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ABSTRACT

A number of experiments investigating four-dimensional variational data assimilation using the
adjoint method are presented. It has been proposed that the method will be able to produce
improved initial conditions in data-sparse regions. In order to describe the flow in a region where
there is little data, it is necessary for observational information either to be advected into the
region, or to cascade downscale from larger scales characterizing the separation between obser-
vations. We focus on the latter and examine the method’s ability to “fill in” small-scale detail
determined dynamically from large-scale data. We choose to examine barotropic f-plane flow
since it is one of the simplest geophysical settings involving a wide range of scales. In the limit
of small error, predictability studies have shown that exponential error growth occurs along the
gradients of two highly-correlated realizations. When the realizations have decorrelated, error
statistics saturate at climatological levels. By appealing to the adjoint of the linearized equations,
the adjoint method accounts for the former behaviour, but not the latter. When the assimilation
period exceeds the validity timescale of the linearization, the assimilated fields show spectra
which are spuriously shallow in the small scales, following the basic-state gradients. Moreover,
it is essential to note that the validity timescale of the linearization is a function of lengthscale.
Therefore, for a given assimilation period there is a scale below which useful initial conditions
cannot be obtained. Equivalently, for a given model resolution, there is an assimilation period
beyond which the exact initial conditions cannot be recovered. Some speculation on the optimal
resolution at which to. perform 4D data assimilation as a function of the assimilation period is

offered.

1. Introduction

Recently, there has been a renewed interest in
four-dimensional data assimilation as a potential
remedy to some of the deficiencies of current
statistical interpolation schemes. This has been
spawned by the work of Lewis and Derber (1985),
LeDimet and Talagrand (1986) (LDT86 hereafter)
and Talagrand and Courtier (1987) (TC87 here-
after) who demonstrated that the use of adjoint
methods made it feasible to perform a quadri-
dimensional variational assimilation (4Dvar) with
fairly realistic models (for a review, see Courtier
etal. (1993)). The strong points of 4Dvar are
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several. With respect to the observations, it allows
them to be assimilated at the time they are made
and in their raw form. Moreover, 4Dvar is a con-
strained minimization in that initial conditions X,
at ¢, are sought to fit globally all observations con-
tained within a time interval (¢,, ¢, + T,), where T,
is the assimilation period. These initial condi-
tions act as control variables of the minimization
and determine the model state X(¢) at all times.
Recently, Andersson et al. (1992) have shown
how this introduces a dynamic coupling between
the model’s variables. For instance, their results
showed that observations of humidity inferred
information about the advecting wind field.

With respect to the fact that model resolutions
are constantly increasing, observational networks
will always remain in some sense coarse and the
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4D fitting of models to data will be expected to “fill
in” the fine detail between data points in a manner
which is dynamically consistent with the larger
scales. To what extent is this possible? To answer,
one must first consider the mechanism by which
information is transferred from scale to scale. As a
first step in this process, the most geophysically-
relevant transfer mechanism was investigated in as
simple a context as possible: the enstrophy cascade
of barotropic f-plane homogeneous turbulence.

It would appear that fully-developed turbulent
cascades present a challenge to the method. A func-
tional measuring a spatial and temporal mean
discrepancy between model and observation is
minimized by appealing to the adjoint of the equa-
tions linearized about the previous guess. The next
guess is chosen somewhere along a phase-space
direction obtained from the functional’s gradient.
Exactly where, is determined by integrations of
the direct (ie., fully nonlinear) model. Clearly,
the linearized equations can only be expected
to approximate well the model equations for
times less than the nonlinear timescale, 7o . In
numerical weather prediction 7y, characterizes the
growth and decay of synoptic eddies and is of the
order of 3 days. The problem is that 7y also
governs the transfer of information from one scale
to another. We are therefore faced with conflicting
requirements. For significant scale redistribution
of the observational information, 7T, must be of
order 7., while for accuracy of the tangent
linear model, T, < 7y. The situation is further
complicated by the fact that, depending on the
spectrum, the nonlinear timescale is a function of
lengthscale.

The model details are presented in Section 2. In
Section 3, we compare integrations of the linear
model with differences obtained from two non-
linear-model integrations, to demonstrate that the
limit of validity of the tangent linear approxima-
tion is a function of lengthscale, the smallest scales
becoming nonlinear most quickly. The rest of the
paper deals with data assimilation experiments
where “observations” are saved from previous
model integrations. The focus here is on the
transfer of information in the enstrophy cascade.
It follows that neither our observations nor our
model have error: they are perfect to within the
precision of our computations. In Section 4, a data
assimilation experiment is presented in which
observations are provided at all spatial and tem-
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poral grid points in order to examine the nature of
the convergence of the method. It is found that
convergence is rapid in the large scales throughout
the assimilation period. In the small scales, con-
vergence near the beginning of the assimilation
period is slow. After O(10?) iterations, the bulk
of the error is contained in the finest scales at
the initial time. When the assimilation period
is lengthened well beyond 7y, large-scale con-
vergence is very slow, while the small scales
diverge. Similar experiments are performed in Sec-
tion 5 except that only observations of the largest
model scales are provided. Here, we investigate
the method’s ability to supply small-scale detail
dynamically consistent with the large-scale obser-
vations. We note that for small T,, the method
does not converge in the small scales early in the
assimilation interval. However, during the course
of the assimilation period, information from the
large-scale observations is redistributed spectrally
by the nonlinear transfer if 7, is large enough. At
the end of the assimilation period the small-scale
error is 2 orders of magnitude lower than at the
beginning. When T, exceeds the predictability
timescale for all lengthscales, the smallest error in
the initial conditions leads to a solution that has
no resemblance to the truth. In this case the small-
scale error approaches spuriously large values that
can be interpreted in terms of the nonlinear trans-
fer of predictability error in the enstrophy-cascade
range. At the same time, the form of the functional
becomes less and less quadratic as T, is increased,
eventually leading to multiple minima and a failure
of the minimization. This is further illustrated in
Section 6 by experiments involving a single obser-
vation (with complete spatial coverage) inserted at
t=T,. In Section 7, the Hessian matrix is com-
puted at the absolute minimum and is seen to be a
full matrix. Consequently, convergence is very
slow, even with a quadratic functional, and it is far
from obvious how to precondition the minimiza-
tion. The conclusions with respect to the relation
between optimal assimilation periods and resolu-
tion are discussed in Section 8.

