
Mech. Sci., 6, 163–171, 2015

www.mech-sci.net/6/163/2015/

doi:10.5194/ms-6-163-2015

© Author(s) 2015. CC Attribution 3.0 License.

B-spline parameterized optimal motion trajectories for

robotic systems with guaranteed constraint satisfaction

W. Van Loock, G. Pipeleers, and J. Swevers

Department of Mechanical Engineering, Division PMA, KU Leuven, 3001 Leuven, Belgium

Correspondence to: W. Van Loock (wannes.vanloock@kuleuven.be)

Received: 8 May 2015 – Revised: 31 July 2015 – Accepted: 8 August 2015 – Published: 1 September 2015

Abstract. When optimizing the performance of constrained robotic system, the motion trajectory plays a cru-

cial role. In this research the motion planning problem for systems that admit a polynomial description of the

system dynamics through differential flatness is tackled by parameterizing the system’s so-called flat output as

a polynomial spline. Using basic properties of B-splines, sufficient conditions on the spline coefficients are de-

rived ensuring satisfaction of the operating constraints over the entire time horizon. Furthermore, an intuitive

relaxation is proposed to tackle conservatism and a supporting software package is released. Finally, to illustrate

the overall approach and potential, a numerical benchmark of a flexible link manipulator is discussed.

1 Introduction

The computation of a constrained optimal motion trajectory

is a challenging problem in control and has attracted re-

searchers already for several decades. In the 1990s the con-

cept of differential flatness (Fliess et al., 1995) arose, which

allows characterizing all the state space trajectories and the

corresponding input history by means of a particular set of

outputs. Differentially flat systems encompass all linear, con-

trollable systems and many nonlinear systems as well. It

quickly gained popularity for solving optimal control prob-

lems since in this way, the integration of the system dynamics

is avoided. Hence, the problem reduces to finding the best flat

output that obeys the boundary conditions and the state and

input constraints. To deal with the infinite dimensionality of

this problem, a polynomial or spline parameterization for the

flat output is often used. To impose state and input constraints

classical approaches in the literature (Louembet et al., 2009;

Milam et al., 2000) apply a sampling strategy. As a result the

constraints are not guaranteed to be satisfied in between the

samples such that post-analysis is required for critical con-

straints. The aim in this paper is to provide constraints that

can guarantee constraint satisfaction.

For linear systems, several methods have been proposed in

the literature to guarantee constraint satisfaction at all times.

Henrion and Lasserre (2006) propose a polynomial param-

eterization for the flat output, hereby transforming the con-

strained motion planning problem into a polynomial nonneg-

ativity problem. Subsequently, a sum-of-squares decomposi-

tion is sought for using semidefinite programming. Piecewise

polynomials can allow for more freedom in the parameteri-

zation and the former approach can be straightforwardly ex-

tended by searching for sum-of-squares decompositions on

the individual polynomial pieces. A similar strategy is fol-

lowed by Louembet et al. (2010), where a sum-of-squares de-

composition is searched for directly in the B-spline basis, but

by doing so a conservative solution is determined. Suryawan

et al. (2012) also adopt a piecewise polynomial parameter-

ization, but in contrast to the sum-of-squares procedure of

Louembet et al. (2010), the authors express the semi-infinite

constraints by applying basis function segmentation and us-

ing the convex hull property of B-splines, leading to linear

constraints. Such an approach yields only sufficient condi-

tions and hence introduces conservatism, which can be quite

severe (de Boor and Daniel, 1974).

For nonlinear systems, existing approaches resort to con-

vex approximations of the feasible set. Louembet et al.

(2010) require a polytopic inner approximation of the feasi-

ble set. Inevitably, this method introduces conservatism in the

problem. Moreover, some feasible sets do not admit such a

polytopic approximation, e.g. obstacle avoidance constraints.

For nonlinear systems that admit a polynomial representa-

tion by differential flatness, Suryawan et al. (2012) propose
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a strategy to impose the semi-infinite constraints by relying

on the convex hull property of splines and only keeping the

linear and cubic monomial terms in the polynomial expan-

sion. This way the optimization problem amounts to a sim-

ple QP. It should be noted, however, that this approach results

in overly conservative constraints. To the best of our knowl-

edge, no adequate method exists for guaranteed constraint

satisfaction in nonlinear systems.

This paper aims to develop an optimization approach with

guaranteed constraint satisfaction over the entire time hori-

zon for systems that admit a polynomial representation by

differential flatness. For systems that are flat but do not have

such a polynomial representation, the equations are trans-

formed into polynomial form, either by simple manipulation,

a change of variables or approximation. Similar to Suryawan

et al. (2012), our method is based on the convex hull property

of B-splines. However, we do not require basis function seg-

mentation and additionally we propose an intuitive method

to control the conservatism that is introduced.

