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Abstract. An efficient, local, explicit, second-order, con-
servative interpolation algorithm between spherical meshes
is presented. The cells composing the source and tar-
get meshes may be either spherical polygons or latitude–
longitude quadrilaterals. Second-order accuracy is obtained
by piece-wise linear finite-volume reconstruction over the
source mesh. Global conservation is achieved through the in-
troduction of a “supermesh”, whose cells are all possible in-
tersections of source and target cells. Areas and intersections
are computed exactly to yield a geometrically exact method.
The main efficiency bottleneck caused by the construction
of the supermesh is overcome by adopting tree-based data
structures and algorithms, from which the mesh connectivity
can also be deduced efficiently.

The theoretical second-order accuracy is verified using a
smooth test function and pairs of meshes commonly used for
atmospheric modelling. Experiments confirm that the most
expensive operations, especially the supermesh construction,
have O(N logN) computational cost. The method presented
is meant to be incorporated in pre- or post-processing atmo-
spheric modelling pipelines, or directly into models for flex-
ible input/output. It could also serve as a basis for conserva-
tive coupling between model components, e.g., atmosphere
and ocean.

1 Introduction

Despite the simplicity and regularity of a spherical surface,
there is no single ideal way to mesh it. Consequently, nu-
merical methods formulated on the sphere, used for instance
in weather forecasting and climate modelling, use a vari-
ety of meshes. For a long time, spectral and finite-difference

schemes have been using latitude–longitude meshes. How-
ever, most recently developed methods use more flexible
meshes like triangulations of the sphere and their Voronoi
dual or quadrangular meshes like the cubed sphere. Such
meshes avoid the polar singularity inherent to the latitude–
longitude system (Williamson, 2007).

Different physical components like atmosphere, land, ice
and ocean typically use distinct meshes. As they are cou-
pled together, interpolation between the various meshes is
required. Furthermore, the native model mesh may not be the
most practical to perform post-processing and analysis of the
simulations, and interpolating to a more convenient mesh can
be desirable. Finally, interpolation is a crucial building block
of dynamic mesh adaptation, which enables a simulation to
dynamically focus resolution where it is important, poten-
tially saving orders of magnitude in computational costs. Al-
though dynamic adaptivity is not a current practice in ocean–
atmosphere modelling, there is a growing body of research
to this end, and dynamic adaptivity may mature in the future.
Meanwhile, statically refined meshes are increasingly used,
and there is a need to interpolate from/to such meshes.

In applications like climate modelling, it is often vital
that some physical quantities be conserved, such as density,
volume fractions or tracer concentrations. When interpolat-
ing fluxes between physical components coupled together,
similar conservation constraints should be enforced. Failing
to enforce these conservation properties may create spuri-
ous sources and sinks which, however small, may accumu-
late over time and overwhelm the physical trends. Therefore,
even if one uses a conservative discretization method for the
relevant equations, there is a need to ensure conservation in
the interpolation step.
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Figure 1. Common refinement of the source and target meshes. Here, the source mesh (Si ) is quadrangular and the target mesh (Tj ) is
triangular. The integral over quadrangle Si (red, left panel) must be split among supermesh cells Uk as per Eq. (2); supermesh cell areas Ak
(colored, center panel) serve as interpolation weights. To this end, linear reconstruction is done on each quadrangle. The quadrature points
are the supermesh centroids Ck (right panel).

This paper describes a second-order conservative interpo-
lation algorithm on the sphere. Our method improves on pre-
viously published work as follows:

– It is geometrically exact as defined and discussed in Ull-
rich et al. (2009), and unlike the method used by Jones
(1999).

– It is local and explicit, unlike optimization-based ap-
proaches (Jiao and Heath, 2004; Farrell et al., 2009)
which may require an iterative solver to approximate the
function on the target mesh. We do not seek a “best” ap-
proximation here but only suppose a quadrature scheme
in order to test the conservation requirement. Therefore,
a small number of interpolation weights can be pre-
computed and parallelism is facilitated.