2. The model and methodology

2.1. The numerical model

The barotropic vorticity equation on the #-plane
is
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§+J(w,o+ﬁv=f—9<c>, 1)
where ¥ = — °y+l//, Csz!//, uz_al/,/ay9

v =0y/0x, J is the Jacobian, fis a forcing term and
2 is a linear dissipation operator. Since geophysi-
cal fluids are at statistical stationarity, we apply an
ad hoc forcing mechanism to the large scales. This
affects our choice of Z in that energy in barotropic
flow is cascaded to larger scales, where it must
be absorbed by the dissipation. Here, we apply a
Rayleigh dissipation and an iterated Laplacian
to dissipate the small scales selectively, 2=
ve + ¥(V?)3. We have employed hyperviscosity in
order to reduce the spectral width of the small-
scale dissipation range to a minimum (see, e.g.,
Basdevant and Sadourny (1983)).

The numerical model is similar to that used by
Bartello and Holloway (1991). It integrates (1)
on a doubly-periodic domain of length 27z using
pseudo-spectral methods (Orszag, 1971). The
fields can be expressed in physical or Fourier space
via discrete Fourier transforms. In the latter (1)
can be written

0 » .~
[E+iw,‘+vk] Ck=fk+ Z Akp{PCq, (2)
pP+g=k

where a caret is used to denote a Fourier-space
quantity, k is the wavevector, k= k|, w,=
k,(U,— B/k?)is the linear Rossby-wave frequency,
Ay, =2k xp/p? f, is the forcing and v, =
v, + vk'¢ represents the dissipation operator 2.
The forcing term was

1’
fk=a{0,

where « = 0.04 € R and k, = 3. A mean zonal wind
U,=0.3 was also imposed. Although U, does
not interact with the other modes, it provides a
net translation of the fluid over the stationary
forcing field, effectively introducing a frequency
2n/k,U,~ 6. Unless otherwise specified, we used
A" =64 collocation points per dimension and
applied circular Fourier-space truncation at
k= (A" —3/2)/3 in order to avoid aliasing errors.
The extra term “3/2” conveniently assures that
all of the wavebands used to define spectra below
are complete. For the runs presented here we

if k=(0, £k, or
otherwise,

(xk/, 0),
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used a timestep, At=0.95/k; with v,=0.02 and
v=28.80/k35.

We note that the resolution is modest by today’s
standards. However, we are not attempting to
simulate inertial ranges as such, but only require a
range with significant nonlinearity. In addition,
this resolution allows us to perform integrations,
corresponding to several days in atmospheric
terms, in just a few seconds of CPU time. This is a
definite advantage since, in the following we
present data-assimilation experiments with up to
500 iterations of the adjoint method. The calcula-
tions were performed using the NEC SX-3 at the
Centre d’Informatique de Dorval.

2.2. Model statistics and scaling

Before introducing the adjoint method forma-
lism, we examine the “climatology” of the model
and specify the appropriate scaling that permits us
to convert the results to dimensional atmospheric
variables. In the absence of forcing and dissipation
(1) conserves fluctuation energy, E1 and enstrophy,
Z where

1o 1602
Er=—
T 2% K

and Zr=Y K
k

The reality of ¢ implies that {, is the complex
conjugate of £ _ £

We form the instantaneous spectrum, Q(k), of a
quantity, Qr, by summing its modal contribu-
tions, @, , in k-space rings of unit thickness centred
on wavenumber k, i.e.,

2nk

Q(k)=M(k)

)Y O

k—(12)<|K'| <k +(1/2)

(3)

where M(k) is the number of discrete modes in the
kth waveband and the factor 2nk/M (k) serves to
smooth out the modal distribution in k-space. The
energy spectrum, E(k), and enstrophy spectrum,
Z(k) are obtained with @, = |{,.|*2k’? and
0. =€+ |3, respectively.

The model was spun up from random initial
conditions with E+= 10~ and integrated for 500
time units. Time series of the total energy and
enstrophy are shown in Fig. 1. After an initial over-
shoot the nonlinearity begins to act and the system
settles down to oscillations about the values
E;~0.04 and Z; ~ 0.5, where the overbar is used
to denote an ensemble average. (Note that if the
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Fig. 1. Timeseries of (a) fluctuation energy and (b) enstrophy for the spin-up simulation with the direct model.

flow is statistically stationary and ergodic then
time averages can be used as ensemble averages.)
We use these values as the basis for our scaling
arguments which are stated using one significant
digit. The large-scale nonlinear turnover. time
can be identified with Ty ~ 27/l ms = 21/Z 12 9.
Using the synoptic-scale advective timescale,
. ~ L/U =3 days, we can associate one model
time unit with 0.3 days. The rms velocity of
eddy motions was U, = (2E1)"?~ 0.3, which is
approximately the same value as the imposed
mean flow U,. The Rhines (1975) wavenumber,
kg=(B/2U )" can be used to define a lengths-
cale above which the flow is dominated by Rossby
waves and below which turbulence prevails. We
have f=0.5 and therefore k;~ 1, while the mid-
latitude atmosphere has f~1.6x10 " m~!s~!
and kg~ 2m/7000 km if Uy~ 10ms~'. There-
fore, our domain size corresponds roughly to
7000 km, and since k,=3, the forcing scale is
2000 km. As a first approximation, we view this as
the injection of barotropic energy at the synoptic
scale. The ratio of B to the eddy vorticity gradients
can be expressed as in Bartello and Holloway

(1991), B = (BU.ns/lms) = 0.3. The Rayleigh
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friction term results in a viscous dissipation
of the most energetic scales with spin-down time,
Tr ~ v ' = 50 model time units or approximately
16 days. Since this is 6 7, it is safe to conclude
that the Rayleigh dissipation is weak and that the
model is dominated by nonlinearity at most scales.

In order to describe the model’s statistically
stationary state we performed an integration of
1007y, duration starting from the end of the
run presented in Fig. 1. In Fig. 2 we present the
average energy spectrum E(k). Here, we note a
relatively flat curve for k <k,, above which the
spectrum drops off roughly following E(k) ~ k%,
with a~4. Although this is steeper than atmo-
spheric observations, it is typical of that obtained
with barotropic models (Basdevant et al., 1981).
Above the dissipation wavenumber, kp, ~ 14, the
spectrum falls off faster than algebraically in the
dissipation range. These familiar results are typical
of 2D turbulence simulations (Basdevant et al.,
1981; Lesieur, 1990). A detailed examination of the
nonlinear transfer term in the evolution equation
for E(k) revealed that the model sustains an active
enstrophy cascade, although its wavenumber
range is small.
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Fig. 2. Time-averaged energy spectrum of the direct
model. Arrow indicates k.

