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Abstract. A weakly dispersive range (WDR) of kinetic
Alfv én turbulence is identified and investigated for the first
time in the context of the MHD/kinetic turbulence transi-
tion. We find perpendicular wavenumber spectra∝ k−3

⊥
and

∝ k−4
⊥

formed in WDR by strong and weak turbulence of ki-
netic Alfvén waves (KAWs), respectively. These steep WDR
spectra connect shallower spectra in the MHD and strongly
dispersive KAW ranges, which results in a specific double-
kink (2-k) pattern often seen in observed turbulent spectra.
The first kink occurs where MHD turbulence transforms into
weakly dispersive KAW turbulence; the second one is be-
tween weakly and strongly dispersive KAW ranges. Our
analysis suggests that partial turbulence dissipation due to
amplitude-dependent non-adiabatic ion heating may occur
in the vicinity of the first spectral kink. The threshold-like
nature of this process results in a conditional selective dis-
sipation that affects only the largest over-threshold ampli-
tudes and that decreases the intermittency in the range be-
low the first spectral kink. Several recent counter-intuitive
observational findings can be explained by the coupling be-
tween such a selective dissipation and the nonlinear interac-
tion among weakly dispersive KAWs.

1 Introduction

Kinetic Alfv én waves (KAWs) are an extension of MHD
Alfv én waves in the range of high perpendicular wavenum-
bersk⊥ in the plane⊥ B0, where linear and nonlinear effects
due to finite values ofk⊥ρp become significant (B0 ‖ z is the
background magnetic field,ρp = VTp/�p is the proton gy-
roradius as we consider a hydrogen plasma) (Hasegawa and
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Chen, 1976; Voitenko, 1998a). There are numerous obser-
vational and theoretical indications that MHD Alfvén turbu-
lence in the solar wind cascades towards highk⊥ and even-
tually reaches the KAW wavenumber range at the proton gy-
roradius scales,k⊥ρp ∼ 1 (Leamon et al., 1999; Bale et al.,
2005; Alexandrova et al., 2008a; Sahraoui et al., 2009, 2010).
It is not yet certain what happens next with these KAWs: do
they dissipate by heating the plasma (Leamon et al., 1999),
or do they interact nonlinearly among themselves and cas-
cade further towards higherk⊥, ultimately reaching electron
scales (Sahraoui et al., 2009, 2010; Alexandrova et al., 2009).
Spectra up to electron scales with Cluster were first studied in
the Earth’s magnetosheath (Mangeney et al., 2006; Alexan-
drova et al., 2008b).

If the dissipation at ion scales is strong, the cascade
should terminate in the vicinity of the spectral break
k⊥b ∼ ρ−1

p and cannot reach electron scales, as was ar-
gued by Leamon et al.(1999), Howes et al.(2008), and
Podesta(2009) using Landau damping estimates for KAWs.
However, observations of power law spectra atk⊥ρp � 1
(Sahraoui et al., 2009, 2010; Alexandrova et al., 2009; Kiyani
et al., 2009) suggest a continuation of the cascade that is
consistent with the theoretical picture of KAWs (Bale et al.,
2005; Schekochihin et al., 2009; Sahraoui et al., 2010). It
has been envisaged that the nonlinear evolution and related
wavenumber spectra in the range belowk⊥b are dominated
by MHD-type nonlinear interactions among Alfvén waves,
and that the spectra fork⊥ > k⊥b are determined by KAW
properties (Schekochihin et al., 2009).

One should note that the identification of the observed
small-scale turbulence as KAWs is not unique. In particular,
observations based on the k-filtering technique are controver-
sial: Sahraoui et al.(2010) have shown that the properties of
observed fluctuations are compatible with the KAW disper-
sion relation, whereasNarita et al.(2011) did not find KAWs.
Relaxing the assumption of plane waves,Chen et al.(2010)
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found that the turbulence between the ion and electron scales
is not a pure KAW turbulence. Based on simulations, (Saito
et al., 2010) concluded that not only KAW turbulence but
also whistler turbulence may explain the very steep spectra
observed recently at electron scales.

From an observational point of view, the nature of the tur-
bulence changes at the spectral breaksfb that separate shal-
lower MHD spectra∝ f −5/3 for f < fb from steeper ki-
netic spectra with power indexes ranging from−2 to −4
for f > fb. Such breaks are observed in the solar wind by
satellites (f is the frequency in the satellite frame). Because
the solar wind velocityVSW is much larger than the Alfv́en
velocity VA , the Alfvénic time variationωA ∼ kzVA (kz is
the wavenumber parallel toB0) is usually much slower than
the Doppler frequencies in the satellite frameωd = k ·VSW.
Then the satellite-frame frequency spectra are dominated by
the Doppler frequency, 2πf = |kzVA −k ·VSW| ∼ |k ·VSW|,
representing wave-number spectra (Taylor hypothesis). As
has been first shown byMatthaeus et al.(1990), followed
by many others (see e.g. recent papers byOsman and Hor-
bury (2009), Sahraoui et al.(2010), Luo and Wu(2010), and
references therein), solar wind turbulence is dominated by
large perpendicular wavenumbersk⊥ � kz. In these con-
ditions, satellites measure perpendicular wavenumber spec-
tra, f ∝ k⊥, except for rare cases ofB0 ‖ VSW, where fre-
quency measures parallel wavenumber,f ∝ kz. The spectral
breakfb is often associated with one of the proton kinetic
scales, the proton gyroradiusρp or the proton inertial length
δp = VA/�p, such that the observed frequency of the break is
2πfb ' VSW/ρp or VSW/δp (Leamon et al., 1999; Bale et al.,
2005; Alexandrova et al., 2010; Sahraoui et al., 2010). Perri
et al. (2010) show, however, that the break position is not
sensitive to the radial dependence of the ion scales, whereas
Markovskii et al.(2008) argue that the break position de-
pends upon a combination of the scale and the turbulent am-
plitudes at that scale.

