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Abstract
By modifying our recent method of half-lines we show how the following boundary
value problem for partial difference equations can be solved in closed form:

dn,k = dn–1,k–1 + f (k)dn–1,k , 1≤ k < n,

dn,0 = un, dn,n = vn, n ∈N,

where (un)n∈N and (vn)n∈N are given sequences of complex numbers, and f is a
complex-valued function on N.

MSC: Primary 39A14; secondary 05A10

Keywords: partial difference equation; boundary value problem; equation solvable
in closed form; the method of half-lines

1 Introduction
Let N denote the set of natural numbers and N = N∪ {}. Let k, l ∈N be such that k < l,
then the notation j = k, l means k ≤ j ≤ l. In the rest of this section we give some motivation
for the study, as well as notions that will be used in the rest of the paper.

Let

x(k) = x(x – ) · · · (x – k + ),

where k ∈N, and for k =  let x() := .
Let � be the standard (forward) difference operator defined by

�f (x) = f (x + ) – f (x),

where f is a function. Then, for k ∈N, we have

�x(k) = kx(x – ) · · · (x – k + ) = kx(k–), ()

while for k =  a direct calculation shows that �x() = .
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The set of polynomials {x(k) : k ∈N}, is linearly independent. Indeed, assume

n∑

j=

ajx(j) ≡ , ()

for some real numbers aj, j = , n, and for a fixed but arbitrary n ∈ N. Then by act-
ing with operator � on both sides of equality () n times, and using (), we get n!an =
∑n

j= aj�
(n)x(j) ≡ , from which it follows that an = . Hence

∑n–
j= ajx(j) ≡ ∑n

j= ajx(j) ≡ .
By repeated use of the argument we get an– = · · · = a = a = , from which the claim fol-
lows. From this it easily follows that the set {x(k) : k ∈ N} is a basis in the linear space of
all polynomials, so that

xn =
n∑

k=

sn
k x(k), ()

for some numbers sn
k , n, k ∈N.

The relations x = x(), x = x() + x() and x = x() + x() + x(), suggest that sn
 = , n ∈ N

(note that s
 = s

x() = x = ). Indeed, assume that we have proved sj
 = , j = , n for some

n ∈N. Then, since xn+ = xnx and xx(k) = x(k+) + kx(k), k ∈N, by using the hypothesis and
(), we get

xn+ =
n+∑

k=

sn+
k x(k)

= x
n∑

k=

sn
k x(k)

=
n∑

k=

sn
k
(
x(k+) + kx(k))

= sn
nx(n+) +

n∑

k=

(
sn

k– + ksn
k
)
x(k) + sn

 x(). ()

Comparing the coefficients in () we get sn+
 = , from which the statement follows. Beside

this, the following recurrent relation holds:

sn+
k = sn

k– + ksn
k , ()

when  ≤ k ≤ n, and that sn+
n+ = sn

n. From this equality and since s
 = s

 =  we get sn
n =  for

n ∈N. On the other hand, from sj
 =  for j = , n and () we get sn+

 = sn
 , which along with

s
 =  implies that sn

 =  for n ∈ N. The numbers sn
k , n, k ∈ N are called Stirling’s numbers

of the second kind, and the above described procedure is one of the ways how these num-
bers can be obtained (see, for example, [, ]). Another classical approach in getting these
numbers is combinatorial. Namely, sn

k represents the number of ways to partition a set of n
elements into k nonempty subsets (for details see, for example, []). Stirling numbers can
be calculated explicitly. In [] are given several explicit formulas and probably the nicest
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one is the following:

sn
k =


k!

k∑

j=

Ck
j (–)k–jjn. ()

where Ck
j = k!/(j!(k – j)!) are the binomial coefficients.

There are several ways to prove equation (). A combinatorial-analytic proof was given
in []. A relatively simple analytic proof is based on the following well-known formula:

�kf (x) =
k∑

j=

(–)k–jCk
j f (x + j). ()

Namely, if Pn(x) =
∑n

j= ajx(j) by calculating �kPn at x =  (using ()), we get

�kPn() =
n∑

j=k

ajj(j – ) · · · (j – k + )x(j–k)|x= = k!ak ,

k = , n (see, for example, [, ]). From this and by using () with f (x) = xn, we get

sn
k =

�kxn

k!

∣∣∣∣
x=

=

k!

k∑

j=

(–)k–jCk
j (x + j)n

∣∣∣∣
x=

=

k!

k∑

j=

Ck
j (–)k–jjn.