2.3. The adjoint method

To apply the adjoint method, we introduce the
tangent linear model by considering a reference
solution to the nonlinear equations, { and a pertur-
bation about that solution, 6. We write (1) for the
total field { +d¢ and then subtract the equation
for { to get

0 0
[a‘ﬁ v 5;] 3L+ I, 00) + J(ov, O)

+ J(0y, 0) + pov= —2(80). (4)
The tangent linear model is obtained by neglecting
the term J(dy, 6(). It can be used to approximate
the evolution of the error caused by a change 4,
in the initial conditions. If this change is small but
finite, it will only be accurate for a given period of
time, referred to as the limit of validity of the
tangent linear model, and discussed in the next
section.

If it is assumed that the error is governed by the
linear model, then its evolution in Fourier space
can be symbolically represented as

8L(1) = R(t, to) 8L, (5)
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where 6¢(¢) represents the vector of Fourier coeffi-
cients whose components are {6f «()} and R(4, 1)
is the resolvent, associated with the tangent linear
model, that carries the solution from time ¢, to
time ¢ (see LDT86 and TC87). To assimilate data
spread out over a finite time interval (¢, t,+ T),
one seeks the initial conditions {, leading to a
solution {(¢) that will minimize the “distance”
between this solution and the data as measured by
the distance function (or functional)

N
I =1 X (6= 0, 0p.

Here, {,={(1,)= {fk(t,.)}, 0O; is an observation
available at time ¢,, while < , ) stands for the inner
product chosen as a measure of the error. For
example, inner products based on error energy or
error enstrophy would be, respectively

. 1oL lx

<cl,éz>5=5§c—“,§2 ,

<51,52>Z=26xkf*?1'
k

Here, the energy norm is used and, for the sake of
simplicity, the observations O, correspond to full
spectral states unless otherwise specified.

The minimization of the distance function can
be carried out iteratively using algorithms such
as conjugate gradient or quasi-Newton methods,
the latter being generally more efficient (Gill and
Wright, 1981; Navon and Legler, 1987; Gilbert
and Lemaréchal, 1989). All experiments in this
paper were carried out with a variable storage
quasi-Newton algorithm that uses information
from past iterations to precondition the minimiza-
tion by approximating the inverse of the Hessian
matrix (see Section 7). At each iteration, the func-
tional J({,) and its gradient must be computed.
After integrating the direct model to obtain the
solution £(f) the evaluation of J itself is
straightforward.

In LDT86 and TC87, ideas from control theory
were used to find an efficient way of computing VJ.
They noted that the variation 6J due to an
infinitesimal change 6C, of the initial conditions
can be written as

N
8J=Y (R(t;,t5) (o, (i~ 0,>.

i=1

(6)
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The fact that R(¢,1,) is a linear operator, %,
makes it possible to use the property that for any
& H, > H,, its adjoint #* is defined by

(o, b, = L*x, b),

where H, and H, are vector spaces with inner
products {a,,a,), and {b,, b,)»,, respectively.
Consequently, (6) can be rewritten as

oJ = <5fo, Y. R*(1,, to)(éi_oi)>' (7)

i=1

Therefore,

N
Ved(lo)= ¥ R*(t,, to)(Ci— 0)). (8)

i=1

The subscript g indicates that the gradient is
defined with respect to the energy norm. One is
then left with the determination of the adjoint of
R(t;, ty). It has been shown in LDT86 and TC87
that R*(¢,, t,) corresponds to the resolvent S(z,, ¢;)
of the adjoint model which is (see Appendix)

0 0 A
('a—t'l' U, a) o* = —L*{) 6*¢,

with
PO ¥ = —AJA~S*, A1)

—J(C+ By, A7 0*) — D(*0). 9
Consequently, (8) implies that to obtain the
gradient, the adjoint model is integrated backward
in time from time 7, to ¢, using the difference,
C:-—O,- as an “initial” condition. Theoretically,
the calculation of the gradient is exact since the
tangent linear approximation is applied to only
infinitesimal changes, 650 to the initial condi-
tions. However, in practice, numerical errors are
involved and it is necessary to use the adjoint of
the numerical scheme instead of discretizing (9).
This is what has been done here by employing a
leap-frog scheme and its adjoint as described
in TC87. Verification of the adjoint code was
made by using the Taylor formula (Thépaut and
Courtier, 1991).

The adjoint model involves twice the number of
nonlinear terms so that its integration is approx-
imately twice as costly. Given the fact that the
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minimization algorithm requires several iterations,
each requiring one or more evaluations of the func-
tional and its gradient, the cost of one iteration
corresponds roughly to that required to integrate
the model over a period of 37,. As will be seen
shortly, the number of iterations can be quite high,
which makes this method an expensive proposi-
tion if the model used is complex.

3. Linear model integrations

To investigate the accuracy of the tangent linear
model, we performed an integration of 50 model
time units (16 days) with the nonlinear model.
The result, {, =, served as a basic state for the
linearized model. A perturbation field, 4, was then
initialized randomly and the linear equations were
integrated. For comparison we also performed a
nonlinear-model integration starting from {,=
{+ 6(. The perturbation, 8{(t =0), was confined
to the single waveband 13.5<k<145~kp,
implying that it contained only the smallest active
scales of the model. Its energy was arbitrarily set to
approximately 3E(k = 14). The energy spectra of
both realizations (i.e., E,(k, t) corresponding to {,
and E,(k, t) corresponding to {,) as well as the
energy spectrum of the difference field, Es(k, ¢),
which is obtained from (3) using Q. = [6¢,.|%/2k'?,
are displayed at two instants in Fig. 3. At t=
28 = 37 the linear model performed well. This
may appear to be somewhat surprising since at
wavenumber 14 the perturbation amplitude was
initially of the order of the basic-state field,
implying that the linearization should have been
inaccurate from the start. However, near k~kp
the small-scale dissipation acts as rapidly as the
advective phase organization which precedes signi-
ficant transfer (see, e.g., Lesieur, 1990). As a result,
there was an initial phase in which E (k) was
considerably dissipated.