Because of the complex interplay between linear and non-
linear KAW dynamics, the theoretical interpretation of tur-
bulence in the KAW range, its dissipation, and the related
spectra, is still incomplete. In particular, a recent theoreti-
cal analysis byPodesta et al.(2010) argues that the KAW
cascade is subject to collisionless Landau damping and can-
not reach electron scales in solar wind conditions. How-
ever, using Cluster data,Sahraoui et al.(2009, 2010) and
Alexandrova et al.(2009, 2010) have shown that the spec-
tra extend to electron scales, with spectral slopes−1.7 and
−2.8 in the MHD range and in the range between ion and
electron scales, respectively. Between thesek−1.7

⊥
andk−2.8

⊥

spectra,Sahraoui et al.(2010) also noticed much steeper
∝ k−4

⊥
spectra due to weakly/mildly dispersive KAWs with

0.6< k⊥ρp < 2 (see their Figs. 2, 3, and 6), and suggested
that the KAW turbulence extends further down to electron
scales. The same spectral form in the MHD/kinetic transi-
tion range, containing two spectral kinks with steeper spec-
tra in between, can be seen in other recent studies (see e.g.

Chen et al.(2010), Fig. 1, andSmith et al.(2006), Fig. 1).
Alexandrova et al.(2009, 2010) have demonstrated the uni-
versal character of the MHDk−1.7

⊥
and kinetick−2.8

⊥
spectra

and analyzed the non-universal transition between them. Ki-
netic spectrum ends up with a curved spectrum at electron
scales, indicating dissipation.

Steep variable spectra in the same wavenumber range were
observed before (Leamon et al., 1999), but without connec-
tion to shallower higher-wavenumber (higher-frequency in
the satellite frame) spectra as these were unavailable. Such
steep spectra were called “dissipation range” spectra and
were associated with dissipation, mainly via kinetic ion-
cyclotron and Landau damping. However, the nature of the
“dissipation range” and its spectra is not so clear. For ex-
ample, recent observations of reduced magnetic helicity im-
ply the presence of counter-streaming KAWs surviving the
“dissipation range” rather than ion-cyclotron damping in it
(Carbone et al., 2010).

Analyzing ACE spacecraft data,Smith et al.(2006) have
found that larger spectral fluxes (as measured at 0.01 Hz) are
followed by steeper spectra in the “dissipation range” above
the spectral breakfb ∼ 0.3 Hz. This counterintuitive obser-
vational fact is difficult to explain by ion-cyclotron and Lan-
dau damping.Smith et al.(2006) did not find any regular de-
pendence offb on the cascade rate.Markovskii et al.(2008)
studied the statistics and scaling of spectral breaks and con-
cluded that their positions are determined by a combination
of their scales and the turbulent amplitudes at that scales,
which suggests a non-linear dissipation mechanism for the
solar wind turbulence. Again, kinetic ion-cyclotron and Lan-
dau damping mechanisms would not lead to such behavior in
the dissipation range.

Motivated by these findings, the present paper analyzes the
wavenumber range that corresponds to the transition from
MHD to KAW turbulence, with the focus on the properties
of nonlinear KAW. We demonstrate that the observed spec-
tral forms and steep spectra in the “dissipation range” can
be explained by the nonlinear interaction of weakly disper-
sive KAWs without involving kinetic ion-cyclotron and Lan-
dau dissipation mechanisms. We will distinguish weak and
strong turbulence by comparing linear and nonlinear time
scales (or associated wave frequencyωk and nonlinear in-
teraction rateγ NL

k ) at the given scalek−1. If the linear time
scaleτL

k (τL
k ∼ 1/ωk) is shorter than the nonlinear oneτNL

k

(τNL
k ∼ 1/γ NL

k ), the perturbations have enough time to set
up linear dispersion and polarization relations. In this case
the energy exchange among perturbations is relatively slow,
and the turbulence is weak. Sinceγ NL

k increases with in-
creasing amplitudes andωk increases with increasingkz, the
weak turbulence regime can be realized for sufficiently small
amplitudes and sufficiently short parallel wavelengths. For
larger amplitudes and/or longer wavelengthsτNL

k andτL
k be-

come comparable, and the so-called strong turbulence in the
critical balance regime is realized:τL

k ' τNL
k (Goldreich and
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Sridhar, 1995). Observations of intermittency in the iner-
tial MHD range (Sorriso-Valvo et al., 1999; Salem et al.,
2009) and in the range above the ion break (Alexandrova
et al., 2008a) suggest the presence of a strongly turbulent
fraction of fluctuations, but do not exclude the simultaneous
presence of a weakly turbulent fraction, in particular in the
MHD/kinetic transition range.

2 Weakly dispersive k⊥ρp < 1 range of KAW turbulence

The rate of nonlinear interaction among highly obliquekz �

k⊥ KAWs has been calculated by maximizing the matrix el-
ement of the 3-wave KAW interaction (Voitenko, 1998a,b).
In WDR, k2

⊥
ρ2

p � 1, for co-propagating KAWs

γ NL
k↑↑

' 0.4�p
VA

VTp

(
k⊥ρp

)3 Bk

B0
, (1)

whereBk is the KAW amplitude at the (anisotropic) length
scalesλz = 2π/kz and λ⊥ = 2π/k⊥, wherekz and k⊥ are
parallel and perpendicular KAW wavenumbers. We ac-
count for the plasma compressibility, but neglected magnetic
compressibility. Also, for simplicity we putTe‖/Tp⊥ = 1.
This temperature ratio reflects the relative importance of the
parallel electron pressure and the perpendicular ion pres-
sure/gyroradius effects in KAWs. With increasingTe‖/Tp⊥

one would obtain higher interaction rates.
The nonlinear interaction rate for counter-propagating

k⊥ρp � 1 KAWs is (Voitenko, 1998a,b)

γ NL
k↑↓

' 0.3�p
VA

VTp

(
k⊥ρp

)2 Bk

B0
, (2)

which is larger thanγ NL
k↑↑

in WDR.
There is no explicitkz-dependence of the KAW inter-

action rates Eqs. (1–2). The nonlinear KAW dynamics is
thus driven by the energy exchange among short cross-field
length scales, whereas the parallel scales follow the perpen-
dicular ones kinematically in the weak turbulence regime
(Voitenko, 1998a,b) or via critical balance in the strong tur-
bulence regime (Schekochihin et al., 2009). The perturbation
amplitudeBk can be related to the omnidirectional spectral
energy densityWk⊥ by Bk =

√
k⊥Wk⊥ (Wk⊥ is defined such

that
∫

∞

0 dk⊥Wk⊥ = total fluctuation energy per unit volume).