– It is not tied to a narrow class of meshes (e.g., Ullrich
et al., 2009, which handles only cubed-sphere and lat–
long meshes): our method handles lat–long meshes and
arbitrary polygonal meshes, including the cubed-sphere,
general triangulations and their Voronoi duals, which
encompass the vast majority of currently used meshes.

– It does not assume the connectivity of the mesh is avail-
able, as do Alauzet and Mehrenberger (2009) and Far-
rell and Maddison (2011), but reconstructs it instead in
quasilinear time.

Our method relies on constructing a common refinement
of the source and target meshes, called a supermesh in Farrell
et al. (2009). Assuming that the supermesh is known, formu-
lae for second-order conservative interpolation are derived in
Sect. 2. Algorithms used to construct the supermesh are de-
scribed in Sect. 3. Numerical experiments are conducted in
Sect. 4 to verify the accuracy of the method when used with
various pairs of spherical meshes, as well as the theoretical
algorithmic complexity. A summary is given in Sect. 5.

2 Second-order conservative interpolation

The source and target meshes are sets of spherical cells Si
and Tj , each cell being either a spherical polygon or a lat–
long quadrilateral. The intersection Si ∩Sj (resp. Ti ∩Tj ) for

i 6= j is either void, a shared vertex or a shared edge. The lat-
ter case defines neighboring cells. Both meshes are assumed
to cover the whole sphere, i.e.,

⋃
Si =

⋃
Tj .

Scalar functions are assumed to be described via their in-
tegrals over mesh cells. Indeed, in most GCMs, many (if not
all) fields are treated in a finite-volume manner. The problem
we wish to solve is, given the integrals fi of a smooth func-
tion f on the source mesh, to obtain accurate estimates f ′j of
the integrals on the target mesh, so that the total integral is
preserved:∑
i

fi =
∑
j

f ′j . (1)

Second-order accuracy will result from linear reconstructions
on each Si , assuming f has a bounded second derivative,
in a similar manner to Alauzet and Mehrenberger (2009),
although the spherical geometry introduces new conditions
(see below). To achieve conservation (Eq. 1), one introduces
the supermesh Uk = (Si ∩ Tj )i,j . In the following, the i, j
and k subscripts, respectively, denote the source mesh, tar-
get mesh and supermesh. The supermesh is a common re-
finement of the source and target meshes such that any cell
of those is a union of cells of the supermesh. The problem
comes down to finding approximations:

f ′′k ≈

∫
Uk

f s. t.
∑
Uk⊂Si

f ′′k = fi . (2)

We want the approximation to be exact for a constant func-
tion. For the cell areas Ai and Ak , this property implies

Ai =
∑
Uk⊂Si

Ak. (3)

To satisfy Eq. (3), all spherical areas are computed exactly
(see Sect. 3.4).

In the general case, a piece-wise linear reconstruction
f app
∈ PC1(S) of f over the source mesh is built and inte-

grated by approximate quadrature over Uk , yielding f ′′k . We
define the reconstruction as

f
app
i (x)= f i + gi × (x−Ci) for any x ∈ Si, (4)
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Figure 2. Gradient computation: Stokes formula is applied on the
boundary ∂6i of the polygon surrounding cell i. The vertices of 6i
are the barycenters of nearest-neighbor cells j , k, etc.

where f i = fi/Ai is the mean value of f over Si , gi is an
approximation of the gradient of f on Si and Ci is the cen-
troid of Si . The quadrature is defined as f ′′k = Ak f

app(Ck);
in other words, the supermesh cell areas Ak are the interpo-
lation weights (Fig. 1). It follows that

∀i,
∑
Uk⊂Si

f ′′k =
∑
Uk⊂Si

Akf i +
∑
Uk⊂Si

Akgi × (Ck −Ci) (5)

= fi + gi ×
∑
Uk⊂Si

AkCk −Aigi ×Ci, (6)

in view of Eq. (3), which gives two necessary orthogonality
conditions for Eq. (2) to hold:

– ∀i,gi ×Ci = 0,

– ∀i,gi ×
∑
Uk⊂Si

AkCk = 0.