The spreading of the error energy both towards
larger and smaller scales is familiar from predic-
tability studies by Lorenz (1969), Leith (1971),
Leith and Kraichnan (1972), Litherland and
Holloway (1984), Herring (1984) and Métais and
Lesieur (1986). A word on these previous studies is
in order here. Most have performed evaluations
of statistical 2-point closure theories (such as the
eddy-damped quasi-normal Markovian theory
or EDQNM) for problems similar to the one
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Fig. 3. Comparisons between predictability simulations made with two nonlinear integrations (left-hand panels) and
with the tangent linear model (right-hand panels). (a) Resolution, 642 at ¢ = 28; (b) 64% at ¢ = 57 and (c) 2562 at ¢ = 28.
The curves represent E,(k) (solid line), E,(k) (dashed-dotted line) and E4(k) (dashed line).
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considered. These theories display E(k)~k~°
behaviour in the enstrophy range as opposed to
the steeper spectra observed in simulations here
and elsewhere. Nonetheless, many of their conclu-
sions serve as a valuable guide in the interpretation
of what follows. Particularly noteworthy is the
fact that Herring (1984) and Métais and Lesieur
(1986) found E4(k) ~ k! in the small-error limit.
In this limit Métais and Lesieur (1986) pointed out
that the EDQNM spectral energy equation for the
difference field in isotropic 2D turbulence can be
approximated at large k by

0 = o _ _
= Ey(k)=2 [ [ b Esa) dq] KE(K)

+ [ J: BkquZE(‘I) dCI] A[Es(k)]

+ [ | uat’Eta) dq] STEK)],

where

110/,,0
[ ]_Zpﬁ<k 6—k(k[ ])>,
0 _1—expl —(2uc+u,) 1]
kkqg = ,

Zﬂk+ﬂq
k _ 1/2

fo= A [ f k2E(K') dk’] + vk,
0

The 6, are model-dependent eddy damping rates
which are only weak functions of & at large & if
E{(k) is sufficiently steep (Lesieur, 1990). Using the
EDQNM prediction of E(k)~k~3, they noted
that the first term generates E;(k) ~ k ~! behaviour.
This agreed with their solutions of the full theory
since, in this case, o[ E(k)] = [ Es;k)]=0. If
however, we impose only the form E(k) ~k ~* and
E (k) ~k~#, where a, §>0, we obtain for the
three terms

%E,,(k) ~ AK?~* 4+ Bk~ F 4 Ck—=.

Therefore, if E;(k) is initially steeper than k>~ at
large k, we still obtain Es(k) ~ k*E(k). This result
is not very surprising, reflecting only the fact that

the exponential growth of small differences is
initially most rapid in regions of strong gradients.
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As the error grows, other terms enforcing simulta-
neous conservation in the two realizations become
important. Ultimately, at complete decorrelation,
we have [{,—(,1°=03+¢3-20,(,=2{* and
mean error growth ceases at twice the climatologi-
cal variance. We can conclude that there are two
limiting behaviours: for very small difference fields
the error growth is rapid and occurs along the
gradients, yielding Es(k) ~ k*E(k), while at com-
plete decorrelation the error growth saturates at
Ey(k)=2E(k). The important point here is that
the linear equations can only display the former
behaviour as they do not respect the necessary
conservation properties to achieve error-growth
saturation.

Referring back to Fig. 3b we note that at ¢ =57
the linear model’s &( field shows anomalously large
energies in the smallest scales, while the nonlinear-
model error has saturated at twice the climatologi-
cal spectrum. In Fig. 3c we present the results
of similar parallel integrations of the linear and
nonlinear equations, here using four times the
resolution (2562). These are displayed at the earlier
time of Fig. 3a. It is noted that, although the low-

Tesolution linear equations approximated well the

nonlinear set, the high-resolution linearization
performed poorly. Clearly, a limited number of
conclusions can be drawn from such a comparison.
In absolute terms, the validity timescale of the
linearization is determined by the amplitude of the
initial perturbation and its choice was completely
arbitrary. However, in relative terms we can say
that (i) for a given resolution there is a time after
which the nonlinear equations saturate at twice the
climatological spectrum Ej;(k)=2E(k) and the
linear set continues to display spurious growth
with E;(k) ~k?E(k) and (ii) that this occurs first
at large k. Not surprisingly, the linear model blows
up in the small scales, where frequencies are
highest and nonlinear saturation occurs first. As a
result we conclude that the validity timescale of the
tangent linear model is a function of resolution.
The limit of validity of the tangent linear
approximation is more stringent when it is made to
approximate the evolution of the forecast error, a
finite quantity. For instance, an extended Kalman
filter makes the approximation to describe the
evolution of forecast-error covariances (Jazwinski,
1970; Cohn and Parrish, 1991; Gauthier et al.,
1993; Bouttier 1993). In light of the results pre-
sented here, it is not surprising that in Gauthier
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et al. (1993), the use of the tangent linear model
was shown to lead to exponential growth of the
forecast-error variance in regions of strong vor-
ticity gradients. This was also acknowledged by
Bouttier (1994), who modified the formulation to
ensure that the variance did not exceed that of
climatology. As explained in Miller et al. (1994),
the nonlinearity also has some implications on the
formulation of the extended Kalman filter, which
is faced with a complicated closure problem
similar to that of the EDQNM predictability
studies cited above. The tangent linear model
is also employed in the characterization of the
singular vectors, which describe the initial condi-
tions leading to maximum error growth over a
given period of time (Lacarra and Talagrand,
1988; Molteni and Palmer, 1993).

4. The convergence of the method
This section describes the convergence of the

adjoint method when complete coverage of perfect
data is provided. The truth which we ask the

a) T, =10
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method to seek is the flow evolution (over 10 time
units &3 days) of the basic-state simulation
described above. Only one element of difficulty is
provided: the starting point of the minimization is
a model field taken from a completely different,
i.e., decorrelated, time. The error field is defined
as e™=¢0_¢™ where (' is the true field,
{9 the starting point and (™), the nth iterate of the
adjoint method. With respect to the linearization
discussed above, it is clear that for the first guess
[£®]/1¢7] is large. The tangent linear model can-
not possibly represent accurately the evolution of
the difference between the first guess and the truth,
as the neglected terms are initially of the same
order as the retained terms. As a result, the func-
tional is not quadratic and multiple minima may
exist. In this case, the end point of the minimiza-
tion could depend on the starting point.

In Fig. 4a we display the energy spectrum of the
error field, E{(k, t), which is obtained from (3)
using @, = |60)?/2k’?, for several iterations at
the beginning of the assimilation period, ¢=0.
The curve labelled “0” shows essentially twice the
ensemble-average spectrum since the correlation

107

107
2
€

W

T

107

109 : — .