2.1 Weak KAW turbulence

The nonlinear interaction among co-propagating KAWs can
be considered weak if their nonlinear rate Eq. (1) is less
than the dispersive part of frequency:γ NL

k↑↑
< kzVA

(
k⊥ρp

)2

in isothermal plasmas. In this case, the conservation law for
the generalized enstrophy (dispersive part of energy) applies,
and the nonlinear interaction among co-propagating KAWs
Eq. (1) establishes the perpendicular wavenumber spectra
(Voitenko, 1998b):

Wk ∝ k−5
⊥

(direct enstrophy cascade); (3)

Wk ∝ k−4
⊥

(inverse energy cascade). (4)

For axially symmetric turbulence in the cross-field plane
we can define a reduced omnidirectional spectral powerWk⊥

= 2πk⊥

∫
dkzB

2
k , such thatW =

∫
dk⊥Wk⊥. The energy ex-

change among differentk⊥ does not depend onkz (Voitenko,
1998a, Eqs. 6.1 and 6.2). Hence the reduced omnidirectional
weakly turbulent 3-D power spectra Eqs. (3–4) behave as

Wk⊥ ∝ k−4
⊥

(direct enstrophy cascade), (5)

Wk⊥ ∝ k−3
⊥

(inverse energy cascade). (6)

The omnidirectional wavenumber spectra are those measured
in the solar wind by satellites as 1-D Doppler frequency spec-
tra if the solar wind velocityVSW ∦ B0. When the turbulence
spectrum is not axisymmetric aroundB0 (see e.g.Sahraoui
et al., 2010, and references therein), the measured 1-D spec-
trum may have a larger power index, approachingWk⊥ ∝ k−5

⊥

in the extreme case of 1-D turbulence in the cross-field plane,
∝ k−5

x , if x ∦ VSW. This follows from polar angle averag-
ing in the cross-field wavenumber plane. Accounting for this
possibility, the steepest spectra produced by weakly disper-
sive KAW turbulence are

Wk⊥ ∝ k−4
⊥

÷k−5
⊥

. (7)

Nonlinear interaction among counter-propagating KAWs
in the weakly turbulent regime, at a rate given by Eq. (2),
produces omnidirectional spectra

Wk⊥ ∝ k−2
⊥

(direct enstrophy cascade), (8)

Wk⊥ ∝ k−1
⊥

(inverse energy cascade) (9)

that follow from 3-D spectra given byVoitenko (1998b).
Therefore, counter-propagating KAW interactions cannot
produce the steep spectra observed in the transition range.

At first sight, sinceγ NL
k↑↓

� γ NL
k↑↑

in WDR, nonlinear in-
teraction among counter-propagating KAWs appears to be
a more efficient means of spectral transport than that due
to co-propagating KAWs. However, the short (linear) cor-
relation times among counter-propagating KAWs,τL

c↑↓
∼

λz/VA , can reduce their interaction strength as compared to
the co-propagating KAWs that remain in phase for a longer
time: τL

c↑↑
∼

(
k⊥ρp

)−2
λz/VA � τL

c↑↓
for k⊥ρp � 1. In such

cases the nonlinear interaction among co-propagating KAWs
will be dominant and the steepest omnidirectional spectra
Eq. (7) are formed, as described above. When both co- and
counter-propagating interactions are efficient, the resulting
spectrum lies between the counter-propagating (∝ k−2

⊥
) and

co-propagating (∝ k−4
⊥

) spectra. The relative importance of
co- and counter-propagating KAW interactions, and the re-
sulting spectral slope, will depend on what fraction of the
MHD turbulent cascade will arrive at the MHD/KAW break
with parallel wavelengths satisfying the condition of linear
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decorrelation,τL
c↑↓

∼ λz/VA < 1/γ NL
k↑↓

. The larger this frac-
tion, the steeper will be the resulting KAW spectrum.

Thekz spectra of weak KAW turbulence are determined by
the kinematics of three-wave resonant interactions (Voitenko,
1998b):

Wk‖ ∝ k
−1/2
z . (10)

However, some non-kinematic factors, like finite resonance
width, can make the parallel spectrum significantly different
from Eq. (10). This point needs further investigation.

2.2 Strong KAW turbulence

In the strongly turbulent regime the nonlinear evolution time,
τNL
k ∼ 1/γ NL

k , becomes equal to or shorter than the linear

one, τL
k ∼ 1/

(
kzVAk2

⊥
ρ2

p

)
. The enstrophy (dispersive part

of energy) is not conserved any more because the nonlin-
ear interaction does its job before the dispersive time mis-
match comes into play. Thek⊥-spectrum can be found from
the condition that the energy flux is constant (independent of
k⊥):

ε ∼ B2
k /τNL

k = const. (11)

The nonlinear evolution time for co-propagating KAWs can
be estimated asτNL

k↑↑
' 1/γ NL

k↑↑
, where γ NL

k↑↑
is given by

Eq. (1). From Eq. (11) we find the scaling for the fluctuating
magnetic amplitudeBk ∝ k−1

⊥
, which results in the omnidi-

rectional energy spectrum

Wk⊥ ∼
B2

k

k⊥

∝ k−3
⊥

. (12)

Again, one can observe steeper spectra∝

(
k−3
⊥

÷k−4
⊥

)
if

the strong KAW turbulence is not exactly axially symmetric
aroundB0.

Since γ NL
k↑↑

depends onkz only through Bk, the kz-
dependence can appear via any functional form with the ar-
gument involving any combination ofkz andk⊥. Additional
assumptions linkingkz andk⊥, such as the critical balance
hypothesis, will be studied in another paper.