By computing first the barycenters Ck of the supermesh cells
Uk , then obtaining the barycenters of the source cells from
them asCi =N(

∑
Uk⊂Si

AkCk), whereN(C)= C/
√
C×C,

the two above conditions become equivalent. To satisfy them,
a first-order estimate g̃i of the gradient is orthogonalized with
respect to Ci , yielding gi . Since the orthogonality condition
is satisfied by the exact gradient, this orthogonalization en-
tails no loss of accuracy.

The g̃i are computed by the Gauss formula on a neigh-
borhood of Si that is the polygon 6i joining the centroids of
neighboring elements (Tomita et al., 2001). Indeed as∫
Vi

∇f =

∫
∂6i

(
f − f i

)
nds, (7)

with ∂6i the boundary of 6i and n the outward normal to
6i , we set

g̃i =
1

A(6k)

∑
Si∩Sj∩Sk 6=∅
i,j,k distinct

(
f j + f k

2
− f i

)
Cj ×Ck, (8)

where each pair j,k of neighbors appears only once, so that
the triangle CiCjCk is counterclockwise (Fig. 2). In Eq. (8),
subtracting f i guarantees that a constant field has a zero gra-
dient.

3 Spherical supermesh

3.1 Intersection between a pair of cells

We describe here how, given two cells C and C′, their in-
tersection U is obtained. The algorithm starts from a vertex
of C inside C′ and looks along the edge of C for the next
interior vertex or intersection with an edge of C′ (all inter-
sections on that edge are computed exactly as circle–circle
intersections in 3-D Cartesian space). In the latter case, the
intersecting edge of C′ is then followed, with a possible di-
rection reversal if a step was done towards the exterior of C
(as checked by an orientation test with regard to the normal
of the previously followed edge). When the initial vertex is
reached again, a connected component of U has been deter-
mined (see Fig. 3).

Notice that U is allowed to have several connected com-
ponents, in which case as many supermesh cells are created.
The usual degenerate cases of zero area can of course happen.
On the other hand, the problem of non-matching surfaces dis-
cussed in Jiao and Heath (2004) does not occur here, as all
intersections are computed between bits of small and great
circles on the sphere.

3.2 Fast search of potential intersectors

Constructing the supermesh requires in principle to com-
pute the intersection between all Si and Tj . Assuming both
meshes have O(N) cells, this brute-force approach has a
quadratic algorithmic complexity O(N2). In fact, most in-
tersections are empty. Cells of the source and destination
meshes can be grouped hierarchically in sets with mostly
empty mutual intersections. Exploiting this fact, as described
below, yields fast search algorithms and is crucial to at-
tain quasilinear algorithmic complexity. Another idea, used
by Alauzet and Mehrenberger (2009) or Farrell and Mad-
dison (2011), is to exploit the connectivity of the mesh.
However, the connectivity may not be readily available, for
instance, when reading data from NetCDF files following
the NetCDF-CF convention (http://cfconventions.org/). Ac-
tually, our fast search algorithm can be used to reconstruct
it.

The algorithm takes as input a mesh and a spherical circle.
It yields a list of cells in the mesh that potentially lie partly
or totally inside the circle. The algorithm guarantees that all
cells of the mesh that actually lie partly or totally in the circle
are on the list. Some of those cells may in fact lie outside
the circle, although the algorithm is designed to keep their
number to a minimum.
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Figure 3. Steps in determining the intersection U of cells ABCD and EFGH. The starting point is a vertex interior to the other cell, here
denoted by A. The first examined segment is AB, which contains no intersections (step 1) so it is included in U as is. Along edge BC,
intersection K is encountered (step 2), so segment BK is included in U , and we branch to edge KF of the other cell (step 3). However, vertex
F is checked to be outside cell ABCD (step 4), so the search direction is reversed towards G (step 5). Another intersection is then found along
edge GH, namely L (step 6), and after another direction reversal due to stepping outside again (step 7), the loop is completed by returning to
A (step 8).