Section 2 introduces the motion planning problem as well

as the concept of differential flatness. The following sec-

tion proposes a spline parameterization of the flat output and

discusses various relevant properties of splines. In Sect. 4,

two relaxation strategies are discussed that effectively re-

duce conservatism. The free end-time problem is discussed

as well. Section 5 validates our approach on a numerical

benchmark problem. Furthermore, as a complement to the

paper, a supporting software tool is released to aid the user

in formulating motion planning problems involving splines.

2 Problem formulation

Consider a system governed by the differential equation

ẋ = f (x,u),x(0)= x0, (1)

with states x(t)∈Rnx and inputs u(t)∈Rnu . We are inter-

ested in finding the control law u(t), t ∈ [0, tf] that steers the

system from an initial state x0, at t = 0, to a terminal state

xtf , at t = tf, and that minimizes a performance criterion g(x,

u, tf). At the same time the control law must obey state and

input constraints:

h(x(t),u(t))≥ 0, ∀t ∈ [0, tf] , (2)

where the constraint function h : Rnx ×Rnu→Rnh are as-

sumed to be polynomial in x and u.

In this work, we assume the system Eq. (1) is differentially

flat (Fliess et al., 1995). This means that there exists a set of

variables, called the flat outputs, y ∈Rnu of the form

y = φ
(
x,u,u(1), . . .,u(q)

)
such that

x = ψx
(
y,y(1), . . .,y(r−1)

)
and

u= ψu
(
y,y(1), . . .,y(r)

)
for some positive integers q, r . So for a flat system, there ex-

ists an algebraic relationship between the states and inputs,

and the flat output and its derivatives. Aside from all linear,

controllable systems also many nonlinear systems are differ-

entially flat. For more details and a catalog of flat systems

the interested reader is referred to Martin et al. (2003) and

Lévine (2010).

Differential flatness is particularly interesting when solv-

ing optimal control problems since it avoids integration of

the system dynamics Eq. (1), an often costly and numeri-

cally challenging step. Indeed, by formulating the problem

from the first paragraph in terms of the flat output, we arrive

at the following optimization problem:

minimize
y(·)

g
(
ψx
(
y, . . .,y(r−1)

)
,ψu

(
y, . . .,y(r)

)
, tf
)

subject to y(j )(0)= y(j )

0 , j = 0, . . ., r − 1

y(j ) (tf)= y(j )
tf
, j = 0, . . ., r − 1

h
(
ψx
(
y, . . .,y(r−1)

)
,ψu

(
y, . . .,y(r)

))
≥ 0,∀t ∈ [0, tf] ,

(3)

where the boundary conditions for the flat output, y
(j )

0 and

y
(j )
tf

, are readily determined from x0 and xtf .

In solving the above optimization problem, we still face

two challenges: (i) instead of a finite set of variables, the op-

timization variable is a function y(·) and (ii) the constraints

must be enforced at all time instances. Therefore, the prob-

lem is infinite dimensional with infinitely many constraints.

To cope with the infinite dimensionality a fixed parameteri-

zation is usually chosen for y(·). As splines provide a good

approximation for smooth functions (de Boor, 2001), we will

use a polynomial spline parameterization for y in this paper

resulting in an optimization problem with few optimization

variables that can be solved efficiently. In addition, as shown

in the following section, such a parameterization allows us

to impose the semi-infinite constraints by a finite number of

sufficient constraints provided that the maps ψx and ψu are

polynomial.

3 B-spline parameterized solutions

Let κ = (κ0, . . . , κm+1) be a strictly increasing vector of

points, k be a positive integer, and ν= (ν1, . . . , νm) be a vec-

tor of integers with 0≤ νi ≤ k− 1. Then, s is a polynomial

spline of order k with break points κ and continuity condi-

tions ν if there exist polynomials p0, . . . , pl of order k such

that
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s(t)= pi(t), for κi ≤ t < κi+1, i = 0,1, . . .,m− 1

s(t)= pm(t), for κm ≤ t ≤ κm+1,

and

p
(j−1)

i−1 (κi)= p(j−1)
i (κi) for j = 1, . . .,νi, i = 1, . . .,m.

The vector space of polynomial splines with given k,

κ and ν is denoted by 5k,κ,ν and has dimension

n= (m+ 1)k−
m∑
i=1

νi . The normalized B-spline basis of or-

der k, defined over the knot vector

t =

κ0, . . .,κ0︸ ︷︷ ︸
k

,κ1, . . .,κ1︸ ︷︷ ︸
k−ν1

, . . .,κm, . . .,κm︸ ︷︷ ︸
k−νm

,κm+1, . . .,κm+1︸ ︷︷ ︸
k


is commonly used as a basis for this vector space as it has

various useful properties: the basis functions are nonnega-

tive, sum up to one (partition of unity) and have local (min-

imal) support (de Boor, 2001). It yields a stable evaluation

of the functions and its derivatives. A spline s ∈5k,κ,ν with

B-spline basis bs = (b1, . . . , bn) and (B-spline) coefficients

σ = (σ1, . . . , σn) is represented as

s(t)=
n∑
i

σibi(t)= 〈σ ,bs(t)〉.