The strongly turbulent spectra of weakly dispersive
counter-propagating KAWs can be found from Eq. (11) with
1/τNL

k ∼ γ NL
k↑↓

given by Eq. (2):

Wk⊥ ∼
B2

k

k⊥

∝ k
−7/3
⊥

(13)

3 Strongly dispersivek⊥ρp > 1 range of
KAW turbulence

In the strongly dispersive range of KAWs, wherek⊥ρp > 1,
and which has been named the “KAW range” in the literature
(seeSchekochihin et al., 2009, and references therein), the

rate of nonlinear interaction among co-propagating KAWs is
(Voitenko, 1998a,b)

γ NL
k↑↑

' 0.3�p
VA

VTp

(
k⊥ρp

)2 Bk

B0
. (14)

For counter-propagating KAWs, the nonlinear interaction
rate is almost the same,

γ NL
k↑↓

' 0.2�p
VA

VTp

(
k⊥ρp

)2 Bk

B0
.

3.1 Weak turbulence (γ NL
k

� ωk)

The weakly turbulent perpendicular wavenumber spectra of
co-propagating KAWs behave as (Voitenko, 1998b):

B2
k ∝ k

−7/2
⊥

(direct energy cascade), (15)

B2
k ∝ k−3

⊥
(inverse enstrophy cascade).

Again, the nonlinear interaction amongcounter-propagating
KAWs can be less efficient than that among co-propagating
KAWs because of their shorter linear correlation times.
Therefore, the omnidirectional spectra

Wk⊥ ∝ k
−5/2
⊥

(direct energy cascade), (16)

Wk⊥ ∝ k−2
⊥

(inverse enstrophy cascade) (17)

can be produced by strongly dispersive KAWs in the weakly
turbulent regime. Among these, the∝ k

−5/2
⊥

spectrum
formed by the direct energy cascade is preferable, because
the source is at largest scales. With local deviations from ax-
ial symmetry, one can expect steeper spectra∝ k−2.5

⊥
÷k−3

⊥
.

3.2 Strong turbulence (ωk ∼ γ NL
k

)

In the strong turbulence regime of co-propagating KAWs, the
scaling of the magnetic field amplitudeBk with k⊥ is found
from the condition Eq. (11) whereτNL

k ' 1/γ NL
k↑↑

with γ NL
k↑↑

given by (Eq.14):

Bk ∝ k
−2/3
⊥

.

This results in the familiar omnidirectional power spectrum
in k⊥:

Wk⊥ ∼
B2

k

k⊥

∝ k
−7/3
⊥

. (18)

The “parallel”kz ‖ B0 spectrum

Wk‖ ∝ k−2
z (19)

follows from the critical balance condition.
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4 MHD/kinetic Alfv én wave transition

4.1 Spectral kinks

In the (Goldreich and Sridhar, 1995) MHD model, the non-
linear interaction rate at scaleλ⊥ in the plane⊥ B0 can be
written as

γ GS
k '

vλ⊥

λ⊥

'
1

2π
k⊥VA

Bk

B0
, (20)

wherevλ⊥ is the velocity andBk is the magnetic field am-
plitude at the scaleλ⊥ = 2π/k⊥. The corresponding MHD
spectrumB2

k ∝ k
−2/3
⊥

follows from the independence of the
energy flux throughk. The omnidirectional spectrumWk ∼

B2
k /k⊥ ∝ k

−5/3
⊥

is seen by satellites in the MHD range as the
1-D Doppler frequency spectrum.

As the MHD and WDR ranges have very different slopes,
the first spectral kink should appear at the wavenumber
where their respective nonlinear interaction rates are equal.
Comparing the nonlinear rates,γ GS

k = γ NL
k↑↓

, we obtain the
spectral kink wavenumberk⊥1ρp ' 0.5, at which the 1-D
spectrum should change from−(3/2÷5/3) to −(3÷4).
The transition wavenumber for theγ GS

k = γ NL
k↑↑

transition is
practically the same,k⊥1ρp ' 0.6.

However, the above estimations did not take into account
the weakening of the MHD nonlinear interactions by the dy-
namic alignment between velocity and magnetic perturba-
tions (Boldyrev, 2005) and/or by the nonlocal decorrelation
mechanism proposed byGogoberidze(2007). In general, the
interaction rate can be written as a reduced GS rate (RGS)

γ RGS
k ' Rλ⊥γ GS

k (21)

with the scale-dependent reducing coefficientRk⊥. Both
Boldyrev’s and Gogoberidze’s phenomenologies give the
same scaling forRk⊥,

Rk⊥ '
vλ⊥

VN
∝ λ

1/4
⊥

,

but with different normalization velocitiesVN, such that the
Boldyrev/Gogoberidze ratio= vL/VA , wherevL is the ve-
locity amplitude at the driving scaleL (wavenumberkL).
Bearing in mind that the dynamic alignment saturates when
approaching small scales, the actual value of the Gogob-
eridze coefficient can be larger even in the casevL < VA .
The reduced interaction rate proposed by Gogoberidze can
be written as

γ RGS
k ' Rλ⊥

(
vλ⊥

λ⊥

)
'

(
k⊥

kL

)−1/4(
1

2π
k⊥VA

Bk

B0

)
. (22)

Given the typical width of the MHD inertial range in the so-
lar wind kb⊥/kL ∼ 103, we find that the interaction rate is
reduced considerably in the vicinity of the spectral break,
γ RGS
k ' 0.25γ GS

k .
As the nonlocal decorrelation mechanism implies counter-

propagating MHD waves, the counter-propagating KAWs

should undergo the same decorrelation. But co-propagating
KAWs do not suffer from such decorrelation, and therefore
we consider here the MHD/kinetic transition dominated by
the co-propagating KAWs. In addition, the co-propagating
KAWs can keep in phase much longer than the counter-
propagating KAWs. We therefore use Eq. (1) for the ki-
netic and Eq. (21) for the MHD interaction rate, and es-
timate the first spectral kink between shallow MHD spec-
tra −(3/2÷5/3) and steep weakly dispersive KAW spectra
−(3÷5) to be at

k⊥1ρp ' 0.6
√

Rk⊥. (23)

With Gogoberidze’s rate Eq. (22) k⊥1ρp ' 0.2. But one
should bear in mind that there are a number of factors, in-
cluding a partial turbulence dissipation, which contribute to
Rk⊥ and can make it smaller or larger than the Gogoberidze’s
value.