For more on the Stirling numbers and related topics, see, for example, [, , ].
Old topic of solving difference equations and systems of difference equations with their

applications (see, for example, [, , –]), has re-attracted some recent attention. The
publication of our note [], in which we explained how a nonlinear difference equation
can be solved in an elegant way, by transforming it to a linear, has attracted some atten-
tion. The results and methods in [] were later extended for the case of higher-order dif-
ference equations in [], and for some related systems in [] and []. The main idea
from [] have been used and developed a lot in many other papers (see, for example, [–
] and numerous references therein). One of the joint features in these papers is that the
equations/systems therein are somehow transformed to (solvable) linear ones. A frequent
situation is that the following difference equation:

an+ = bnan + cn, n ∈N, ()

where (bn)n∈N, (cn)n∈N, and a are real or complex numbers, decides the solvability. Some
methods for solving equation () can be found in [, ] (see, also the introduction in
[], the references therein, as well as numerous special cases of the equation appear-
ing therein). For some results on the solvability of systems of difference equations see,
for example, [, , , –]. Some related, but considerably different methods (see,
for example, [, ] and the related references therein) are used for solving product-type
equations/systems.
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Statement of the problem. Now note that () can be written as

dn,k = dn–,k– + kdn–,k . ()

This means that the Stirling numbers are a solution to a two-dimensional recurrent re-
lation with given boundary conditions sn

n and sn
, n ∈ N. The fact that equation () has a

closed form formula for the solution with the conditions dn, = , dn,n = , n ∈ N, suggests
that () can be solved on the following domain A = { ≤ k ≤ n; n, k ∈ N}, which we call
the combinatorial domain. Some classical methods for solving partial difference equations
can be found, for example, in [] and [], whereas some recent ones can be found, for ex-
ample, in [–], but an analysis shows that they are not suitable for getting a formula
for solutions to () for a special shape of domain A.

Motivated by [] and numerous recent applications of equation () (for example, those
in [, , –, , ]), here we show that there is a closed form formula for solutions to
an extension of equation () on domain A \ {(, )} in terms of given boundary values dn,

and dn,n, n ∈N.

2 Main results
We show how general solution to () on set A \ {(, )} can be found by using a method
in [], which we call the method of half-lines. Namely, the domain is divided into some
half-lines, and () is regarded on each line as an equation of type (). It is solved, and based
on the obtained formulas one gets the general solution. However, the method cannot be
applied directly, so it needs some modifications.

Assume first that n = k + . Then equation () is reduced to

dk+,k = dk,k– + kdk,k , k ∈N. ()

Using the change of variables xk = dk+,k equation () can be seen as a special case of
equation (), since dk,k can be regarded as an ‘independent’ variable due to the fact that
the multi-index (k, k) belongs to the boundary of A \ {(, )}. In fact, since in () the
corresponding coefficients bk are equal to one, here we use the telescoping method of
summation (this is a specificity for the equation but the method can be applied for other
values of the coefficients too) and get

dk+,k = d, +
k∑

j=

jdj,j, k ∈N. ()

Now assume that we have proved

dk+l,k = dl, +
k∑

il=

il

(
dl–, +

il∑

il–=

il–

(
· · · i

(
d, +

i∑

i=

idi,i

)
· · ·

))
, ()

for every k ∈N and some l ∈ N.
Then from () with n = k + l +  we have

dk+l+,k = dk+l,k– + kdk+l,k , k ∈N, ()
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from which, as in the case n = k + , we get

dk+l+,k = dl+, +
k∑

il+=

il+dil++l,il+ , ()

for every k ∈N.
By using the inductive hypothesis in () we obtain

dk+l+,k = dl+, +
k∑

il+=

il+

(
dl, +

il+∑

il=

il

(
· · · i

(
d, +

i∑

i=

idi,i

)
· · ·

))
,

from which along with the induction we see that () holds for every l ∈N and k ∈N.
Note that equation () can be written in the following form:

dk+l,k = dl, + dl–,

k∑

il=

il + · · · + d,

k∑

il=

il · · ·
i∑

i=

i +
k∑

il=

il · · ·
i∑

i=

i

i∑

i=

idi,i , ()

for l ∈ N, k ∈ N. Since k and l are arbitrary equation () is, in fact, the general solution
to () on domain A \ {(, )}.

Now note that if dj, =  and dj,j = , j ∈ N, then such a solution is noting but the Stirling
sequence sk+l

k , while on the other hand from (), we get

sk+l
k =

k∑

il=

il · · ·
i∑

i=

i

i∑

i=

i, ()

for every l ∈N and k ∈N.
Using () in (), we get

dk+l,k = dl, + dl–,sk+
k + · · · + d,sk+l–

k +
k∑

il=

il · · ·
i∑

i=

i

i∑

i=

idi,i , ()

for l ∈N and k ∈N.
Now we are in a position to state and prove our first result based on the above consid-

eration.