1 10
k
b) T, = 40

Fig. 4. Initial error spectra, E™(k, ¢t =0), from the data assimilation experiment with observations at all scales at all
times. The various curves represent different iteration numbers, »; (a) assimilation period, T, = 10 model time units,

(b) T, =40 units.
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is negligeable. Right from the start, the method
converges and the largest scales are adjusted to fit
the observations. As the iterations proceed, the
minimization focuses its attention on increasingly
smaller scales until, after hundreds of iterations,
virtually all of the error is in the dissipation range.
In Fig. 5 a timeseries of the spatial-average error
energy over the assimilation period is displayed for
iteration number 270. It can be seen that almost
all of the error disappears after a very short time.
Since this error at =0 is confined to the smallest
scales, we conclude that the initial small-scale field
is only weakly dynamically coupled to the rest
of the observational data (see also Thépaut and
Courtier, 1991).

For this particular realization, we have tried
several similar experiments starting from random
initial fields, (¥, and have always obtained con-
vergence for T, = 10. It would seem that, although
the adjoint of the linearized equations returns a
phase-space direction of the functional’s gradient
which is unlikely to point to the true minimum
the method’s use of the fully nonlinear model
to explore the functional’s variability along this
direction is enough to reduce significantly the
functional’s value. The fact that convergence

107

1072
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107

10-11

Fig. 5. The evolution of the total error & = [ E"(k, t) dk
with time at the last iteration (n=270) for the experi-
ment of Fig. 4; T, =40 (solid line) and T, = 10 (dashed
line).

Tellus 47A (1995), §, 2

983

is obtained implies that the functional is rather
smooth in phase space. This conclusion is at
variance with the Lorenz-model study of Gauthier
(1992), implying that the conclusions reached can
depend on several factors. These two models differ
in their dynamics, and also by the fact that there
are only three real degrees of freedom in the
Lorenz model and over a thousand here. It is
therefore difficult to compare the length of the
assimilation periods in the two studies.

In order to investigate convergence when the
assimilation period is long compared to the non-
linear timescale of the model, we performed an
assimilation experiment, as above with full data
coverage, over a period of 40 model time units
(=13 days). As shown in Fig. 4b, the convergence
in the large scales is very slow and, more impor-
tantly, the method seems to be diverging in the
small scales. The consequence of having an
assimilation period that exceeds the decorrelation
time at all scales is that the solution at the end of
the interval has essentially lost its memory of the
initial conditions and this constitutes the ultimate
limit of the method. As will be seen below, the non-
linearities lead to secondary minima to which the
minimization may converge. Here, it is observed
that the minimum attained is consistent with a
systematic trend towards a spectrum more shallow
than the statistical mean of the model, as in the
linear-model simulations discussed in Section 3.
In the following, we investigate the more relevant
case in NWP where there is no observational
information at small scales.

5. Observations with restricted spatial
coverage

In this section, we present experiments per-
formed in the same manner as those of Section 4
with the exception of the spectral coverage of the
observations. We now supply observations of the
modes with k<k.=45 only. A more realistic
experiment would have been to provide accurate
observations on a coarse grid. This would truncate
the observational information at k.. However, the
small-scale signal would have been aliased on to
the larger scales. Our approach was to truncate the
true spectral coefficients, thereby removing obser-
vational error associated with aliasing, in order to
focus on the nonlinearity. The method is asked to
supply the small-scale detail in accord with the
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observations of the large-scale flow. We consider
assimilation periods, T,, ranging from 5 to 40
model time units (from 2 to 13 days). These are
rather long periods compared to experiments such
as those presented in Thépaut and Courtier (1991)
and Thépaut et al. (1993) who used an assimila-
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c) T. =20

Fig. 6. As in Fig. 4 for experiments where observations are supplied at large scales only: (a) 7,=5, (b) T, =10, (c)
T,=20and (d) T, =30.

M. TANGUAY ET AL.

tion window of 24 h, but their aim was to test the
method within an operational setting to demon-
strate the feasibility of its implementation. This
point is discussed further below.

In Fig. 6 we plot the error energy spectra
E(™(k,t) at t=0 for several different iterations,
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107

10

d T, =30
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n, for some of the experiments. For the shorter
assimilation periods the method is essentially
unable to reduce the error in the unobserved
small scales at #=0. In this range, the first-guess
field remains almost unaltered, implying that the
gradient of the functional is weak in the phase-
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space directions corresponding to the small scales.
For longer assimilation periods convergence is
slow even in the larger scales and a spurious
approach to E,(k) ~k2E(k) is noted in the unob-
served small scales. In Fig. 7 are displayed the
error spectra E ((k, t) at n = 500 iterations for the
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Fig. 7. Error spectra at the beginning, middle and end of the assimilation period for the experiments of Fig. 6 at
n=>500: (a) T,=S5, (b) T,=10, (¢) T, =20 and (d) T, = 30.
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beginning, middle and end of the assimilation
periods for the same T, ’s as in Fig. 6. It can be seen
that the small-scale error is largest at £=0 and
that, during the course of the assimilation period,
it decreases. The rapidity with which it does so
depends on the length of the assimilation period.
The experiment with T, =20 time units shows a
two-order-of -magnitude decrease in small-scale

TRUTH

M. TANGUAY ET AL.

error at the end of the period. At the same time, the
large-scale error actually increases, reflecting the
two-way cascade of predictability error. In Fig. 8,
the n=>500 vorticity field for this experiment is
plotted in physical space along with the true field,
at the three different times referred to in Fig. 7c.
The field at : =0 (Fig. 8a) does not at all look like
a model vorticity field, since at this time, the large

GUESS

Fig. 8. Vorticity fields for the experiment of Fig. 7 with T, = 20 at the beginning, middle and end of the assimilation
period; left-hand panels are the truth, right-hand panels were obtained from the adjoint method using large-scale

observations only; (a) =0, (b) r=10, (c) = 20.

Tellus 47A (1995), 5, 2
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scales reflect the observations, while the small
scales are taken from the completely decorrelated
initial guess. Not surprisingly, the mixture displays
a lack of coherence. Although discrepancies are
noted at =10, the error has been considerably
reduced and the field is much more coherent.
This trend continues and at =20 (Fig. 8c) the
assimilated field is quite accurate.

It is important to ask the extent to which it suf-
fices to have the initial large-scale flow treated
accurately in order to obtain reasonable fields
at t=20. To investigate, we performed a set of
control runs which resemble 3D data assimilation
in that observational information is injected at
one instant only. In Fig. 9 we plot the covariance
between the forecast and the truth (normalized by
the truth)

= <A$’ Ei”)z
&0, 80y

as a function of time, where ¢ is, in turn, % and
the various control runs. The first of these was
initialized with Fourier coefficients set to those of
the true field at the observed scales (k < k) and set
to zero for k > k.. The second has perfect data for
k <k and the true Fourier amplitudes at k >k,
but with a phase scrambling yielding zero correla-
tion with the truth at these scales. Lastly, we sup-
plied perfect data for k < 8.5 such that €(0) was
approximately equal to that obtained with (%0,

(1)

0.60 - N \
.