The control polygon of the spline is the broken line with

ci =
(
t∗i ,σi

)
, i = 1, . . .,n

as vertex sequence, where

t∗i =
ti+1+ . . .+ ti+k−1

k− 1
,∀i.

Figure 1 illustrates a fourth order spline and its control poly-

gon, which can be regarded as an exaggerated version of the

spline itself (de Boor, 2001).

The convex hull property of splines is essential for the fur-

ther course of this paper and is repeated from de Boor (2001)

for completeness:

Property 1 (Convex hull) Let s be a polynomial spline of

order k with knot vector t . From the nonnegativity, partition

of unity and local support property of the B-spline basis it

follows immediately that the segment s(t), t ∈ [ti , ti+1] lies

within the convex hull of its control points ci−k+1, . . . , ci .

The convex hull property is illustrated in Fig. 1. It follows

immediately from Property 1 that for constants a and b.

a ≤ σ ≤ b⇒ a ≤ s(t)≤ b,∀t ∈ [κ0,κm+1

]
.

Thus, by constraining the spline’s coefficients, semi-infinite

bounds on the spline can easily be imposed. Furthermore, it is

trivial to see that any polynomial function of splines is itself a

Figure 1. A continuous fourth order spline with five breaks indi-

cated by the crosses. The spline’s control polygon is the broken thin

line. The gray area illustrates the convex hull property for points

between the second and third break.

spline. Moreover, its B-spline coefficients can be determined

from the B-spline coefficients of its constituents using the

sum and product properties detailed in Appendix A.

Now, let us apply Properties 1–3 to the optimization prob-

lem Eq. (3). Let byi , i= 1, . . . , nu denote the B-spline basis

for the ith flat output and γ i the corresponding coefficients.

Since ψx , ψu and h are polynomial, we can determine the

B-spline coefficients ηi(γ 1, . . . , γ nu ) of the ith component

of h(ψx(y, y(1), . . . , y(r−1)), ψu(y, y(1), . . . , y(r))). Then, an

approximate solution for Eq. (3) is determined by solving

minimize
γ 1,...,γ nu

g̃
(
γ 1, . . .,γ nu , tf

)
subject to 〈γ i ,b(j )

yi (0)〉 =
(
y

(j )

0

)
i
, j = 0, . . ., r − 1, i = 1, . . .,nu

〈γ i ,b(j )
yi (tf)〉 =

(
y

(j )
tf

)
i
, j = 0, . . ., r − 1, i = 1, . . .,nu

ηi
(
γ 1, . . .,γ nu

)≥ 0, i = 1, . . .,nh

, (4)

where, g̃ denotes the result of the substitution of the spline

parameterization in the objective function of Eq. (3).

4 Discussion

4.1 Reducing conservatism

Imposing a semi-infinite constraint on a polynomial spline

through constraints on its B-spline coefficients yields only

sufficient conditions and hence, the optimal value of Eq. (4)

is an upper bound on the optimal value of Eq. (3). This con-

servatism is due to the distance between the control polygon

of the spline and the spline itself. By representing the spline

in a higher dimensional basis that includes the original one,

the control polygon can be brought closer to the spline. Such
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basis = BSplineBasis([0, tf], 4, 11); % Basis of degree 4 with 11 knots

y = BSpline.sdpvar(basis, [1, 1]); % scalar (1x1) spline variable

dy = y.derivative(1);

ddy = y.derivative(2);

dddy = y.derivative(3);

pu = c0 + c1 * y; % Upper bound (l=1)

pl = -c0 + c1 * y; % Lower bound (l=1)

obj = y^2;

con = [y.f(0) == 0.8, y.f(tf) == -0.8, % z.f evaluates the spline

dy.f(0) == 0, dy.f(tf) == -0.8,

ddy.f(0) == -0.2, ddy.f(tf) == 0.2,

dddy.f(0) == 0, dddy.f(tf) == 0,

M*g*L/k * pu + I1/k * ddy + y <= pi/4, % semi-infinite constraints

M*g*L/k * pl + I1/k * ddy + y >= -pi/4,

M*g*L/k * pu + I1/k * ddy <= pi/16,

M*g*L/k * pl + I1/k * ddy >= -pi/16];

sol = optimize(con, obj.integral());

y_opt = value(y); % Retrieve numerical solution for z

Listing 1. Example code for solving (6) with l = 1

4. A globally optimal sum-of-squares (SOS) approach on each segment for l = 1 as in Henrion

and Lasserre (2006); Louembet et al. (2010). MOSEK ApS (2015) is used for solving the

resulting convex semi-definite program (SDP). Note that this approach for l > 1 would require

solving a nonconvex optimization problem with polynomial matrix inequalities for which to

date no reliable solver exists.230

Figure 4 shows the optimal value of the objective function and the CPU-time relative to that of the

SDP as a function of n, the size of the basis for the flat output. The SDP is chosen as reference

as it is the current state-of-the-art with respect to guaranteed constraint satisfaction. For the sam-

pled approach, solutions that do not violate the constraints are indicated by crosses. A number of

observations can be made.235

1. For growing n, the optimal value of the QP converges to that of the SDP. This also illustrates

that basis refinements by knot insertion or order elevation effectively reduce conservatism.