In order to yield O(N logN) complexity, a bounding cir-
cle is computed for each cell and these circles are inserted
sequentially into a similarity-search tree, or SS tree (White
and Jain, 1996), which grows progressively starting from an
empty tree with a single root node. During this process, each
node of the tree has its own bounding circle which encloses
the bounding circles of all of its children, and the mesh cells
are at the leaves of the tree. To insert one circle, one traverses
the tree top-down, choosing at each level the closest child
node based on the distance between the centers of the bound-
ing circles. The circle is then inserted at the lowermost level.
Before the next circle is inserted, a tree-balancing step is per-
formed. If the parent node of the newly inserted cell has more
children than a predefined threshold (here set to Nmax = 10),
it is split in two, hence increasing the child count of its own
parent. If the threshold Nmax is exceeded again, this node is
split, and so on until the root node is reached. If the root node
needs to be split, a parent node with two children is created
and becomes the new root node, increasing the depth of the
tree.

Every insertion is followed by a re-balancing step in or-
der to avoid a large overlap between bounding circles, which
would diminish the efficiency of the search algorithm. To this
end, after a node (leaf or not) has been inserted, those of its
siblings whose distance from the parent exceeds 80 % of its
radius are removed from the tree and put into the list of nodes
to be inserted later. Such nodes are marked so that they are
not removed again from the tree.

To completely specify the tree construction algorithm, we
now describe the method used to split a set of Nmax+ 1 chil-
dren into two sets. First, the child farthest from the center of
the parent bounding circle is found. Then, the Nmax/2 nodes
closest to that node are grouped together, while the remain-

ing nodes form another group. Other splitting methods have
been proposed and would be easy to implement (Fu et al.,
2002).

Once all mesh cells have been inserted and the SS tree is
ready, the list of potential intersectors is obtained by travers-
ing the tree top-down, following the branches whose enclos-
ing circle intersects the target circle. The detailed calculation
of intersections is performed only with cells in this list.

3.3 Connectivity reconstruction

Although the SS tree is primarily built in order to speed up
the construction of the supermesh, it also provides an essen-
tially cost-free means of reconstructing the connectivity of
the meshes. Indeed to reconstruct the connectivity of, say, the
source mesh, it is sufficient to apply the previous algorithm
to the source mesh and a source cell. This connectivity is ac-
tually required when computing the gradient g̃i . Therefore,
as noted above, our method works in circumstances where
mesh connectivity is not readily available.

3.4 Supermesh cell area and barycenter

Supermesh cell edges are an arbitrary mix of small and great
circle segments. To compute their area, we represent them
as a combination of spherical triangles and surfaces enclosed
by a small circle segment and a great circle segment with
the same endpoints, possibly counted negatively. A similar
approach is used for barycenters.

An accurate treatment of small circle segments is cru-
cial for accuracy on reduced latitude–longitude grids (Purser,
1998). Indeed, for such grids the cells close to the poles have
strongly curved boundaries and approximations that conflate
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a small arc and the great arc with the same endpoints fail to
deliver second-order accuracy (not shown).

4 Results

In this section, we verify the accuracy and efficiency of the
method, encompassing several types of meshes: latitude–
longitude, triangular, polygonal dual and cubed sphere (see
Fig. 4). Computations were done on an Intel P8700 proces-
sor at 2.53 GHz with 4 GB RAM.

4.1 Meshes

All meshes whose cell edges are an arbitrary mix of great
and small spherical arcs are supported. This includes stan-
dard and skipped latitude–longitude meshes, cubed-sphere
meshes, triangulations and general polygonal meshes. Fig. 4
shows meshes that we specifically use for the tests presented
below:

– standard latitude–longitude meshes, where the zonal
and meridional resolution are equal at the Equator and
the pole is a vertex;

– their skipped variant, where the number of cells along
a parallel varies, starting at four around the pole and
doubling to keep the zonal cell size less than twice the
meridional cell size (Purser, 1998);

– cubed-sphere meshes (Sadourny, 1972);

– triangular–icosahedral meshes and their hexagonal–
pentagonal Voronoi duals (Sadourny et al., 1968);

– variable-resolution variants of the latter obtained by ap-
plying a Schmidt transform to each vertex (Guo and
Drake, 2005).

