
repair

DNA repair and
recombination
proteins

2.99↓ 3.15 3.37↑ 0.012

Genetic information
processing

Replication and
repair

Nucleotide excision
repair

0.37↓ 0.45 0.46↑ 0.014

Genetic information
processing

Replication and
repair

DNA replication 0.69↓ 0.74 0.82↑ 0.016

Genetic information
processing

Translation Aminoacyl-tRNA
biosynthesis

1.16↓ 1.25 1.39↑ 0.016

Genetic information
processing

Folding, sorting and
degradation

Protein export 0.61↓ 0.65 0.72↑ 0.017

Genetic information
processing

Transcription RNA polymerase 0.16↓ 0.17 0.20↑ 0.019

Genetic information
processing

Replication and
repair

Homologous
recombination

0.95↓ 0.99 1.10↑ 0.022

Environmental
information
processing

Signal transduction Two-component
system

2.30↑ 1.91 1.63↓ 0.024

Environmental
information
processing

Signaling molecules
and interaction

Bacterial toxins 0.12↓ 0.16 0.16↑ 0.025

Notes.
↓lowest.
↑highest.
*We removed five features related to human diseases that also reached statistical significance because of their questionable relevance to this study.

supplemented mice (p< 0.05 for both comparisons), meaning that the microbiota of all
obese mice was relatively more represented in sequenced genomes.

The feature with the lowest p value in PICRUSt analysis was associated with terpenoid
backbone biosynthesis (adjusted p= 0.0003), with lean controls having the highest
(average: 0.69%) and obese controls the lowest (0.54%) values, with supplemented mice
having values in between (0.61%). This topic is interesting because terpene synthases
are widely distributed in bacteria (Yamada et al., 2015) and terpenes have beneficial
properties in human health (Cho et al., 2017); however, there is little information about
the potential of terpene synthesis in the gut microbiota. In order to investigate what
bacterial group was more associated with this difference, we performed PICRUSt on
different taxa independently using filtered OTU tables. There was a difference in this
feature for the phylum Firmicutes and Bacteroidetes but all obese mice (with and without
supplementation) showed very similar abundances compared to lean, suggesting that
the group responsible for the overall effect on terpenoid backbone biosynthesis was not a
member of either phylum. Interestingly, the independent analysis of Proteobacteria revealed
that lean controls had the highest (average: 0.51%) and the obese controls the lowest values
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(average: 0.39%) with supplemented mice somewhere in between (average: 0.45%), a result
that is similar to the analysis of all bacterial groups at once. This suggests that a member
of Proteobacteria was likely associated with the observed difference in the abundance of
genes associated with terpenoid backbone biosynthesis. However, the independent analysis
of individual taxa within the Proteobacteria did not yield any useful information with
regards to any specific taxa associated with the overall difference in terpenoid backbone
biosynthesis, suggesting that this difference was due to the combined contribution of
several bacterial groups. This area is indeed worth exploring because terpenoids can work
as antibiotics and growing research show that commensal microorganisms can generate
potent small molecules (Modi, Collins & Relman, 2014). Doing this additional analysis for
all features that showed statistical significance (Table 2) is advisable but is outside of the
scope of this present manuscript.

qPCR analyses
In this study we performed qPCR analyses using DNA from both colon contents and
mucosal samples. Using DNA obtained from samples of colon contents, several qPCR
results confirmed the sequencing results (Fig. 4). For example, Lactobacillus was found
to be lower in cherry-supplemented mice compared to both lean and obese controls
(p < 0.0001). Similarly, Akkermansia was lower in obese mice compared to lean and
cherry supplemented (p< 0.0001, Kruskal Wallis test) and this result was mainly due
to a difference between the obese control group and the cherry-supplemented group
(p< 0.0001) (Fig. 4). Also, Enterobacteriaceae were lower in cherry-supplemented and
lean mice compared to obese controls. Using qPCR we were able to show that E. coli
was also lower in supplemented mice, a finding that we could not investigate using
sequencing. Moreover, Betaproteobacteria was higher in cherry-supplemented compared
to lean and obese controls (p< 0.0001). Please note that the family Alcaligenaceaewithin the
Betaproteobacteria also showed similar differences using sequencing. qPCR results for colon
contents also showed that the abundance of Bifidobacterium was higher in supplemented
mice compared to obese (p< 0.0001) and lean (p= 0.002) controls (Fig. 4). These results
were partly confirmed using sequencing at higher taxonomic levels (order Coriobacteriales,
see Colonic microbiota above). C. butyricum (a butyrate-producing microorganism,
Zhang et al., 2009) was also found to be higher in supplemented mice (Fig. 4).