2. Solving a QP is significantly cheaper compared to the other approaches, especially for small

n.

10

Listing 1. Example code for solving Eq. (6) with l= 1.

a basis can be derived by inserting knots, increasing the or-

der1 or a combination of both.

More precisely, let s ∈5k,κ,ν with B-spline coefficients

σ . Let 5k,κ,ν ⊂5k̂,κ̂,ν̂ with k̂≥ k, and κ̂ and ν̂ the refined

break and continuity vectors such that κ ⊆ κ̂ and νi ≥ ν̂j ,

i= 1, . . . , m with j : κi = κ̂j . Then ŝ ∈5
k̂,κ̂,ν̂

with B-spline

coefficients

σ̂ = Ts
ŝ
σ ,

where Ts
ŝ

denotes the linear mapping from bŝ to bs , equals

s and it can be shown that the control polygon of ŝ will lie

closer to the graph than that of s (de Boor, 2001).

A refinement of the break and/or continuity vectors acts

locally on the spline and can target specific regions where

conservatism is high. Order elevation is a global approach

and changes the entire shape of the control polygon. This

is illustrated in Fig. 2. In both cases it is clear that the new

control polygon lies closer to the spline than the original

one and hence conservatism is reduced. Note that order el-

evation increases the number of coefficients, and hence also

the number of constraints, by m+ 1. Inserting a single knot

only amounts to one additional coefficient. Moreover, it can

be shown that the convergence towards the spline for sub-

sequent knot insertions is faster compared to order elevation

(Prautzsch et al., 2002). For these reasons knot insertion is

generally favored.

1Order elevation borrows from the idea of Polya’s relaxation for

polynomials.

(a) (b) (c)

Figure 2. Refining the control polygon brings the control polygon

closer to the spline: (a) the original spline, (b) one knot insertion

and (c) elevate order by one. Note that knot insertion acts locally,

while order elevation changes the control polygon globally.

4.2 Free end-time problems

For optimization problems where the final time tf is a vari-

able, a classical time scaling is applied to Eq. (3). The pseudo

time τ = t
tf

is used as free variable in the parameterization

for the flat output instead of the time t . Consequently, the

derivatives must be scaled by tf and for free end-time prob-

lem Eq. (3) can be formulated as follows:

minimize
y(·),tf

g
(
ψx

(
y, . . ., t r−1

f y(r−1)
)
,ψu

(
y, . . ., t rf y

(r)
)
, tf

)
subject to y(j )(0)= tjf y(j )

0 , j = 0, . . ., r − 1

y(j )(1)= tjf y(j )
tf
, j = 0, . . ., r − 1

h
(
ψx

(
y, . . ., t r−1

f y(r−1)
)
,ψu

(
y, . . ., t rf y

(r)
))≥ 0, ∀τ ∈ [0,1]

. (5)

Therefore, the proposed approach remains applicable to free

end-time problems as well.
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4.3 Software

To facilitate computations with splines and the translation of

problem Eq. (3) into Eq. (4), a Matlab toolbox is made avail-

able at http://gitlab.mech.kuleuven.be/meco/splines-m. The

aim is to be able to model optimization problems as easily as

Yalmip (Löfberg, 2004), but with the variables being polyno-

mial spline functions. An example listing is discussed in the

following section.

5 Numerical validation

This section validates the proposed approach on the motion

planning problem of a flexible link manipulator, introduced

by Faiz (1999) and subsequently treated by Louembet et al.

(2010). Numerical values and the constraints are taken from

Louembet et al. (2010). Both a convex and nonconvex prob-

lem formulation Eq. (4) are compared to a classical sampling

based and a sum-of-squares approach.

The dynamics of the manipulator are described by the

equations

I1q̈1+MgLsinq1+ k (q1− q2)= 0,

I2q̈2− k (q1− q2)= u.
The system’s state is given by x= (q1, q̇1, q2, q̇2)ᵀ.

The goal is to steer the system from the initial state

x0= (0.8 rad, 0 rad s−1, 0.67 rad, 0 rad s−1)ᵀ to the final

state xtf = (−0.8 rad, 0 rad s−1, −0.67 rad, 0 rad s−1)ᵀ

at tf= 5.35 s with minimal deflection of the link,

i.e. g=
tf∫
0

q2
1 (t)dt , while obeying the constraint on the

joint positions

−π
3
≤ q1 ≤ π

3
,−π

4
≤ q2 ≤ π

4
,− π

16
≤ q2− q1 ≤ π

16
.

Note that the constraints on q2 and q2− q1 already imply

the constraint on q1. The state vector is described by the flat

output, y= q1, as:

x = ψx(y, ẏ, ÿ,
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(a) (b) (c)

Figure 2. Refining the control polygon brings the control polygon
closer to the spline:(a) the original spline,(b) one knot insertion
and(c) elevate order by one. Note that knot insertion acts locally,
while order elevation changes the control polygon globally.