The second kink should appear between weakly
(k2

⊥
ρ2

p � 1) and strongly (k2
⊥
ρ2

p � 1) dispersive regimes of
the KAW turbulence at

k⊥2ρp & 1, (24)

where we allow for a possible build-up of the steeper slope
just abovek⊥ρp = 1 if the MHD/KAW transition is not yet
completed atk⊥ = ρ−1

p . The spectral slope abovek⊥2 is
−(2.5÷3), which is significantly shallower than in WDR.

4.2 Spectral forms

The steepness of the spectra in WDR depends on what kind
of KAW turbulence picks up the turbulent cascade atk⊥ρp '

0.2, weak or strong. If the critical balance condition holds
at k⊥ρp ' k⊥1ρp, then the turbulence of weakly dispersive
KAWs is strong abovek⊥1. In this case, strong KAW tur-
bulence develops a steep energy spectrum∝ k−3

⊥
in WDR,

connecting shallower MHD (∝ k
−5/3
⊥

) and strongly disper-

sive KAW (∝ k
−7/3
⊥

) spectra. Significantly steeper spectra in
both KAW ranges can be produced by the weak KAW turbu-
lence and by local deviations from the azimuthal symmetry
of the turbulence (up to about∝ k−4.5

⊥
in WDR, and∝ k−3

⊥
in

the strongly dispersive range).
The transition to the weak turbulence regime may be fa-

cilitated by a partial wave dissipation via non-adiabatic ion
acceleration/stochastic heating. Such partial dissipation is
independent ofkz, but it does depend onk⊥, and it reduces
larger amplitudes atk⊥ > k⊥thr. In such a way, the critical
balance between linear and nonlinear time scales is violated
in favor of the weak turbulence regime. A weak turbulence
cascade of KAWs develops abovek⊥thr and establishes the
steepest KAW spectra.

In both weak and strong turbulence regimes, the resulting
spectra have two kinks, down and up, with the steepest slopes
in between them in the weakly/mildly dispersive range. In
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Fig. 1. Turbulent Alfvénic spectrum extending over three ranges,
with the steepest slope in the weakly/mildly dispersive KAW range
(interpretation of the spectrum shown in Fig. 1 by Chen et al., 2010).

general, the “non-dissipative” scenario is as follows: the tur-
bulence, driven at a large MHD scaleL (kL = 2π/L), devel-
ops the shallowest∝ k

−3/2
⊥

÷k
−5/3
⊥

spectra in the MHD range
kL < k⊥ < k⊥1, then it proceeds as KAW turbulence with
steep∝ k−3

⊥
÷k−4.5

⊥
spectra in WDRk⊥1 < k⊥ . k⊥2, and be-

yondk⊥2 it proceeds as KAW turbulence with∝ k
−7/3
⊥

÷k−3
⊥

spectrum in the strongly dispersive rangek⊥2 < k⊥ . k⊥de.
This last range may extend to the dissipative wavenumber
k⊥de at the electron length scale (Sahraoui et al., 2010). The
turbulence spectrum measured byChen et al.(2010) can be
explained by the combination of above spectra, as is shown
in Fig. 1.

Consequently, the Alfv́enic turbulence spectrum in the
MHD/kinetic transition range has a universal double-kink
form (2-k pattern). This 2-k spectral pattern is shown
schematically in Fig.2 for the case of a purely nonlinear
non-dissipative transition. The (variable) slope of the weakly
dispersive KAW spectrum depends on the ratio of turbulent
energies cascading in strong and weak turbulent regimes,
which can differ from case to case. The local slope should
in principle lie between−3 and−4. But the shallower> −3
spectra can be produced by a fraction of counter-propagating
KAWs, and the steeper< −4 spectra can be produced by de-
viations from axial symmetry of the turbulence in the cross-
field plane.

A similar 2-k pattern can in principle also occur for the dis-
sipative transition, considered by many previous authors, but
the conditions required for that are rather special. Namely,
the relative dissipation rate (as compared to the nonlinear in-
teraction rate) should be much stronger in the rangek⊥1 <

k⊥ < k⊥2 than in the rangek⊥ > k⊥2. The presence of a
high-wavenumber cascade and turbulence atk⊥ > k⊥2 im-
plies a nonlinear transfer and a spectral flux across the range

Fig. 2. Double-kink pattern produced by the MHD/WDR/strongly
dispersive turbulence transitions. Kinetic Alfvén wave spectra are
given for the case of a weakly turbulent regime. In the case of a
strongly turbulent regime, spectral indices−4 and−2.5 should be
replaced by−3 and−7/3, respectively.

k⊥1 < k⊥ . k⊥2 as well, which means that nonlinear KAW
interactions should be taken into account in any case.

The 2-k pattern described above can be noticed in many
high-resolution high-frequency Cluster measurements (as re-
ported byKiyani et al., 2009; Sahraoui et al., 2010; Chen et
al., 2010) and can also be noticed in some previous measure-
ments where the frequency range extended to 1 Hz or a lit-
tle higher (see e.g. ACE data reported bySmith et al., 2006,
Fig. 1).

The relative importance of the effects due to dissipa-
tion versus weak turbulence versus strong turbulence in the
MHD/kinetic transition can be different from case to case.
The actual wavenumber range where non-adiabatic ion ac-
celeration and related wave damping come into play is also
variable. If the non-adiabatic ion acceleration and partial
wave damping are active well below the apparent spectral
kink, then the flatness should follow the trends as in Fig. 3
by Alexandrova et al.(2008a) for Cluster data. The threshold
behavior suggests that it comes into play earlier for stronger
spectral fluxes; it then weakens the MHD turbulence facilitat-
ing its transition to the weak KAW turbulence with its steeper
spectra. This can explain a counter-intuitive observation by
Smith et al.(2006) that the stronger fluxes are followed by
the steeper spectra in the “dissipation range”.