)
!

Fig. 9. Covariance between the forecast and the truth
(normalized by the truth) as a function of time; 4Dvar:
experiment of Fig. 8 with T, = 20 at n = 500, 3D: control
run with Fourier coefficients initialized perfectly for
k <k and set to zero for k = k., 3D/scrambled: control
run with Fourier coefficients initialized perfectly for
k <k, and with scrambled phases for k > k., 3D/high-
resolutions: control run with Fourier coefficients
initialized perfectly for k < 8.5 and set to zero for k > 8.5.
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corresponding to a 3D assimilation benefitting
from improved spatial coverage of observational
data as compared with the 4D assimilation. It
can be seen in Fig. 9 that the adjoint method
significantly outperforms all of the control runs,
indicating that important dynamical information
has been transmitted to wavenumbers k >k in the
assimilation experiment.

In Fig. 10, we display the total error energy,
& ={F E(k)dk, the large-scale error energy,
& =\t E (k) dk and the small-scale error energy,
és={7 E(k)dk at the end of the assimilation
period (iteration = 500) as a function of T,. The
terms large- and small-scale are here being used
merely to indicate the presence or absence of data.
Our observational information was truncated
at k. = 4.5, which corresponds to 1600 km. We
propose to use & as a means to assess the method’s
ability to supply small-scale detail in accord with
large-scale observations. Recall that it is from the
end of the assimilation period that one nor-
mally commences a forecast-model integration. In
Fig. 10 it can be seen that & displays a minimum
at T, =20 ~ 2.2t , which corresponds to 6 days.
Significantly poorer performance is noted at both

Fig. 10. Total error, & (solid line), large-scale error, &,
(dashed line) and small-scale error, & (dotted line) at the
end of the assimilation period as a function of the
assimilation period.
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shorter and longer assimilation periods. For T,
small, the transfer has not had time for significant
spectral redistribution of observational informa-
tion, while for T, large, the spurious small-scale
behaviour of the linear model has caused a relaxa-
tion to a very shallow spectrum.

6. Observations with restricted temporal
coverage

In this section, we consider 4Dvar experiments
where initial conditions are adjusted to fit an
observation with full spatial coverage, but inserted
at just one instant, t=17,. As discussed in Sec-
tion 3, infinitesimal differences in initial conditions
cause two realizations eventually to become com-
pletely decorrelated as neighbouring trajectories in
phase space diverge. The success of the present
experiments would seem to depend on the ratio of
T, to the decorrelation, or predictability, timescale
- If T/t €1 at all scales, then the quality of
the fit to the data at the end of the assimilation
period is a relatively smooth function of the con-
trol variables (i.e., the initial conditions). On the
other hand if 7', is much larger than 7, , the situa-
tion appears hopeless, since the system at t=T,
will have essentially lost its memory of the control
variables. For intermediate values, smaller scales
will have become decorrelated, while progress may
still be possible at eliminating large-scale error.
Experiments of this type are now presented and
are similar to those of Thépaut and Courtier
(1991) (referred to as the inversion problem). The
aim is to test the ability of the method to recover
the initial conditions from the full model state
at the final time. Since only one observation is
involved, the functional reduces to a measure of
the errorat r=T,:

J(Lo) = CUT,) = LUT,), {T) —CAT.)),

while the initial error is {,— {(0), o — ©(0)>.
It is convenient to rewrite (10) in terms of A{(¢) =
L(t) — £¥(1) to obtain

(10)

JoAALo) = (R(T,, ty) ALy, R(T,, ty) ALoy

+ higher-order terms in A{,. (11)

If the starting point of the minimization is such
that 4{, is sufficiently small to be within the
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limit of validity of the tangent linear approxi-
mation, then (11) implies that the functional is
approximately quadratic and consequently that
the minimum is locally unique. On the other hand,
as the validity timescale of the tangent linear
model is exceeded, J can no longer be considered
quadratic and multiple minima become a distinct
possibility.

Fig. 11 summarizes the results of experiments in
which the assimilation interval T, is gradually
increased, by displaying the spectrum of the error
as a function of iteration. It is interesting to
observe that the lack of convergence occurs more
rapidly than in Section 5. At 7', = 10, the error has
been slightly reduced in the large scales but is
increased in the smaller scales. Since the method
seems to have converged, but not to the absolute
minimum {“¥0), the functional was evaluated
along the phase-space direction joining {?(0) to
the point of convergence {§. This reduces J to a
function of a single variable « defined as

Sla) = J((0) + ({3 — £(0))).

By definition, the spectrum of the change in the
initial conditions has the form of the error spec-
trum at the final iteration as shown in Fig. 11.
Fig. 12 shows f(a) for —2 < a <2 as a function of
the distance with respect to {)(0). At T, = 2.5, the
functional shows a single minimum, indicating
that convergence has not yet saturated. But for
T,=5,6.25 and 10, the minimization converged to
a secondary minimum of f(«) and further itera-
tions may not have improved the quality of the
analysis. It is important to stress that this is only a
strong indication of a true secondary minimum in
the complete phase space, since the gradient,
although very weak at convergence, may not be
exactly zero. Fig. 12 shows also that the distance
between the secondary and absolute minima
increases with 7,, and the fact that the value of
J(L¥) is also increasing with T,, indicates that
the fit at the end of the assimilation period is
degrading as well. This is corroborated by Fig. 13,
which shows the spectrum of error {*(¢) (with
£*(0) ={§) at several times. Fig. 11 at T, =5 and
6.25 shows that the change in the initial conditions
required to find the secondary minimum has a
larger component in the small scales, but when
T, =10, the initial error is spread over a wider

Tellus 47A (1995), 5, 2
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range of scales. This is to be expected given the
results presented above, demonstrating that the
tangent linear approximation ceases to be valid
sooner in the small scales. This translates to a more
nonlinear behavior of J in directions with large

10!

1078

E™(k)

105

107

10

107

1073

(n),
E™(k)

105

107

)T, = 6.25

Fig. 11. As in Fig. 4 for experiments where observations at all scales are supplied only at t=T7,; (a) T,=2.5

(b) To=5 (c) Ta=625 (d) T, = 10.
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small-scale components. At T, = 10, the large-scale
component is equally important, as the limit of
validity of the tangent linear approximation is
being approached at all scales.

