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Abstract: Formidable difficulties exist in interpreting positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) hemodynamic signals in terms of the underlying neural activity. These
include issues of spatial and temporal resolution and problems relating neuronal activity (i.e., action
potentials) measured in nonhuman studies by single unit electrodes to hemodynamic measurements
reflecting synaptic activity. Also, regional hemodynamic measurements correspond to a mixture of local
and afferent synaptic activity. To surmount these difficulties, we propose using large-scale neurobiologi-
cally realistic models in which data at various spatial and temporal levels can be simulated and
cross-validated by multiple disciplines, including functional neuroimaging. A delayed match-to-sample
visual task is used to illustrate this approach. Hum. Brain Mapping 8:137–142, 1999. r 1999Wiley-Liss,Inc.
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INTRODUCTION

The advent of functional neuroimaging has initiated
a conceptual revolution in understanding the neural
basis of human cognition. However, integrating results
from the different imaging modalities (e.g., PET, fMRI,
magnetoencephalography (MEG)) with one another,
with observations based on neuropsychological inves-
tigations of brain-damaged patients, with electrophysi-
ological recordings in primates performing similar
tasks, and with pharmacological studies is not a trivial
problem. Each technique results in data with features
(e.g., spatial and temporal characteristics) that make
direct quantitative comparison difficult. For example,

consider the problems associated with interpreting
PET/fMRI measurements of hemodynamic activity in
terms of the underlying neural activity during differ-
ent components of a cognitive task. First, the spatial
resolution of human brain imaging devices, even
fMRI, is large compared with the size of neurons or
cortical columns. Consequently, multiple and diverse
neuronal populations often are lumped together in any
resolvable PET or fMRI region of interest (even a single
voxel), and local and afferent activities are combined
into a single signal. Second, whereas the temporal
dimension for neurons is on the order of milliseconds,
it is on the order of a few seconds for the hemodynamic
methods (because of the hemodynamic delay, this is
the case even for fMRI). Therefore, important transient
components of activity are not detectable by PET or
fMRI. Third, the source of most information about
neural activity comes from animal electrophysiological
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studies whose measurements generally correspond to
action potentials, whereas the hemodynamic measure-
ments most likely reflect synaptic activity to a greater
extent than spike activity [Jueptner and Weiller, 1995].
Furthermore, because of this, both excitatory and
inhibitory synaptic activity probably result in in-
creased PET or fMRI activity [Jueptner and Weiller,
1995].

To overcome these problems, we [Horwitz and
Sporns, 1994; Tagamets and Horwitz, 1998] and others
[Arbib et al., 1995] proposed using neural modeling as
a framework by which these multiple data sets can be
quantitatively combined so that a conceptually coher-
ent account of human cognition can be generated.
Although this effort is just beginning, it is worth
examining one such study [Tagamets and Horwitz,
1998] that attempts to relate functional neuroimaging
data (PET and fMRI) to findings obtained by cellular
level analyses to see the potential that neural modeling
offers for elucidating functional neuroimaging data.
We first describe the large-scale neural model and
show how it was used to simulate a PET activation
study. We then show how the model was modified so
that it could be used to simulate fMRI experiments, in
essence by reducing integration time and adding a
hemodynamic delay.

SIMULATING A PET ACTIVATION STUDY

Our framework consisted of constructing a large-
scale, neurobiologically realistic computational model
incorporating multiple, interconnected brain regions
such that neuronal activity in each brain region would
be similar to that observed experimentally (generally
from data obtained in nonhuman primate electrophysi-
ological studies). Furthermore, the model was de-
signed to simulate functional neuroimaging experi-
ments of tasks similar to those used for the
electrophysiological studies. A somewhat similar ap-
proach was used by Arbib et al. [1995] to examine a
saccade generation task.