(2010). Numerical values and the constraints are taken from
Louembet et al.(2010). Both a convex and nonconvex prob-
lem formulation Eq. (4) are compared to a classical sampling
based and a sum-of-squares approach.

The dynamics of the manipulator are described by the
equations

I1q̈1 + MgLsinq1 + k (q1 − q2) = 0,

I2q̈2 − k (q1 − q2) = u.

The system’s state is given byx= (q1, q̇1, q2, q̇2)ᵀ.
The goal is to steer the system from the initial state
x0 = (0.8 rad, 0 rad s−1, 0.67 rad, 0 rad s−1)ᵀ to the final
state xtf = (−0.8 rad, 0 rad s−1, −0.67 rad, 0 rad s−1)ᵀ

at tf = 5.35 s with minimal deflection of the link,

i.e. g =
tf∫
0

q2
1(t)dt , while obeying the constraint on the

joint positions

− π

3
≤ q1 ≤ π

3
,−π

4
≤ q2 ≤ π

4
,− π

16
≤ q2 − q1 ≤ π

16
.

Note that the constraints onq2 and q2 − q1 already imply
the constraint onq1. The state vector is described by the flat
output,y = q1, as:

x = ψx(y, ẏ, ÿ,

¯

8

...
y)

...
y =

(
y, ẏ,

I1

k
ÿ + MgL

k
siny + y,

I1

k

¯

8

...
y

+MgL

k
ẏ cosy + ẏ

)ᵀ
.

Obviously, the mappingψx is not polynomial. Therefore,
in order to use the proposed approach, the constraints must
be approximated or manipulated into polynomial expres-
sions. To this end, we search for polynomial lower and upper
boundsp(y) andp(y) such that

p(y) ≤ siny ≤ p(y),∀y ∈
[
−π

3
,
π

3

]
.

The feasible set can then be replaced by the semi-algebraic
inner approximation

I1
k
ÿ + MgL

k
p(y) + y ≤ π

4 , I1
k
ÿ + MgL

k
p(y) ≤ π

16
I1
k
ÿ + MgL

k
p(y) + y ≥ −π

4 , I1
k
ÿ + MgL

k
p(y) ≥ − π

16
.

The following polynomial bounds are used in this example:

p(y),p(y) = ±c0 +
l∑

i=1

ciy
2i−1,

where ci , i > 1 are determined from a least-squares fit
on [−π

3 , π
3 ] and the offsetc0 is determined such that

p(y) ≤ siny ≤ p(y). Note that for linearp(y)(·), p(y)(·),
i.e. l = 1, we would get at a polytopic (convex) feasible set
similar to the one suggested inLouembet et al.(2010). Note
that in this example a semi-algebraic formulation is easily
found. For more involved systems such as a six-dof robot,
determining such a semi-algebraic approximation is a cru-
cial step. In order to keep computation time low, it is key to
limit the degree of the approximating polynomials.

We can now write the optimization problem as

minimize
y(·)

tf∫
0

y(t)2dt

subject to y(0) = 0.8, y (tf) = −0.8
ẏ(0) = 0, ẏ (tf) = 0
ÿ(0) = −0.2, ÿ (tf) = 0.2

¯

8

...
y(0) = 0,

¯

8

...
y (tf) = 0

I1
k
ÿ(t) + MgL

k
p(y(t)) + y(t) ≤ π

4 , ∀t ∈ [0, tf ]
I1
k
ÿ(t) + MgL

k
p(y(t)) + y(t) ≥ − π

4 , ∀t ∈ [0, tf ]
I1
k
ÿ(t) + MgL

k
p(y(t)) ≤ π

16, ∀t ∈ [0, tf ]
I1
k
ÿ(t) + MgL

k
p(y(t)) ≥ − π

16, ∀t ∈ [0, tf ]

. (6)

The flat output is parameterized by a polynomial spline with
11 equidistant knots. Using the proposed approach the above
optimization problem is cast in terms of its spline coeffi-
cients as in Eq. (4) using the accompanying software tool
from Sect.4.3. Listing 1 shows the code used for solving the
problem withl = 1.

Figure3 illustrates the solution for polynomial bounds of
degree one (l = 1) (gray) and three (l = 2) (black). Clearly,
the latter solution is less conservative. Note, however, that the
former problem is a convex quadratic program (QP) whereas
the latter is nonconvex. Being able to use nonpolytopic sets
is a clear advantage of our method over previous results
(Louembet et al., 2010; Suryawan et al., 2012).

In a following numerical experiment, we compute the so-
lution for increasing number of knots and compare the fol-
lowing cases:

1. Our proposed approach forl = 1, which is comparable
to that of Suryawan et al.(2012). The resulting opti-
mization problem is a convex QP and is solved using
qpOASES (Ferreau et al., 2014).