5 Dissipation of KAWs

In this section we discuss several pros and cons of basic dis-
sipation mechanisms for KAWs, but their detailed investiga-
tion is postponed to the future.
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Wu and Yang(2007) considered self-consistent velocities
of minor ion species in KAW solitons and found them dis-
tributed proportionally to the ion mass-to-charge ratio. How-
ever, these velocities cannot be interpreted as thermal ones
(increasing temperature) because they contribute to the non-
thermal line broadening rather than thermal line width. A
non-adiabatic disconnection from the wave fields is needed
for the ions to gain some additional energy after the wave
has passed by. Such a process has been considered by
Voitenko and Goossens(2004), who showed that ions can
undergo strong non-adiabatic acceleration in the presence of
KAWs. This acceleration requires a certain threshold-like
amplitude/wavelength relation for KAWs (see a weakly dis-
persive example in Sect. 5.2), above which the ions get accel-
erated and the KAW dissipation is switched on. On the other
hand, the acceleration is fast: it completes within a short time
scale comparable to the ion gyroperiod and does not require a
long stochastic walk for the ions to significantly gain energy
(Voitenko and Goossens, 2004, 2006).

Chandran et al.(2010) have shown that another process
related to non-adiabaticity (stochastic plasma heating) can
absorb up to half of the turbulent cascade flux atk⊥ρp ∼ 1.
Chandran et al.assume the MHD nonlinear rate, which may
be incorrect atk⊥ρp ∼ 1 where the KAW nonlinear interac-
tion is faster and can pass more energy to the high-k⊥ range.

Yet another nonlinear interaction of the broadband
Alfv énic turbulence with ions, via nonlinear Landau damp-
ing, was studied byNariyuki et al.(2010), who showed that
ion heating proceeds both along and across the background
magnetic field and produces asymmetric ion velocity dis-
tributions. On the other hand, because of the quasi-linear
plateau formation in velocity distribution functions, classic
Landau damping can be highly reduced in the weakly colli-
sional solar wind (Voitenko and Goossens, 2006; Rudakov et
al., 2011).

5.1 Landau damping

The parallel components of the KAW electricEzk and mag-
netic Bzk fields make the KAWs efficient in Cherenkov in-
teraction with plasma species via the kinetic mechanisms
of Landau and transit-time damping. Landau damping as-
suming Maxwellian distribution functions of plasma species
that have been commonly used for estimating KAW dissi-
pation. However, these mechanisms are based on resonant
wave-particle interactions that depend strongly on the local
parallel slopes of the particle velocity distributionsFs(Vz),
at parallel velocitiesVz equal to the wave phase velocity
ωk/kz. In particular, quasi-linear diffusion smoothes reso-
nant slopes and reduces Landau damping of KAWs by the
factor(1+τC/τKAW )−1 (Voitenko, 2006):

γL =

∑
s

γ M
L

(
1+

τC

τKAW

)−1

, (25)

whereγ M
L is the Maxwellian Landau damping rate, andτKAW

andτC are the characteristic diffusion times of particles due
to KAWs and Coulomb collisions, respectively. The sum-
mation in Eq. (25) is over plasma speciess. KAWs tend to
flattenFs(Vz), while Coulomb collisions restore it back to
Maxwellian; the balance between both results in Eq. (25).

The detailed analysis of Eq. (25) as a function ofk⊥ is
quite complex (subject of a separate study). Our estimates,
similar to those by Voitenko and Goossens (2006), show that
for typical fluctuation levelsWf ∼ 10−1 nT2/Hz atk⊥ρp ∼ 1
in the solar wind,τC/τKAW � 1 for both electrons and pro-
tons. Landau damping is thus highly reduced. The con-
clusion byPodesta(2009) that the KAW turbulence cannot
reach electron scales in the solar wind, which was based on
Maxwellian Landau damping, should therefore be reconsid-
ered.

5.2 Non-adiabatic threshold for turbulent dissipation

The rate of the non-adiabatic cross-field acceleration of the
ions “i” by oblique Alfvén waves is (Voitenko and Goossens,
2004):

γ 2
n−a= �2

i

[
VA

�i

(
c

VA

E⊥

B⊥

−
Viz

VA

)
∂

∂x

B⊥

B0
−1

]
, (26)

whereViz is the parallel ion velocity,�i is the ion-cyclotron
frequency, andE⊥ andB⊥ are the Alfv́enic electric and mag-
netic fluctuations,E⊥ ⊥ B⊥.

Using E⊥/B⊥ ' VA/c in WDR, and ignoring a possible
field-aligned streaming of ions, the threshold-like condition
for this kind of wave-particle interaction,γ 2

n−a > 0, can be
written in the form

ηk = k⊥δp
Bk

B0
> νi, (27)

where νi = �i/�p is the threshold value for the non-
adiabatic factorηk above which the particular ion species
i is heated non-adiabatically. This condition applies to any
particular ion species, but the related wave dissipation de-
pends on all ion species and their parameters, like their abun-
dances, temperatures, etc. Nevertheless, a condition for effi-
cient wave dissipation can still be written in the form Eq. (27)
with a non-adiabatic factorηk in the left hand side, but with
a different thresholdνw in the right hand side, which is not
easy to find. One can guess that the wave threshold should
be close to the acceleration threshold for the dominant ion
speciesνw ∼ νi . Anyway, even without knowing the exact
threshold valueνw, it is possible to derive several useful scal-
ings that can be tested observationally. So, for a power law
scaling of magnetic amplitudes,B2

k ∝ B2
k1(k⊥/k⊥1)

−q , we
obtain the spectral dependence ofηk:

ηk = ηk1

(
k⊥

k⊥1

)1−q/2

> νw, (28)

where ηk1 is the non-adiabatic factor at the reference
wavenumberk⊥ = k⊥1. For the sake of convenience we
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Fig. 3. Typical Alfvénic turbulent spectrum (solid line) in the
weakly/mildly dispersive KAW range and a “threshold” turbulent
spectrum (dashed line) required for non-adiabatic ion acceleration.
Non-adiabatic acceleration is possible around the first spectral kink,
where the turbulent spectral power rises above the threshold spectral
power.

choose the reference wavenumber equal to the wavenumber
of the first spectral kinkk⊥1.