We chose a delayed match-to-sample (DMS) task for
shape, since there exists much functional neuroimag-
ing, neuroanatomical, electrophysiological, and cogni-
tive data in human and nonhuman primates about this
type of task. The DMS task involves the presentation of
a shape, a delay, and the presentation of a second
shape; the model has to decide if the second stimulus is
the same as the first. Multiple trials (e.g., 10) are used
to simulate a PET or fMRI study. The model incorpo-
rates four major brain regions (primary visual
cortex 5 V1/V2; occipitotemporal cortex 5 V4; infe-

rior temporal cortex 5 IT; prefrontal cortex 5 PFC)
that represents the ventral visual processing stream
(the object vision pathway; see [Ungerleider and Mish-
kin, 1982]). Each region contains populations of neuro-
nal assemblies of basic units, each of which is an
interacting excitatory-inhibitory neuronal pair that
represents a cortical column. As noted earlier, the
limited spatial and temporal resolution of PET (and to
a lessor degree fMRI) means that the neuroimaging
signal from even a single voxel has contributions from
the activity of multiple neuronal populations. In our
model, each region (except IT) contains subpopula-
tions with excitatory neuronal units having different
response properties. In V1/V2 and V4, we have neuro-
nal units with different orientation selectivities. In
PFC, we have four different types of neuronal units
whose response properties are based on the findings of
Funahashi et al. [1990]: units that respond when a
visual stimulus is present, two kinds of units that show
activity during the delay interval, and units whose
activities increase when a match between the second
and first stimuli occurs. Feedforward and feedback
connections between regions are based on primate
neuroanatomical data. Parameters are chosen so that
the excitatory elements have simulated neuronal activi-
ties resembling those found in electrophysiological
recordings from monkeys performing similar tasks
[e.g., Funahashi et al., 1990]. A functional neuroimag-
ing study is simulated by presenting pairs of stimuli to
an area of the model that represents the lateral genicu-
late nucleus (LGN). Like Arbib et al. [1995], we
simulated rCBF data by integrating the absolute value
of the synaptic activity over the time course of the
study within the different areas for each task. For
details about the parameters used in the model and a
thorough discussion of all the assumptions employed,
see Tagamets and Horwitz [1998].

The neuronal firings in each brain area at various
times during presentation of a single test item are
displayed in Figure 1. During the initial stimulus
presentation, all brain regions show significant neural
activity. During the delay interval, the period when the
stimulus must be kept ‘‘in mind,’’ there is significant
activity in two prefrontal populations. When the sec-
ond stimulus appears during the response portion of
the task, neural activity again increases in all areas and
a subpopulation in PFC responds only if the second
stimulus matches the first. There is also a control task,
where degraded forms of shapes are used as visual
input to the model, but no representation has to be
maintained in working memory. When the simulated
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rCBF values of the two conditions are compared
[Tagamets and Horwitz, 1998], the differences have
values similar to those found in experimental PET
studies of face working memory [Haxby et al., 1995].

An important feature of the model concerns how the
‘‘task instructions’’ are handled so that the model
knows which task (DMS or control task) had to be

performed. This was accomplished by means of a
continuous ‘‘attention’’ variable that modulates a sub-
set of prefrontal units by diffuse synaptic inputs, the
functional strength of which controls whether the
stimuli are to be retained in working memory or not.
Activity in each brain area, therefore, is some combina-
tion of feedforward activity determined in part by the

Figure 1.
Shown are excerpts from a ‘‘film’’ depicting the simulated neural
activity at various times during one trial of the DMS task. A.
Regions used in the large-scale neural simulation. Shown on the
brain are approximate locations of the neural populations used in
the simulation. (V1/V2 is shown on the lateral surface of the brain,
although it represents a more medially placed region.) Each square
represents 81 excitatory units (inhibitory units not shown). The
units in V1/V2 correspond to neurons with vertical orientation
selectivity (model units with horizontal orientation selectivity not
shown); in V4, the units correspond to neurons that respond best
to corners (not shown are neurons with vertical and horizontal
orientation selectivity). Four classes of prefrontal neurons are
shown whose simulated electrical activities are similar to those
found experimentally [Funahashi et al., 1990] (they are displaced

spatially here, even though in real brains these neurons are
intermingled); neurons in the posterior group of PFC respond
when a stimulus is present; neurons in the two middle groups are
active during the delay interval; neurons in the anterior group
increase their activity if the stimulus presented following the delay
is the same as that preceding the delay. B–D. Simulated neural
activity in each brain region during various portions of one trial of
the delayed match-to-sample task. B. A shape (shown behind the
brain) is presented, and neural activity (high activity is in white, low
activity in black) increases in most brain areas. C. During the delay
period, activity in two of the prefrontal neural populations remains
high. D. Because the second stimulus is the same as the first, a
group of response neurons in prefrontal cortex show increased
activity. Figure adapted from Horwitz [1998].
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presence of an input stimulus, feedback activity deter-
mined in part by the strength of the modulatory
attention signal, and local activity within each region.