2. Our proposed approach forl = 2. To the best of our
knowledge, our method is unique in that it can guarantee
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Figure 2. Refining the control polygon brings the control polygon
closer to the spline:(a) the original spline,(b) one knot insertion
and(c) elevate order by one. Note that knot insertion acts locally,
while order elevation changes the control polygon globally.

(2010). Numerical values and the constraints are taken from
Louembet et al.(2010). Both a convex and nonconvex prob-
lem formulation Eq. (4) are compared to a classical sampling
based and a sum-of-squares approach.

The dynamics of the manipulator are described by the
equations

I1q̈1 + MgLsinq1 + k (q1 − q2) = 0,

I2q̈2 − k (q1 − q2) = u.

The system’s state is given byx= (q1, q̇1, q2, q̇2)ᵀ.
The goal is to steer the system from the initial state
x0 = (0.8 rad, 0 rad s−1, 0.67 rad, 0 rad s−1)ᵀ to the final
state xtf = (−0.8 rad, 0 rad s−1, −0.67 rad, 0 rad s−1)ᵀ

at tf = 5.35 s with minimal deflection of the link,

i.e. g =
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Obviously, the mappingψx is not polynomial. Therefore,
in order to use the proposed approach, the constraints must
be approximated or manipulated into polynomial expres-
sions. To this end, we search for polynomial lower and upper
boundsp(y) andp(y) such that
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The following polynomial bounds are used in this example:
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3 ] and the offsetc0 is determined such that

p(y) ≤ siny ≤ p(y). Note that for linearp(y)(·), p(y)(·),
i.e. l = 1, we would get at a polytopic (convex) feasible set
similar to the one suggested inLouembet et al.(2010). Note
that in this example a semi-algebraic formulation is easily
found. For more involved systems such as a six-dof robot,
determining such a semi-algebraic approximation is a cru-
cial step. In order to keep computation time low, it is key to
limit the degree of the approximating polynomials.

We can now write the optimization problem as

minimize
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ÿ(t) + MgL

k
p(y(t)) + y(t) ≥ − π

4 , ∀t ∈ [0, tf ]
I1
k
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The flat output is parameterized by a polynomial spline with
11 equidistant knots. Using the proposed approach the above
optimization problem is cast in terms of its spline coeffi-
cients as in Eq. (4) using the accompanying software tool
from Sect.4.3. Listing 1 shows the code used for solving the
problem withl = 1.

Figure3 illustrates the solution for polynomial bounds of
degree one (l = 1) (gray) and three (l = 2) (black). Clearly,
the latter solution is less conservative. Note, however, that the
former problem is a convex quadratic program (QP) whereas
the latter is nonconvex. Being able to use nonpolytopic sets
is a clear advantage of our method over previous results
(Louembet et al., 2010; Suryawan et al., 2012).

In a following numerical experiment, we compute the so-
lution for increasing number of knots and compare the fol-
lowing cases:

1. Our proposed approach forl = 1, which is comparable
to that of Suryawan et al.(2012). The resulting opti-
mization problem is a convex QP and is solved using
qpOASES (Ferreau et al., 2014).

2. Our proposed approach forl = 2. To the best of our
knowledge, our method is unique in that it can guarantee
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closer to the spline:(a) the original spline,(b) one knot insertion
and(c) elevate order by one. Note that knot insertion acts locally,
while order elevation changes the control polygon globally.

(2010). Numerical values and the constraints are taken from
Louembet et al.(2010). Both a convex and nonconvex prob-
lem formulation Eq. (4) are compared to a classical sampling
based and a sum-of-squares approach.

The dynamics of the manipulator are described by the
equations

I1q̈1 + MgLsinq1 + k (q1 − q2) = 0,

I2q̈2 − k (q1 − q2) = u.

The system’s state is given byx= (q1, q̇1, q2, q̇2)ᵀ.
The goal is to steer the system from the initial state
x0 = (0.8 rad, 0 rad s−1, 0.67 rad, 0 rad s−1)ᵀ to the final
state xtf = (−0.8 rad, 0 rad s−1, −0.67 rad, 0 rad s−1)ᵀ

at tf = 5.35 s with minimal deflection of the link,

i.e. g =
tf∫
0

q2
1(t)dt , while obeying the constraint on the
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Note that the constraints onq2 and q2 − q1 already imply
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ÿ + MgL

k
siny + y,

I1

k

¯

8

...
y

+MgL

k
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Obviously, the mappingψx is not polynomial. Therefore,
in order to use the proposed approach, the constraints must
be approximated or manipulated into polynomial expres-
sions. To this end, we search for polynomial lower and upper
boundsp(y) andp(y) such that
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ÿ + MgL

k
p(y) + y ≤ π

4 , I1
k
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where ci , i > 1 are determined from a least-squares fit
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3 ] and the offsetc0 is determined such that

p(y) ≤ siny ≤ p(y). Note that for linearp(y)(·), p(y)(·),
i.e. l = 1, we would get at a polytopic (convex) feasible set
similar to the one suggested inLouembet et al.(2010). Note
that in this example a semi-algebraic formulation is easily
found. For more involved systems such as a six-dof robot,
determining such a semi-algebraic approximation is a cru-
cial step. In order to keep computation time low, it is key to
limit the degree of the approximating polynomials.