In the previous experiments, assimilations were
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carried out for longer periods of time before the
decorrelation time was reached. There, observa-
tions were provided at every timestep, so that even
though the assimilation intervals were long, obser-
vations close to the initial time were available.
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This is not the case here, resulting in an earlier
convergence failure. The impact of the spacing in
time between observations would appear to be as
important as the spatial resolution of the observa-
tional network. This makes it difficult to make
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Fig. 12. Representation of the functional along the segment joining {‘”(0), the true minimum and the point to which
the minimization converged for assimilation with a single observation at ¢r=T, for (a) T,=25, (b) T,=5,
(¢) T, =625 and (d) T, = 10.
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general statements about the convergence of the iterations were necessary to ensure convergence
method, which also depends on the local dynamics  of the minimization. It is therefore relevant to
of the flow (e.g., presence of local instabilites in  examine common preconditioning techniques to
phase space). However, there is a common factor  see whether they can speed up the minimization.
to all experiments in that a large number of This is the object of Section 7.
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Fig. 13. Error spectra at the beginning, middle and end of the assimilation period for the experiments of Fig. 11.
(a) T,=25,(b) T,=5(c) T,=6.25(d) T,=10.

Tellus 47A (1995), 5, 2



992

7. Preconditioning of the minimization

For a quadratic functional of the form J(x) =
xT@x + ¢"x, a slow convergence is related to the
conditioning of the Hessian matrix Q. If @ were
known and invertible, it would be possible to
speed up the convergence by redefining the inner
product as {f, g>=f"Qg in which case the
minimization can be made to converge in a single
iteration. This assumes that the full Hessian matrix
is known, a situation that is rarely encountered
in large-scale minimization problems. In practice,
information from previous iterations is used to
approximate the Hessian matrix for use in the pre-
conditioning, by modifying the inner product or
alternatively, through a change of variables. The
former approach is taken here, since the algorithm
we used allows the user to define the inner product.

For a nonlinear problem, the preconditioning is
based upon a diagonal scaling that uses only an
approximation to the diagonal of the Hessian
matrix and this is usually all that can be done (Gill
and Wright, 1981). For our problem, it is possible,
although costly, to compute explicitly the Hessian
and from it, to extract the diagonal in order to
define the inner product. Minimization experi-
ments with three different inner products were con-
ducted to evaluate their efficiency in improving the
convergence. In all cases however, the functional
is defined as the energy of the error. If {f, g> =
f™Dg stands for the inner product with D a
diagonal matrix, then two of them were defined
with respect to the energy and enstrophy norms, so
that D, =D, =1/k*> and D,=D,. =1, respec-
tively. The third was defined as D = D, = diag(H),
H being the Hessian, computed for the case where
only one observation was provided at the end of
the assimilation as in Section 6. In that case, in the
vicinity of the true minimum {,, VJ({,) =0, and

J(lo+ALo) — J(Lo) =J(ALy) = CAUT,), AUT,)>
R (R*(T,, to) R(T,, to) ALy, ALy)

+ higher-order terms. (12)

The Hessian matrix H can then be obtained by
integrating the tangent and adjoint models a
number of times equal to the number of real degrees
of freedom in the model. In view of the results
presented earlier, T, was chosen to correspond to
0.5 time units. Due to the nature of the dynamics,
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the Hessian matrix is not diagonal but we never-
theless have a quadratic functional by neglecting
the higher-order terms in (12). This quadratic
problem involving a non-diagonal matrix was used
to test the preconditioning. Fig. 14 presents the
variation of the cost function during the minimiza-
tion for the three cases. Inner products based on
the energy and the Hessian clearly have a positive
impact: a reduction of three orders of magnitude in
just 2 iterations, while 10 were needed when the
enstrophy was used to define the inner product.
As the minimization continued, the improvement
was best with the inner product based on the
enstrophy, which put more emphasis on the larger
scales of the flow.

After 30 iterations the minimization brought us
to a point {, and if the preconditioning were per-
fect, the gradient at that point should be parallel to
the vector A{,=({"—{, in phase space. Fig. 15
compares the spectrum of this vector (solid line) to
that of the gradient (thick dotted line). Even
though an inner product based on enstrophy ends
up giving the best results in terms of the minimiza-
tion, the gradient is not very well correlated with
the correct direction. Choosing the energy leads
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Fig. 14. Variation of the value of the functional as a func-
tion of iteration for experiments using an inner product
defined with respect to enstrophy (solid line), energy
(dashed line) and the diagonal of the Hessian matrix
(dotted line).
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Fig. 15. Spectra of the direction between the point in phase space reached by the minimization after 30 iterations
(A, solid line), the gradient at that point (VJ, dashed line) and of the difference between the two (VJ — A, dotted

line).

to better agreement, except in the small scales.
Finally, choosing the diagonal of the Hessian
improves the agreement in the small scales.
However, a comparison of spectra considers only
amplitudes and disregards differences in phase.

Tellus 47A (1995), S, 2
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It is possible to obtain some information about
these differences by considering the spectrum of
the difference between the gradient and the true
direction (thin dotted line in Fig. 15). It is clear
that what appeared to be a good match in the
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small scales, when diag(H) was used to define the
inner product, has some important differences in
phase that decorrelate the gradient with the true
direction.

What is to be concluded from this? First, if the
Hessian had been diagonal, then the precondition-
ing would have been a lot better than observed.
Given that the functional is defined as the energy
of the error, the Hessian is J” = R* D, R and, when
T,<7tnL, R is close to the identity matrix. Then
the Hessian and energy inner products become
identical, while using the enstrophy yields a
gradient that goes as 1/k2, which explains the slope
observed in the spectrum of VJ for the enstrophy
case in Fig. 15. The consequence is that using
the enstrophy produces a gradient that puts less
emphasis on the small scales than the other two,
resulting in improved convergence when the func-
tional measures the total energy. This is not so
surprising given that the bulk of the energy is
contained in the large scales.

8. Conclusions

Our goal was to test the ability of the adjoint
method to fill in small-scale detail in accord with
large-scale observational information in a context
of fully-developed turbulent dynamics. In order to
test the utility of the linearized equations, we
considered only the simplest possible data assimil-
ation experiments. We have introduced neither
observational nor model error, focussing only on
the critical limitations .imposed by the method’s
dependence on linearizations, rather than consider
realistic assimilations in an operational setting.