qPCR analysis of the mucus-associated microbiota helped shed light into an area that is
not usually evaluated (most studies evaluate either feces or intestinal contents in part due
to ease of sampling and amount of material for analysis). Unfortunately, we only obtained
results from four bacterial groups because the results from all other bacterial groups
(Akkermansia included) were either undetectable or fell below the lowest standard. This
can be explained by the fact that commensal bacteria have their habitat in the outer colonic
mucus layer, which can be easily lost during tissue dissection and washing (Johansson et al.,
2008). However, opportunistic pathogens have developed mechanisms to secrete proteases
that cleave mucin allowing certain bacteria penetrate and reside in the inner mucus layer
(Pelaseyed et al., 2014). Interestingly, in this study we found patterns of variations in colon
mucosal cells that were not in agreement with those variations observed in colon contents.
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Figure 4 Boxplots showing qPCR results for selected bacterial groups in colon contents (or colonmu-
cosa) that showed or almost reached statistical significance difference. P values come from the Kruskal-
Wallis test. (A) Akkermansia, (B) Bacteroides fragilis, (C) Bacteroides vulgatus, (D) Bacteroides/Prevotella,
(E) Bacteroidetes, (F) Bacteroidetes (colonic mucosa), (G) Betaproteobacteria, (H) Betaproteobacteria
(colonic mucosa), (I) Clostridium butyricum, (J) Clostridium butyricum (colonic mucosa), (K) Clostridium
cluster IV, (L) E. coli, (M) Enterobacteriaceae, (N) Enterobacteriaceae (colonic mucosa), (O) Enterococ-
cus, (P) Faecalibacterium, (Q) Lactobacillus plantarum, (R) Lactobacillus, (S) Ruminococcaceae, (T) Tener-
icutes. qPCR data is expressed as log amount of amplified DNA (in picograms) per 10 ng of total isolated
DNA.

Full-size DOI: 10.7717/peerj.4195/fig-4

Garcia-Mazcorro et al. (2018), PeerJ, DOI 10.7717/peerj.4195 16/31

https://peerj.com
https://doi.org/10.7717/peerj.4195/fig-4
http://dx.doi.org/10.7717/peerj.4195


Table 3 Median (minimum–maximum) SCFA concentrations (µmol/mg caecal contents). P values
come from either the Kruskal–Wallis test or the Mann Whitney test when comparing only two treatment
groups due to lack of detectable values in one group. Different letters state statistical significance
difference. The symbol (−) is included to denote treatment groups where all or most samples were
undetectable. The number of samples (n) in which the specific SCFA was detected for each experimental
group is also included. For most SCFAs, we chose not to perform a statistical comparison because of very
low sample size in at least one treatment group (NA or not applicable). Please note that most samples
(especially from lean and obese controls) showed undetectable levels of several SCFAs. In our experience
this was not due to errors in our analytical methodology, and this is supported by the fact that all samples
were treated equally yet most samples from supplemented mice did show detectable levels of most SCFAs.