The synaptic activities of all populations in a local
brain area contributed to the simulated hemodynamic
signal, as is the case in actual experimental data. But in
our model we can keep track of the activities of each
individual population (indeed, we can follow the
dynamics of every individual neuronal unit) and thus
determine how each affects the functional neuroimag-
ing signal. Moreover, the synapses in a local cortical
brain region, whose activities are summed to produce
the hemodynamic signal recorded by PET or fMRI, are
a mixture of synapses coming from neurons in other
brain areas (studies suggest that these constitute ,10–
20% of the total) [see Douglas et al., 1995] and those
originating from local neurons [see Tagamets and
Horwitz, 1998, for details]. These ratios were incorpo-
rated into the design of our model’s architecture.
Furthermore, the afferents coming from outside the
local region themselves are a mixture of fibers from
numerous brain regions. This makes it difficult in real
data to ascertain neurobiologically why a given brain
shows a change in PET/fMRI signal when task condi-
tions are varied, during pharmacological stimulation,
or when scanning individuals with neurological or
psychiatric disorders. It is through modeling of the
type shown above for the DMS task that one can start
determining how critical any single neurobiological
factor is in affecting performance and in contributing
to the measured hemodynamic signals.

Besides its use in helping to assess the neurobiologi-
cal factors underlying functional neuroimaging sig-
nals, computational neuromodeling can also aid PET
and fMRI in assessing how neural activity becomes
transformed by the multiple steps involved in its
conversion into what is measured by PET and/or
fMRI. We illustrate this in the next section.

SIMULATING AN FMRI STUDY

We altered our large-scale neural model so that fMRI
experiments could be simulated [Horwitz et al., 1998].
Rather than integrating the absolute value of the
summed synaptic activities in each brain region over
the entire experiment as would be done to simulate a
PET study, the integration time is reduced to 50 msec
(the basic time step in the model is 5 msec), which
compares favorably with the slice acquisition time for
many fMRI scanners. However, fMRI must contend
with the hemodynamic delay problem: the brain’s
vascular response to a transient change in neural
activity is delayed and dispersed in time; the delay has

been estimated to be ,5–8 sec [see Bandettini et al.,
1993; Friston et al., 1994]. We used a Poisson function
to represent the hemodynamic delay [cf. Friston et al.,
1994].

Thus to simulate an fMRI study, the absolute value
of the synaptic activity is integrated over 50 msec (slice
acquisition time). The resulting time series for each
region can be thought of as the ‘‘gold standard’’—what
a noiseless, fast MRI scanner would show if there were
no hemodynamic delay (other possible confounds
such as nonlinearities affecting the relationship be-
tween blood oxygenation dependent signal and cere-
bral blood flow are ignored). Each regional time series
is then convolved with the hemodynamic response
function, i.e., a Poisson function, which is character-
ized by the parameter l (its mean and standard
deviation; units are in seconds) to produce a tempo-
rally smoothed time series. This smoothed time series
is sampled every Tr sec (Tr is the repetition time) to
generate the simulated fMRI time series, since in most
fMRI studies it takes time to sample each slice in the
imaged volume. No sources of noise other than neural
noise are assumed, which implies that our simulated
results represent the best that can be achieved with
fMRI.

The recent interest in event-related fMRI [e.g., Court-
ney et al., 1997; Dale and Buckner, 1997] provides the
setting for our simulation. The relatively high tempo-
ral resolution of fMRI allows for experimental designs
that can try to capture different components of the
cognitive tasks under study. For example, Dale and
Buckner [1997] showed that selective averaging of
mixed trial stimuli, similar to that done in evoked
potential studies, was possible and that stimuli spaced
even as close as 2 sec apart added in a roughly linear
fashion in V1.

One problem with these approaches is that they are
hard to validate; most studies have used simple sen-
sory or motor tasks to evaluate their procedures, but
their applicability to high-level cognitive tasks is diffi-
cult to ascertain. The problem with such tasks is that
there can be extensive neural activity in multiple brain
regions in the absence of external stimuli, or when no
overt motor responses are employed. Moreover, much
of this neural activity is not directly under experimen-
tal control. We use our modeling to illustrate some of
these points, thus demonstrating the need for care in
interpreting the results of event-related fMRI studies.