We can now write the optimization problem as

minimize
y(·)

tf∫
0

y(t)2dt

subject to y(0) = 0.8, y (tf) = −0.8
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The flat output is parameterized by a polynomial spline with
11 equidistant knots. Using the proposed approach the above
optimization problem is cast in terms of its spline coeffi-
cients as in Eq. (4) using the accompanying software tool
from Sect.4.3. Listing 1 shows the code used for solving the
problem withl = 1.

Figure3 illustrates the solution for polynomial bounds of
degree one (l = 1) (gray) and three (l = 2) (black). Clearly,
the latter solution is less conservative. Note, however, that the
former problem is a convex quadratic program (QP) whereas
the latter is nonconvex. Being able to use nonpolytopic sets
is a clear advantage of our method over previous results
(Louembet et al., 2010; Suryawan et al., 2012).

In a following numerical experiment, we compute the so-
lution for increasing number of knots and compare the fol-
lowing cases:

1. Our proposed approach forl = 1, which is comparable
to that of Suryawan et al.(2012). The resulting opti-
mization problem is a convex QP and is solved using
qpOASES (Ferreau et al., 2014).

2. Our proposed approach forl = 2. To the best of our
knowledge, our method is unique in that it can guarantee
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(2010). Numerical values and the constraints are taken from
Louembet et al.(2010). Both a convex and nonconvex prob-
lem formulation Eq. (4) are compared to a classical sampling
based and a sum-of-squares approach.

The dynamics of the manipulator are described by the
equations

I1q̈1 + MgLsinq1 + k (q1 − q2) = 0,

I2q̈2 − k (q1 − q2) = u.

The system’s state is given byx= (q1, q̇1, q2, q̇2)ᵀ.
The goal is to steer the system from the initial state
x0 = (0.8 rad, 0 rad s−1, 0.67 rad, 0 rad s−1)ᵀ to the final
state xtf = (−0.8 rad, 0 rad s−1, −0.67 rad, 0 rad s−1)ᵀ

at tf = 5.35 s with minimal deflection of the link,

i.e. g =
tf∫
0

q2
1(t)dt , while obeying the constraint on the

joint positions

− π

3
≤ q1 ≤ π

3
,−π

4
≤ q2 ≤ π

4
,− π

16
≤ q2 − q1 ≤ π

16
.

Note that the constraints onq2 and q2 − q1 already imply
the constraint onq1. The state vector is described by the flat
output,y = q1, as:

x = ψx(y, ẏ, ÿ,

¯

8

...
y)

...
y =

(
y, ẏ,
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ẏ cosy + ẏ
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Obviously, the mappingψx is not polynomial. Therefore,
in order to use the proposed approach, the constraints must
be approximated or manipulated into polynomial expres-
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ÿ + MgL

k
p(y) + y ≥ −π

4 , I1
k
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where ci , i > 1 are determined from a least-squares fit
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3 ] and the offsetc0 is determined such that

p(y) ≤ siny ≤ p(y). Note that for linearp(y)(·), p(y)(·),
i.e. l = 1, we would get at a polytopic (convex) feasible set
similar to the one suggested inLouembet et al.(2010). Note
that in this example a semi-algebraic formulation is easily
found. For more involved systems such as a six-dof robot,
determining such a semi-algebraic approximation is a cru-
cial step. In order to keep computation time low, it is key to
limit the degree of the approximating polynomials.

We can now write the optimization problem as

minimize
y(·)
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y(t)2dt

subject to y(0) = 0.8, y (tf) = −0.8
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ÿ(t) + MgL

k
p(y(t)) + y(t) ≥ − π

4 , ∀t ∈ [0, tf ]
I1
k
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The flat output is parameterized by a polynomial spline with
11 equidistant knots. Using the proposed approach the above
optimization problem is cast in terms of its spline coeffi-
cients as in Eq. (4) using the accompanying software tool
from Sect.4.3. Listing 1 shows the code used for solving the
problem withl = 1.

Figure3 illustrates the solution for polynomial bounds of
degree one (l = 1) (gray) and three (l = 2) (black). Clearly,
the latter solution is less conservative. Note, however, that the
former problem is a convex quadratic program (QP) whereas
the latter is nonconvex. Being able to use nonpolytopic sets
is a clear advantage of our method over previous results
(Louembet et al., 2010; Suryawan et al., 2012).

In a following numerical experiment, we compute the so-
lution for increasing number of knots and compare the fol-
lowing cases:

1. Our proposed approach forl = 1, which is comparable
to that of Suryawan et al.(2012). The resulting opti-
mization problem is a convex QP and is solved using
qpOASES (Ferreau et al., 2014).