4.2 Accuracy

Interpolation between various pairs of meshes is applied to
the smooth field 2+xy. The input data are obtained by eval-
uating this function at source cell barycentersGj . The global
conservation property (Eq. 1) is satisfied within round-off er-
ror (not shown). Interpolation error is evaluated by evaluating
the test function at destination cell barycenters and compar-
ing to the interpolated value f j = fj/Aj :

εp =

(
1

4π

∑
Aj
∥∥f j − f (Gj )∥∥p)1/p

ε∞ = max
j

∥∥f j − f (Gj )∥∥ .
When using a piece-wise constant reconstruction on the

source mesh, interpolation error is expected to be propor-
tional to the local gradient of the test function and to the cell
size (largest of source and target mesh sizes). When using

Figure 4. Different meshes are supported and have been tested:
latitude–longitude, reduced latitude–longitude (bottom right), trian-
gular (bottom left), cubed sphere (top left) and variable-resolution
polygonal (top right).

a piece-wise linear reconstruction, interpolation error is ex-
pected to be proportional to the local second derivatives of
the test function and to the squared cell size.

We first consider remapping between pairs of uniform-
resolution meshes of comparable resolution h ranging from
0.01 (a few hundred thousand cells) to 0.1 (a few thousand
cells). Figure 5 shows the maximum (L∞) and root mean
square (L2) interpolation error, as a function of a global char-
acteristic cell size h defined as the average of the local cell
sizes, themselves defined as the side length of a square with
same areaA (h=√(A)). Scaling of both errors confirms that
the expected first-order (left) and second-order (right) accu-
racy is achieved.

An application to variable-resolution icosahedral–
hexagonal meshes is shown in Fig. 6. The remapping is
performed between two such meshes. The source mesh is
everywhere about 25 % finer than the destination mesh,
while the resolution of each single mesh spans about a
decade. As expected, the local error is found to be bounded
O(h2) with h the local mesh size defined here as the square
root of the destination cell area.

4.3 Efficiency

Figure 7 shows the computation time of a second-order
remapping from a uniform resolution icosahedral–hexagonal
mesh to a regular latitude–longitude mesh vs. the number N
of elements of the meshes. Total time is decomposed ac-
cording to the different steps of the algorithms. Since the
remapping is a linear operator, it can be expressed in terms of
weights forming a sparse matrix. These weights are typically
pre-computed for repeated later use. The cost of computing
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Figure 6. When mapping between non-uniform hexagonal meshes,
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intersections, gradients (only for second order) and weights
is linear in the number of elements. Construction of the SS
tree has the theoretical complexity of O(N logN) (dashed
line).

The overall computational cost is dominated by the com-
putation of intersections and therefore is close to linear. Ex-
trapolating those curves suggests that for any imaginable
problem size the SS tree will not require more computational
resources than the computation of intersections, which has
O(N) complexity.

5 Conclusions

A local, explicit, second-order, conservative interpolation al-
gorithm has been devised. The theoretical second-order ac-
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Figure 7. Timing of the various steps of second-order remapping
from a uniform resolution icosahedral–hexagonal mesh to a reg-
ular latitude–longitude mesh. The SS tree construction shows the
expected O(N logN) complexity.

curacy has been verified using a smooth test function and
pairs of meshes covering most meshes commonly used for at-
mospheric modelling. The main efficiency bottleneck caused
by the construction of the supermesh has been overcome
by adopting tree-based data structures and algorithms, from
which the mesh connectivity can also be deduced efficiently.
Experiments confirm a O(N logN) computational cost of
the most expensive operations, especially the supermesh con-
struction.

Cartesian curvilinear meshes are not covered by this work.
Covering such meshes commonly used for ocean modelling
requires essentially adapting the detailed computation of in-
tersections. Higher-order interpolations, or vector interpola-
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tions can also easily be incorporated. This is left for future
work.

Although the present sequential method is fast enough to
be included in pre- or post-processing pipelines, further effi-
ciency gains can be obtained by parallelizing it. The least par-
allel part of the algorithm is the SS tree construction. Work
is under way to parallelize this step, using tree approaches
again to distribute and balance the workload, and will hope-
fully be presented separately.
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