Figure 2A shows the simulated experimental design.
A shape stimulus (S) is presented to the LGN for T sec;
there is a delay of 3T sec during which the stimulus is
to be retained in working memory. A second shape
stimulus (S8) is then presented for T sec; if it is the same
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shape as S, some frontal response neurons should
increase their activity. Following an intertrial interval
of 3T sec, a degraded shape stimulus (C) is presented
for T sec, there is a delay of 3T sec, during which the
degraded shape need not be retained in working
memory; a second control stimulus (C8) is presented
for T sec, and there is an intertrial interval of 3T sec.
This entire cycle is repeated six times, thus represent-
ing a simulated fMRI study. The attention level during
the DMS task is set at 0.3 (arbitrary units), during the
control task at 0.2, and during the intertrial interval at
0.05. Note that this design contains a mixture of

processing modes similar to those found in a typical
imaging study. There are different time intervals that
are distinguished by whether stimuli are present or
absent, whether stimuli need to be retained in working
memory or not, and whether or not the attention level
is high. Neural activity, especially in anterior brain
regions, can be high both when stimuli are present and
when they are not. We assume for this example that the
hemodynamic delay is characterized by a Poisson
function with a l of 2T and that the fMRI data is
obtained by sampling the hemodynamically con-
volved (HC) time series every Tr 5 T sec.

Figure 2.
A. Shown is one trial of the simulated fMRI DMS and control task. S
corresponds to a sample shape presented to the LGN for T sec. A
delay of 3T sec occurs; the model is to retain the representation of
S in working memory. A second shape (S8) is presented for T sec
during which the model decides if it is the same as S. Following an
intertrial interval of 3T sec, a trial of the control task is presented,
which uses degraded shapes (C and C8); during the control task no
representation has to be maintained in working memory. B. Part of
the time course of the absolute value of the summed (over 50

msec) synaptic activity in V1/V2 (black) and PFC (gray). The types
of stimuli used for each temporal epoch are shown above several
of the V1/V2 peaks; symbols are the same as in A. C. The same
portion of the time course as in B after the integrated synaptic
activity has been convolved with a Poisson function (l 5 2T)
representing the hemodynamic delay. D. The time course obtained
sampling the data in C every T sec; this represents the simulated
fMRI activity. Units along the vertical scale are arbitrary.
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Figure 2B shows a portion of the time series for the
absolute value of the integrated (every 50 msec) synap-
tic activities in V1/V2 (black curve) and PFC (gray
curve), whereas Fig. 2C corresponds to the HC time
series and Figure 2D to the simulated fMRI time series.
The actual neural activities shown in Figure 2B show
the features that one would like to capture by fMRI.
For V1/V2, activity is high when a stimulus is present
and low when a stimulus is not present. For PFC,
activity during the times when stimuli are not present
is high when the stimulus is being kept in working
memory (e.g., around time 5 50), lower during the
delay period of the control task (e.g., around time 5 58),
and very low during the intertrial interval (e.g., around
time 5 63). For this particular example, the V1/V2
activity, although delayed and dispersed in time due to
the hemodynamic delay, is discernible nonetheless in
the fMRI time series. However, this is not the case for
activity in PFC; the convolving together of various
types of neural activity when stimuli are present with
that when they are absent results in a time series that
misrepresents the level of activity during the various
components of the DMS task. This blurring together of
the different cognitive epochs in our model is more
pronounced in anterior areas than in posterior areas
because of the higher neural activity in the former than
the latter during the delay periods. Thus these simu-
lated results in anterior brain areas, especially the
prefrontal cortex, suggest caution in interpreting event-
related fMRI in brain areas where there may be
substantial neural activity, some not under experimen-
tal control, when stimuli are not present.

CONCLUSIONS

The centrality of functional brain imaging in linking
neurobiological function to cognitive function has
become increasingly evident. The spatial and temporal
richness of functional brain imaging data sets, how-
ever, compels the need for neurocomputational model-
ing to help interpret their neuroscientific meaning. The
large-scale neural model of shape working memory
that we presented here provides an illustration of this
approach. We think that such large-scale models offer a
way by which multiple observations (e.g., results from

lesion studies, MEG data, fMRI data, nonhuman elec-
trophysiological recordings) concerning specific cogni-
tive tasks can be integrated into a coherent understand-
ing of how the brain’s activity relates to observed
behavior.
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