2. Our proposed approach forl = 2. To the best of our
knowledge, our method is unique in that it can guarantee
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the latter solution is less conservative. Note, however, that the

former problem is a convex quadratic program (QP) whereas

the latter is nonconvex. Being able to use nonpolytopic sets

is a clear advantage of our method over previous results

(Louembet et al., 2010; Suryawan et al., 2012).

In a following numerical experiment, we compute the so-

lution for increasing number of knots and compare the fol-

lowing cases:

1. Our proposed approach for l= 1, which is comparable

to that of Suryawan et al. (2012). The resulting opti-

mization problem is a convex QP and is solved using

qpOASES (Ferreau et al., 2014).

2. Our proposed approach for l= 2. To the best of our

knowledge, our method is unique in that it can guarantee

these nonpolytopic constraints. The resulting optimiza-

tion problen is a nonlinear progam (NLP). It is solved

with Ipopt (Wächter and Biegler, 2006) with exact Hes-

sians obtained using CasADi (Andersson, 2013).

3. A sampled solution for l= 2 as in Milam et al. (2000).

The number of equidistant time samples is taken equal

to the number of constraints in our approach. The result-

ing optimization problem is a NLP and similarly solved

with Ipopt.

4. A globally optimal sum-of-squares (SOS) approach on

each segment for l= 1 as in Henrion and Lasserre

(2006) and Louembet et al. (2010). MOSEK ApS

(2015) is used for solving the resulting convex semi-

definite program (SDP). Note that this approach for

l > 1 would require solving a nonconvex optimization

problem with polynomial matrix inequalities for which

to date no reliable solver exists.

Figure 4 shows the optimal value of the objective function

and the CPU-time relative to that of the SDP as a function of

n, the size of the basis for the flat output. The SDP is chosen

as reference as it is the current state-of-the-art with respect to

guaranteed constraint satisfaction. For the sampled approach,

solutions that do not violate the constraints are indicated by

crosses. A number of observations can be made.

1. For growing n, the optimal value of the QP converges

to that of the SDP. This also illustrates that basis refine-

ments by knot insertion or order elevation effectively

reduce conservatism.

2. Solving a QP is significantly cheaper compared to the

other approaches, especially for small n.

3. It is somewhat surprising to see that solving the convex

SDP is more expensive than solving the NLP, illustrat-

ing great potential for NLP solvers. However, a global

minimum cannot be guaranteed for the nonconvex pro-

grams.

4. The difference in optimal value between our approach

and the sampled approach with l= 2 is small while the
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former is guaranteed to be feasible. This is especially

important in critical cases where constraint violation is

not tolerated.

5. For l= 2 our approach is slightly cheaper to solve for

larger bases compared to the sampled approach, offer-

ing a numerical advantage over traditional methods.

6 Conclusions

This paper focuses on optimal motion planning for systems

that admit a polynomial description through differential flat-

ness. The optimization problem is cast in terms of the flat out-

put and a polynomial spline parameterization is proposed that

allows us to guarantee state and input constraints by means

of simple constraints on the B-spline coefficients. An intu-

itive relaxation of the constraints is achieved by representing

the spline in a higher dimensional basis. Furthermore, a sup-

porting software package is released. Numerical experiments

show superior performance to existing approaches in the lit-

erature both in terms of computational time and optimality.

For systems that do not admit a polynomial representation

through differential flatness, an approximation is sought for

as illustrated in the numerical validation.
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Appendix A: Spline properties

In this Appendix we detail the sum and product properties of

splines.

Property 2 (Summation) Let p ∈5k,κ,µ and r ∈5l,λ,ν .

Then s=p+ r ∈5max(k,l),ξ,ω, where ξ = κ ∪
<
λ the sorted,

strictly increasing union of κ and λ, and

ωi =


min(µm,νn) if ξi = κm = νn for some m,n

µm if ξi = κm for some m

νn if ξi = λn for some n

.

The spline coefficients, σ , of s are determined through a lin-

ear transformation of π and ρ:

σ = T
p
s π +Trsρ,

where T
p
s denotes the linear mapping from the B-spline basis

bp to bs :

bp =
(
T
p
s

)ᵀ
bs, (A1)

and similarly for Trs .

Property 3 (Multiplication) Let p ∈5k,κ,µ and r ∈5l,λ,ν .

Then s=p r ∈5k+l,ξ,ω, where ξ and ω are determined as in

Property 2. Note, however, that the continuity over a given

knot could also be higher. The spline coefficients, σ , of s are

determined through:

σ = T
p⊗r
s (π ⊗ ρ),

where ⊗ denotes the Kronecker product and T
p⊗r
s is the lin-

ear mapping from bp⊗ br to bs :

bp⊗ br =
(
T
p⊗r
s

)ᵀ
bs . (A2)

These linear mappings are easily found by solving a set of

linear equations given by Eqs. (A1) or (A2), or by using ded-

icated algorithms that are readily available in the literature

(e.g. Piegl and Tiller, 1997).
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