Sinceq ' 2/3 in the MHD range,ηk ∝ k
2/3
⊥

grows with
k⊥ as long ask⊥ < k⊥1. But the situation is reversed in
WDR, k⊥ > k⊥1, whereq ' 3 andηk decreases withk⊥ as
ηk ∝ k

−1/2
⊥

. Such spectralk⊥-dependence ofηk indicates that
the most favorable conditions for non-adiabatic ion accelera-
tion and related wave dissipation are achieved in the vicinity
of the first spectral kink,k⊥ ' k⊥1. This is shown schemat-
ically in Fig. 3, where we used the omnidirectional spectral
representationWk ∝ B2

k /k⊥ ∝ k
−p
⊥

with p = q +1 for KAW
spectra. The “threshold” spectrum

Wthr ∝
B2

thr

k⊥

∝ k−3
⊥

, (29)

follows from the non-adiabatic condition Eq. (28), and has
the same slope in both weakly and strongly dispersive ranges.
But the measured spectrum has a variable slope: it is usu-
ally flatter (p < 2) in the MHD range, and steeper (p > 3)
in WDR. The condition for the non-adiabatic ion accelera-
tion by Alfvénic fluctuations is satisfied in the wavenumber
range where the observed fluctuations’ spectrum rises above
the threshold one. As is seen from Fig.3, with sufficient tur-
bulence power, the non-adiabatic condition in spectral form,
Wk > Wthr, can be satisfied around the first spectral kink.

Once the thresholdηk = νi is exceeded in some wavenum-
ber range for some ion species, these ions enter a regime of
strong acceleration. In turn, because of its threshold-like
character, the non-adiabatic ion heating provides a highly
selective dissipation mechanism for waves, affecting only
the strongest fluctuations with over-threshold amplitudes. In

principle, the ability of turbulence to produce intermittent
large-amplitude fluctuations increases the value of the driven
parameter Eq. (28), where one should use the spectrum and
amplitudes of the intermittent fluctuations instead of the reg-
ular turbulence spectrum. The eventual rate of the plasma
heating and turbulence dissipation should follow from the
balance between two processes: (i) production of the over-
threshold intermittent fluctuations by the turbulence, and (ii)
accommodation of turbulence energy by accelerated ions and
its further redistribution into the bulk plasma. Helios ob-
servations have shown that the flatness (a measure of inter-
mittency) increases with wavenumber (Alexandrova et al.,
2008a), which progressively raises the non-adiabatic param-
eter above the value given by Eq. (28). Then, at some large
enough wavenumber, the level of intermittent fluctuations
can reach the non-adiabatic threshold, even if the regular tur-
bulent level remains below it.

Dissipation due to non-adiabatic heating/acceleration
tends to reduce the over-threshold fluctuations at every scale
to the corresponding threshold value given by Eq. (27). Then,
in accordance to Eq. (27), the upper bound for the reduced
intermittent amplitudes scales asB2

thr ∝ k−2
⊥

, and since the
magnetic power spectrum in this range has shallower scal-
ing B2

k ∝ k
−2/3
⊥

, the flatness (and higher order normalized
structure functions as well) should decrease with wavenum-
ber in the MHD range below the first spectral kink. This
can explain another interesting feature, the local decrease of
the flatness in the spacecraft frequency range 0.02÷0.2 Hz
(which is still below the apparent spectral kink) found by
Alexandrova et al.(2008a) using Cluster data. We suggest
that such behavior of the flatness may indicate a partial dissi-
pation of Alfvén waves via non-adiabatic ion acceleration in
the wavenumber range whereWk > Wthr, illustrated in Fig.3.

In turn, highly anisotropic ion distributions are produced
by non-adiabatic acceleration (Voitenko and Goossens,
2004), which can drive anisotropic ion-cyclotron instabili-
ties redistributing energy further. Since non-adiabatic ion ac-
celeration happens very fast, within a fraction of the corre-
sponding ion gyroperiod, the quasi-stationary rate of turbu-
lent dissipation will be determined by the ion-cyclotron in-
stability increment. The situation is thus more complex here
and opposite to that observed in hydrodynamics, where vis-
cosity washes out the smallest amplitudes when approaching
the dissipation range while large-amplitude fluctuations sur-
vive increasing intermittency. The behavior of the intermit-
tency found byAlexandrova et al.(2008a) is not typical for
linear Landau damping as well.

After the relative perpendicular/parallel power in the spec-
trum and the strength of the MHD interaction are reduced,
the transition to weak KAW turbulence is made possible
and leads to the steepest spectra in WDR. In the strongly
dispersive range,Kiyani et al. (2009) found a monofractal
(but still non-Gaussian) statistical behavior and suggested
a “global scale-invariant dissipation”. On the other hand,
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the turbulence is multifractal in the MHD range (see e.g.
Marsch and Tu, 1997, about fractal scalings in the solar wind
turbulence). The question is where and why the turbulence
transforms from the multifractal state in the MHD range
to the monofractal state in the kinetic range. To this end,
it would be interesting to analyze intermittency and fractal
properties in the weakly dispersive KAW range by means of
Rank-Ordered Multifractal Analysis (ROMA) (seeChang et
al., 2010, and references therein).