Obese controls Obese supplemented Lean controls P value

Caproate 1.2(0.4–3.9)a

(n= 9)
285(217–437)b

(n= 12)
1.0(0.4–652)a

(n= 10)
0.0033

Methyl butyrate – 116(17–405)
(n= 12)

62(43–92)
(n= 3)

NA

Butyrate 6.2(5.3–20)a

(n= 9)
– 11.9(6.1–16.2)a

(n= 7)
0.3511

Propionate – 384(258–649)
(n= 12)

356(281–438)(n= 4) NA

Acetate 1.9(1.4–1.9)
(n= 3)

269.4(128–672)
(n= 12)

273.2(40–351)
(n= 3)

NA

Valerate – 15.4(4–48)
(n= 10)

– NA

For example, Betaproteobacteria and Enterobacteriaceae were found to be lower in lean
mice compared to all obese mice with and without cherry supplementation (Fig. 4). On the
other hand and similarly to qPCR results in colon contents, C. butyricum was also higher
in supplemented mice and Bacteroidetes also showed similar results compared to qPCR
results from colon contents (Fig. 4).

SCFA in caecal contents
SCFA are microbial metabolites that have been associated with health and disease. In
this study, the SCFAs detected in cherry-supplemented mice (caproate, methyl butyrate,
propionate, acetate and valerate) exceeded those concentrations detected in obese and lean
controls except for butyrate, either because of higher values or because of higher number
of samples in which the SCFAs were detected (Table 3). This is relevant because SCFAs are
substrates for colonocytes providing at least 60–70% of their energy requirements (Suzuki,
Yoshida & Hara, 2008) with implications for gut barrier function. Based on these results,
cherry dietary supplementation contributes with fiber and phytonutrients that apparently
promotes a healthier SCFA-producing microbiota, thus contributing to improve colon
barrier function and reduce the risk of inflammatory diseases (Tan et al., 2014).

Outer colon wall thickness
In this study, the median ratio outer colon wall to total colon wall was higher in
supplemented mice (median = 0.73) and lean mice (median = 0.72) compared to obese
controls (median = 0.64) but this difference did not reach significance (p= 0.08) due
to the variability among animal subjects (Fig. S1). Increased intestinal concentrations of
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SCFAs in supplemented mice might have contributed to increase the height of intestinal
outer wall layer (Ramos et al., 1997).

Biomarkers of inflammation, cellular stress, and gut barrier function
in colon tissue and colonic mucosal cells
The colon mucus layers and enterocytes provide the first defense line of the gastrointestinal
tract. We have analyzed the mRNA levels of biomarkers of inflammation, cellular stress,
and gut barrier function in mucosal cells and colon tissues as a tool to assess whether the
changes promoted in gut microbiota by cherry bioactive compounds might also trigger
differentiated responses in the host gate keepers (mucosal layer and epithelial cells) with
possible implications in host-bacterial interactions and host immune system. Despite the
differences in microbiota and SCFAs, most of the biomarkers analyzed in colonic mucosal
cells were similar between experimental groups (Table S5), and no difference was found
in biomarkers assessed in colon tissues (Table S6). In colonic mucosal cells only ATF4
mRNA levels were significantly lower in supplemented group compared to lean (p< 0.05),
and tended to be lower than in obese control. ATF4 is a stress-induced transcription
factor whose expression has been correlated with degree of intestinal inflammation and
development of inflammatory bowel diseases in adults (Negroni et al., 2014). Likewise,
VCAM-1, known to control leukocyte/ monocyte intestinal recruitment and localization
in LPS-induced inflammation (Totsuka et al., 2014), were lower in supplemented group
than obese and lean controls, but did not reach significance (p= 0.06) (Table S5).

The concentrations of LPS measured as EU in caecal contents and blood plasma showed
no significant difference among experimental groups. However, the LPS concentrations
in lumen were not determined due to limitations in sample availability used for DNA
extractions and microbiota analysis. Thus, LPS in caecal contents might not necessarily
correlate with the LPS concentrations in lumen. We could speculate LPS was lower in
supplemented group, thus explaining the lower ATF4 mRNA levels.