The synoptic-scale eddy turnover, or advective,
timescale 7, ~ 3 days is of the order of the limit of
validity of the tangent linear model. Although this
statement is undeniably true, it provides only an
upper limit. In turbulent flows such as the atmo-
sphere, the validity timescale of the linearization is
a function of lengthscale. We have demonstrated
that for a given resolution, the linearization
becomes inaccurate first in the smallest model
scales. This is manifested by a spurious approach
to a shallow spectrum, reflecting the linearized
predictability-error growth’s adherence to basic-
state gradients, even when the true error growth
has saturated in the fully nonlinear equations.
Consequently, for a given assimilation period, T,,
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there is a scale below which the linearization fails.
This failure occurs earlier when the approximation
is applied to a finite quantity such as the evolution
of the forecast error in the extended Kalman filter,
or to the characterization of the singular modes,
which describe the initial conditions leading to
maximum error growth over a finite time interval
(Lacarra and Talagrand, 1988). These modes have
been used in predictability studies to improve
Monte-Carlo simulations (Molteni and Palmer,
1993).

It was also demonstrated that if only the large
scales are observed, T, must be large enough for
significant information to be transferred down-
scale in order to fill in the fine-scale detail. The
question we set out to answer concerned the
feasability of the adjoint method given these two
constraints. Interestingly, our best assimilation
experiment with only large-scale data had a dura-
tion of over 27y, ~ 6 days. The linearization was
clearly not accurate over this timescale and alarm-
ing spurious excitation of the small scales was
noted initially in the assimilation period (Fig. 6).
This error was almost completely absent at the end
of the assimilation period and the subsequent
forecast of approximately ten days duration was of
excellent quality when compared with various
control runs (Fig. 9). Somewhat surprisingly, even
though the initial fields did not respect the model’s
climatology, the subsequent evolution collapsed
very near to the correct trajectory on the model’s
attractor by the end of the period. Therefore, useful
information must have been transferred to the
small scales by the adjoint method, even though
the initial small-scale analysis was too energetic. In
order to translate these successful results to the
atmosphere, we must use an assimilation period
measured in days and not hours. When the
assimilation period was many times larger than
TnL at even the largest scales, the results were not
as good, suggesting that there is an optimal resolu-
tion at which the downscale transfer of large-scale
observational information reaches a minimum
scale, before the exponential blow-up of the linear
model inhibits convergence. Below that length
scale the method is not effective.

The relationship between turbulent dynamics
and multiple minima of the penalty functional was
clarified in Section 6. Here, we examined the inver-
sion problem, ie., one complete set of spatial
observations was provided only at the end of the

Tellus 47A (1995), 5, 2
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assimilation period. The ergodic nature of tur-
bulence implies that the system progressively loses
its memory of the initial conditions, beginning in
the small scales. As T, is increased, the functional
therefore becomes an increasingly unsmooth func-
tion of the initial conditions, implying multiple
minima and likely affecting the convergence of the
adjoint method. Here, we provided substantial
evidence for the existence of multiple minima at
large T, (Fig. 12). As T, is increased, increasingly
large scales become uninvertable. As a result it can
be concluded that the temporal resolution of the
data network is as important an issue as the spatial
resolution, in determining the minimum scale that
can be accurately initialized by the adjoint method.
The determination of this scale therefore depends
sensitively on the details of the observational
network.

It should be kept in mind that we examined only
barotropic quasi-geostrophic dynamics character-
istic of the largest atmospheric scales. Extrapola-
tion to smaller scales, where ageostrophic effects
such as vortex tube stretching may be important, is
not justified. At these scales spectra are less steep
and timescales decrease more rapidly at smaller
lengthscales. For this reason, successful assimi-
lations at T,> 7y, may be significantly more
difficult than in the strictly two-dimensional
turbulence considered here. This fact, combined
with less complete data coverage, would appear
to make meso- and small-scale 4Dvar rather
challenging.

In all of the experiments described we employed
hundreds of iterations of the adjoint method. Since
this is far too costly for NWP, we also examined
the performance, in a turbulent setting, of different
preconditioning strategies. It was concluded that
convergence was improved if more emphasis was
put on the large-scale component of the gradient.
This is an argument in favour of using the incre-
mental approach of Courtier etal. (1994), who
suggested reducing the resolution of the adjoint
model in the computation of the gradient.
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10. Appendix. Derivation of the adjoint model
equations

For the sake of completeness, the arguments
and derivations presented in LDT86 and TC87 are
briefly recalled in the context of our f-plane
model. Setting the problem in a moving reference
frame x' = x — U,t, t' =, the tangent linear model
is written as

0
5 %= —J(AT1 O, L+ Bry = HATY, 80)

—2(60)=2({) &¢ (A1)

with A=V2 The linearity of this model implies
that 8((¢) = R(¢, ty) 6(y. Defining the adjoint
model as

2 o= — Q) 67 (A2)

with
(O*, L(0) 80> = L*(() 6L, 80>

for a given inner product, it then follows that
I3} wre _ /0C 90*(\
a7 oL, 6% —<6t’ ,0 C> + <5C, a7 >~0

implying that

{8y, 6%y > = (6o, 60> (A.3)

The adjoint model is linear and therefore, its solu-
tions can also be written as S(z, ¢,) 0*, and (A.3)
becomes

CR(e, 1) 6Lo, 0*Li> =80, R*(1y, 10) 6*Li)
= (0o, S(to, 1i) 6*Lic).

Consequently, R*(t,1,)=S(#y,1) and, to apply
the adjoint of the resolvent, it suffices to integrate
(A.2) backward in time from the final time 7 to the
initial time.
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As mentioned in Section 2, the energy norm is
used to define the inner product as

ey = | VAT, VAT S
=-[ aagas=-| L aGas,
S S

the integral being over the model’s domain. With
this definition, it is straightforward to show that

(1) &L ALY =<ALL L),
(i) <G, AT =<ATYL G,

and these operators are self-adjoint. On the other
hand, the Jacobian operator is such that

f I, g)hdS=j fI(g, h)dS.
S S

M. TANGUAY ET AL.

These results are used to show that

(L L 6= = [ (~HAT L L+ py)
—J(ATE, 80 — D(8L)) A~ 8% dS
= [ (~o-Anat st a7y
s
—J(C+ By, A1 0*)) AT L dS
={L*) 0%, 00>
and therefore,
LH) oM = —D(6*) —AJAT'*, A7)
—J(+ By, A1 6*0).
Reverting to the original frame of reference yields

0 AV .
<E+an>(5 {=—L*) ¥,
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