6 Summary and discussion

For the first time, a weakly dispersive range of the KAW
turbulence is distinguished and studied in the context of
the MHD/kinetic turbulence transition. We show that the
KAW turbulence and its spectra in WDR differ significantly
not only from conventional MHD Alfv́enic turbulence, but
also from strongly dispersive KAW turbulence. Namely, the
nonlinear interaction of weakly dispersive KAWs is capa-
ble of producing steep spectra∝ k−3

⊥
÷k−5

⊥
in the wavenum-

ber rangek⊥1 < k⊥ < ρ−1
p , connecting shallow MHD spectra

∝ k
−3/2
⊥

÷k
−5/3
⊥

below the first spectral kink,k⊥ < k⊥1, and

rather shallow∝ k
−7/3
⊥

÷ k−3
⊥

spectra of strongly dispersive
KAWs above the second spectral kink,k⊥ > ρ−1

p .
The universal spectral form resulting from such spectral

dynamics in the transition range, the 2-k pattern, is shown
schematically in Fig.2. Turbulent spectra observed recently
by the Cluster spacecraft often exhibit such a 2-k pattern in
the transition wavenumber range (see for example Fig.1). It
is still not certain what role Landau damping plays in produc-
ing such a steep spectral kink atk⊥ρp . 1. Any kind of ki-
netic dissipation in the weakly collisional solar wind should
be self-consistently saturated at a reduced level by the lo-
cal plateau formation in the velocity distribution functions of
the plasma species (Voitenko and Goossens, 2006; Rudakov
et al., 2011). At least a quasi-linear theory is needed to ac-
count for the particles’ feedback on the energy input from
the waves, and numerous previous estimations based on the
Maxwellian Landau damping rate should be re-evaluated.

Podesta(2009) reported a significant flattening of the high-
frequency parallel spectra and suggested this may be due to
a plasma instability injecting a fraction of parallel propagat-
ing waves. On the other hand, this flattening can be pro-
duced by a transition to weak KAW turbulence, possessing
(in an ideal case) a very shallow spectrum Eq. (10). How-
ever, because of many interfering factors, it is not certain if
the parallel wavenumber spectrum Eq. (10) can be realized
in the solar wind. The perpendicular wavenumber spectra
are determined by the nonlinear interaction among perpen-
dicular length scales and are thus quite robust. But the cor-
responding parallel wavenumber dynamics and spectra fol-
low the perpendicular wavenumber dynamics and are often
defined from a suitable functional form linking them to the

perpendicular ones. This functional form may depend on a
number of factors, including strength of the turbulence, par-
tial turbulence dissipation, etc. In the extreme cases of weak
and strong turbulence, the parallel dynamics is fixed, respec-
tively, by the perpendicular one kinematically (via resonant
conditions) and by adjusting linear and nonlinear time scales
(via the critical balance condition).

One can expect a high variability of spectral slopes in
WDR, resulting from a mixture of several “clean” spectra
that can be produced by KAWs in this range. In addition, our
analysis suggests that non-adiabatic and/or stochastic cross-
field acceleration of solar wind ions are feasible mechanisms
for a partial dissipation of KAWs operating in the vicinity of
the first spectral kink. Both these mechanisms share the same
non-adiabatic threshold and imply a selective dissipation of
the over-threshold fluctuations with the largest amplitudes.
This kind of dissipation reduces high-amplitude intermittent
fluctuations and should therefore produce a local decrease of
the flatness of the amplitude distribution of the fluctuations
in the dissipation range. Although there are observational
indications for such a behavior of the flatness (Alexandrova
et al., 2008a, Fig. 3), this point needs further observational
support.

It seems that the synergetic action of selective wave dis-
sipation and weak turbulence of KAWs influences both the
spectral kink positions and the spectral slopes, making them
dependent of the turbulence level. Namely,ηk, product of
the turbulent amplitude and corresponding wavenumber, is
the parameter facilitating transition to weak KAW turbulence
with its steeper spectra. As the spectral flux∼ η3

k , the larger
spectral fluxes imply largerηk, which in turn imply steeper
spectra in the weakly dissipative range. Such a counter-
intuitive trend was found bySmith et al.(2006).

On the other hand, in the vicinity of spectral kinks the non-
adiabatic wave-particle interaction tends to reduceηk to a
near-threshold value, which results in the scalingBk1 ∼ k−1

⊥1.
This scaling offers an explanation for the observed spectral
kink wavenumbers, which were found to be inversely pro-
portional to the fluctuation amplitudes at the spectral kink
positions (Markovskii et al., 2008).

Contrary to MHD Alfvén waves, the dispersion law of
KAWs, even weakly dispersive, is not degenerate with re-
spect tok⊥. This makes 3-wave interactions possible with
all 3 waves residing on the KAW branch, and there is no
need for a zero-k‖, k⊥ 6= 0 mode mediating the MHD turbu-
lent cascade. Consequently, an additional spectrum of KAW
turbulence can be created by the cascading enstrophy (disper-
sive part of energy). The energy and the enstrophy cascade
in opposite directions from the injection wavenumber. As the
turbulence of KAWs in the solar wind is driven at the largest
MHD length scales, it naturally proceeds to smaller scales
following a direct cascade route. In other environments, and
with different positions of the driving scale, one may observe
inverse (e.g.Lui et al., 2008) or dual spectral cascade. How-
ever, these are not easy to discriminate and describe in terms
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of cascades because of the non-local contaminations and
scale mixing in a finite-size and highly variable environment,
like in the Earth’s plasma sheet (seeVörös et al., 2010).

Again, contrary to MHD Alfv́en wave turbulence, KAW
turbulence does not require pre-existing counter-propagating
waves for efficient cascading. Nonlinear interaction among
co-propagating KAWs is strong enough to establish a co-
propagating (completely imbalanced) KAW turbulence with-
out involving the counter-propagating KAWs. If the co-
propagating KAW turbulence develops in some wavenum-
ber range (e.g. atk⊥1 < k⊥ < ρ−1

p ), then the ratio of
sunward/anti-sunward Poynting fluxes should be frozen and
remain approximately constant at these wavenumbers. This
would provide another observational benchmark for KAW
turbulence, but we are not aware of such observations at
k⊥ ' ρ−1

p so far.
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Khotyaintsev, Y., and André, M.: Sign-Singularity of the Re-
duced Magnetic Helicity in the Solar Wind Plasma, Phys. Rev.
Lett., 104, 181101,doi:10.1103/PhysRevLett.104.181101, 2010.

Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E., and Ger-
maschewski, K.: Perpendicular Ion Heating by Low-frequency
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