Correlation analysis
The separate analyses of microbiota, SCFAs and mRNA levels yielded useful information
with regard to the effect of dietary interventions but this data must be integrated in an effort
to find possible biologically relevant associations. Overall, data from 16S rRNA sequencing
was highly correlated with data from qPCR (Fig. S2), as discussed above. Interestingly,
a high positive correlation was observed between Bacteroides and Akkermansia, while a
negative correlation between Bacteroides and Lactobacillus was observed. It is also worth
mentioning that samples from supplemented mice were associated with higher levels of
SCFAs and more Akkermansia, an interesting relationship given the production of SCFAs
by this bacterial group (Belzer & De Vos, 2016).

DISCUSSION
Diabetes and obesity are complex diseases that can often be treated using a combination
of medications, dietary modifications and physical exercise. Cherries contain fiber and
bioactive compounds such as polyphenolics that can promote wellbeing in the host. This
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study describes the effect of cherry consumption on the colonic microbiota, short-chain
fatty acids, and biomarkers of intestinal health using an in vivo model of genetic obesity.

The metabolism and pharmacokinetics of cherry bioactive compounds inside the host
are important to evaluate any possible effect of a dietary intervention with cherry. A
recent study showed evidence suggesting an involvement of glucose transporters in the
small intestine (such as the sodium-dependent linked transporter) in the absorption of
anthocyanins from bilberries but it also highlighted the wide differences in bioavailability
among different types of anthocyanins (Baron et al., 2017). The amount and chemical
characteristics of any post-digestion bioactive compounds that reach the large intestine
also varies depending on several factors. Importantly, these bioactive compounds are often
transformed throughout the digestive tract and reach the lower intestine in amodified form
Stalmach et al. (2010). It has been shown that the amount of material reaching the colon
is considerable and some authors even catalogue some of these compounds as prebiotics
because of its effect in the abundance of certain microorganisms (Cires et al., 2017). Please
note that prebiotics are historically considered to be non-digestible fiber and that the
increase in abundance of a certain group of microorganisms (e.g., Lactobacillus) when
exposed to anti-oxidants may or may not involve direct feeding on the compounds such as
in the case of dietary fiber. This is further complicated in case of cherries which contain both
fiber and considerable amounts of polyphenolics (McCune et al., 2011; Wang et al., 2017).

This study showed strong evidence that cherry supplementation can modify the colon
microbiota, a phenomenon that may be related to the fiber and/or to any post-digestion
bioactive compounds reaching the lower intestinal tract. For example, this study showed
that the levels of Akkermansia spp. in colon contents were higher in supplemented mice
compared to both obese and lean controls. Akkermansia is a common and relatively
abundant (∼1%) anaerobic member of the gut microbiota (Derrien et al., 2008) that
is supposedly highly specialized in host-compounds that may not compete with the
microbiota in the highly populated lumen and therefore do not depend on nutrients from
host food consumption (Derrien et al., 2011). Akkermansia indeed deserves attention
because of its potential role as mediator of improved inflammatory and metabolic
phenotype of mice (Caesar et al., 2015). Interestingly, it has been shown that the abundance
of Akkermansia is lower in the intestinal epithelium of patients with Inflammatory Bowel
Disease (Png et al., 2010) and in feces often negatively correlates with body weight in
rodents and humans (the higher the body weight the lower the abundance of Akkermansia,
Everard et al., 2013). Another study showed that human subjects with higherA. muciniphila
abundance in feces exhibited the healthiest metabolic status (Dao et al., 2016). Therefore,
members of this taxon have been suggested as biomarkers for a healthy intestine (Png
et al., 2010; Swidsinski et al., 2011). Accordingly, in this study we showed that cherry
supplementation was associated with increases the abundance of this health-bearing
microorganism, suggesting a beneficial effect of cherry consumption on health. Other
similar studies from our research group have also showed that obese mice have less
Akkermansia compared to lean and quinoa-supplemented obese mice (Garcia-Mazcorro,
Mills & Noratto, 2016a), and others have shown thatAkkermansia is higher during prebiotic
administration (Everard et al., 2011; Van den Abbeele et al., 2011).
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The reasons behind any increase or decrease of bacterial groups in colon contents are
often difficult to clarify. While there may be several explanations for this phenomenon,
in the case of Akkermansia it has been shown showed that the accompanying microbiota
composition determines the magnitude and pattern of host-compounds foraging by
this group (Berry et al., 2013), an interesting phenomenon that has also been shown in
other bacteria such as Bifidobacterium (Klaassens et al., 2009). Importantly, it has been
shown that Akkermansia is actually composed by at least eight different species based
on the 16S rRNA gene (Van Passel et al., 2011). This heterogeneity may explain why in
other studies the abundance of Akkermansia was not necessarily related with health status
(Garcia-Mazcorro et al., 2016b; Noratto et al., 2014). In fact, Akkermansia was shown to be
increased in mouse studies of dextran sodium sulfate (DSS)-induced colitis (Berry et al.,
2012; Kang et al., 2013; Håkansson et al., 2015) and can seemingly aggravate Salmonella
enterica Typhimurium-induced gut inflammation in a gnotobiotic mouse model (Ganesh
et al., 2013). This phenomenon has been explained by an outgrowth of Akkermansia in
response to the thickening of the mucus layer (Ottman et al., 2017) but it fails to explain
the rise of this group in intestinal contents. Given the potential existence of different
species of Akkermansia (Van Passel et al., 2011), it is fair to speculate that at least some of
these species can use dietary substrates (instead or in addition to host-compounds) and
proliferate in the intestinal lumen, thus explaining the rise in numbers. On the other hand,
feces also contain abundant mucus (Swidsinski et al., 2008), therefore it is also possible that
the overgrowth of Akkermansia in the mucus layer simply leaked into the lumen.

Other bacterial groups aside Akkermansia deserve attention. For example, this study
also showed that a group of fiber degraders (the S24-7 family) was also higher in the
supplemented group, a finding likely related to the fiber contributed by the cherry-
supplemented diet. The genomes of several members of this S24-7 family have been recently
explored showing that it contains three trophic guilds, each broadly defined by differential
abundances of enzymes involved in the degradation of specific carbohydrates (plant,
host and α–glucan) (Ormerod et al., 2016). Interestingly, cherry consumption was also
associated with lower levels of Lactobacillus (a commonly health-bearing group of bacteria)
and Enterobacteriaceae (a group comprising potential pathogens). While the reason
behind these changes are likely related to the complex microbial-host milieu, a recent study
showed that these two groups (both Lactobacillus and Enterobacteriaceae) were positively
correlated to high levels of Salmonella-induced inflammation (Borton et al., 2017).

This study showed that the differences in bacterial populations in the supplemented
group were accompanied by concentrations of SCFAs that generally exceeded those
concentrations in lean and obese controls except for butyrate, an interesting finding because
it is precisely butyrate that has caught more attention from the scientific community.
Butyrate is produced and also transformed by the gut microbiota; however in our study
the increased concentrations of methyl butyrate (a methyl ester of butyric acid) in the
supplemented group might be associated with the presence of this ester in cherries as
occurs in many plant products. This might be an advantage over production of butyrate
because the latter is rapidly metabolized and has limited clinical efficacy in contrast with
methyl butyrate which is less polar and less susceptible to being cleared by the body (Khan,
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Ahmad & Srivastava, 2016). On the other hand, methyl butyrate may also be produced
as a by-product of bacterial metabolism. For example, in one study high production of
methyl butyrate was the most significant change induced upon prebiotic and synbiotic
supplementation in fecal fermentation in vitro (Vitali et al., 2012). Here it is also important
to highlight the difficulties at determining which bacterial group contributes to each SCFA
because multiple groups are often involved in the production/degradation of chemical
compounds in the gut (Pryde et al., 2002).

Here we show that cherry bioactive compounds (including fiber) modifies the colonic
microbiota and SCFA in obese diabetic mice and we hypothesized that this modification
may trigger changes in the gut immunity and physiology of the host. However, here we also
showed that cherry powder supplementation did not affect mRNA expression of several
biomarkers associated with gut health in spite of a change in bacterial composition and
biochemistry. Only ATF4 mRNA levels were different among experimental groups and
downregulated in cherry-supplemented mice. ATF4 can be upregulated in response to
bacterial LPS as adaptive response that triggers the expression of inflammatory cytokines
(TNF-α, IL-6, and IL-10), signaling pathways (NF-kB and MAPK), and the ATF4-CHOP
apoptotic pathway (Rao et al., 2013). Therefore, downregulation of ATF4 in supplemented
group might be linked to lower levels of bacteria producing LPS in the colon mucus layer,
with implications for intestinal cells inflammation and survival. The LPS concentrations
in caecal contents might not resemble LPS in lumen layer in contact with the colon mucus
layers. Unfortunately, this could not be confirmed due to the limitations intrinsic to the
collection of specific fractions of lumen for LPS determination.

In addition, the lower levels of ATF4 and VCAM-1 may also be mediated by the higher
SCFAs production in supplemented mice as demonstrated by Huang et al. (2017) in vitro.
SCFAs inhibited oxidative stress, inflammatory response, and cell adhesion molecules
induced by LPS and glucose through activation of their specific G protein-coupled
receptors 43 (GPR43) (Huang et al., 2017). Even though our experimental conditions
did not compromise gut integrity and barrier function as confirmed by LPS in plasma that
was similar among experimental groups, our study has provided insights to future studies
investigating cherry intake within the context of acute and chronic intestinal inflammation.
The improvement in intestinal integrity by polyphenolics enriched extracts, independently
of alterations in gut microbiota, was demonstrated over a period of only four weeks in pigs
induced subclinical chronic inflammation with E. coli LPS injections (Liehr et al., 2017).
Because the observed changes in bacterial composition and SCFAs could have been related
to bioconversion of cherry compounds, it would be interesting to study the effect of cherry
compounds in germ-free mice, with the obvious disadvantage of not representing a real-life
scenario. In general, our results reveal interesting research avenues for cherry intake within
the context of chronic and acute intestinal inflammation using conventional and germ-free
mice to determine whether the cherry-induced intestinal bacteria modulation could be
beneficial in ameliorating or preventing the symptoms of intestinal inflammation.

This study has drawbacks that ought to be taken into account in future studies. First,
cherries contain fiber and a wide variety of bioactive compounds and this is important
because not all compounds have the same properties on health. In this regard it was not the
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objective of this study to identify each compound individually but to assess the effect of the
fruit as a whole, at least in a powder form. Second, in this study we used a model of genetic
obesity but diet-induced obesity can also shed light into the mechanisms associated with
any health effect (Hariri & Thibault, 2010). One main disadvantage of using diet-induced
obesity is the high number of diets that can be used to promote obesity and perhaps more
importantly the nutritional differences and outcomes in host physiology among these diets.
Also, we know now that obesity in humans is a complex disorder that often involves a
genetic difference in the host. Importantly, Song et al. (2016) showed a beneficial effect of
cherries using a diet-induced model of obesity, thus suggesting that cherries can have a
positive impact in different types of obesity-related disorders.

CONCLUSIONS
In summary, this study shows that cherry supplementation for 12 weeks can modify the
colon microbiota and the concentrations of SCFAs. Our research model did not provide
strong evidence to suggest that this dietary intervention can lead to changes in biomarkers
of inflammation, cellular stress, and gut barrier function in colonic mucosal cells and
colon tissues. The reason of why the change in the microbiota and SCFAs did not affect
the host physiology remains to be investigated, but may be related to the obese genetic
animal model used instead of using high fat, high sugar to induce obesity, which is known
to stimulate intestinal inflammation (Rahman et al., 2016). Also, it has been shown that
mice deficient for intestinal gluconeogenesis do not show the same metabolic benefits
on body weight and glucose control induced by SCFAs, despite similar modifications in
gut microbiota composition (De Vadder et al., 2014). Indeed, this topic is worth exploring
further, especially in a context of diabetes (Mithieux et al., 2004). More research is desirable
into the implications of cherry consumption as a dietary supplement in diabetic and obese
human patients.
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