Theorem  Let (uj)j∈N, (vj)j∈N be given sequences of complex numbers. Then the solution
to the following boundary value problem:

dn,k = dn–,k– + kdn–,k ,  ≤ k < n,

dn, = un, dn,n = vn, n ∈N, ()

is given by

dn,k =
n–k∑

i=

sk+i–
k un–k–i+ +

k∑

in–k =

in–k · · ·
i∑

i=

i

i∑

i=

ivi . ()
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Proof By choosing l = n – k in (), using the conditions in (), and some calculations,
formula () is obtained. �

Remark  Note that general solution to equation () can be written in the form

dn,k =
n–k∑

i=

sk+i–
k dn–k–i+, +

k∑

in–k =

in–k · · ·
i∑

i=

i

i∑

i=

idi,i , ()

for k and n such that  ≤ k ≤ n, k, n ∈N and (k, n) �= (, ).

Corollary  If dn,k is a solution to equation () on domain A \ {(, )} such that the follow-
ing conditions hold:

dn,n = c ∈C, n ∈N, ()

then it is given by

dn,k =
n–k∑

i=

sk+i–
k dn–k–i+, + csn

k . ()

Proof By using condition () and () with l = n – k, in formula (), we obtain (). �

Remark  Note that under the conditions of Corollary  equation () gives a closed form
formula for such solutions due to equation ().

Now note that the above described procedure can be applied to every recurrent relation
in the following form:

dn,k = dn–,k– + f (k)dn–,k , ()

where coefficients f (k), k ∈ N, are complex numbers. The following theorem holds (the
proof is omitted for the similarity with the given one in the case f (k) = k).

Theorem  Let (uj)j∈N, (vj)j∈N be given sequences of complex numbers. Then the solution
to the following boundary value problem:

dn,k = dn–,k– + f (k)dn–,k ,  ≤ k < n,

dn, = un, dn,n = vn, n ∈N,

where f is a complex-valued function on N, is given by

dn,k =
n–k∑

i=

un–k–i+Sk,i–(f ) +
k∑

in–k =

f (in–k) · · ·
i∑

i=

f (i)
i∑

i=

f (i)vi , ()

where

Sk,l(f ) =
k∑

il=

f (il) · · ·
i∑

i=

f (i)
i∑

i=

f (i), k, l ∈N, ()
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and where we regard that

Sk,(f ) = , k ∈N.

Theorem  shows that the calculation of iterated sums plays an important role in solving
equation (). For the equation treated in [] we have f (k) =  for every k ∈N, so that the
iterated sums in () becomes

k∑

il=

· · ·
is+∑

is+=

is+∑

is=

, s = , l.

This value of the sum is known and is equal to Ck+l–s
l–s+ (see, for example, []), which is one of

the main reasons why in this case we have a closed form formula for its general solution.
The process of calculating the sum was essentially explained in [].

Now we will apply the method described above to the following partial difference equa-
tion:

dn,k = dn–,k– + zkdn–,k , ()

where z is a complex number different from .
By doing this we see that the following relation, corresponding to equation (), holds:

dk+l,k = dl, +
k∑

il=

zil

(
dl–, +

il∑

il–=

zil–

(
· · · zi

(
d, +

i∑

i=

zi di,i

)
· · ·

))
,

for every l ∈N and k ∈N, which can be written in the following, somewhat better, form:

dk+l,k = dl, + dl–,

k∑

il=

zil + dl–,

k∑

il=

zil
il∑

il–=

zil– + · · · + d,

k∑

il=

zil · · ·
i∑

i=

zi

+
k∑

il=

zil · · ·
i∑

i=

zi
i∑

i=

zi di,i . ()

Now we prove the following lemma.

Lemma  Assume that k, l ∈N and that z ∈C \ {}. Then the following formula holds:

k∑

il=

zil · · ·
i∑

i=

zi
i∑

i=

zi = zl
l∏

j=

zk+j– – 
zj – 

. ()

Proof We will prove it by induction. Assume first that l = , then since z �= , we have

k∑

i=

zi = z
k–∑

j=

zj = z
zk – 
z – 

, ()

which shows that () holds in this case.
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In order to present the main point in the proof, that is, the arranging a sum to use the
telescoping method, we will also give the proof in the case l = . By using () with l = i,
we have

k∑

i=

zi
i∑

i=

zi =
z

z – 

k∑

i=

zi–(zi – 
)

=
z

z – 

k∑

i=

(zi+ – )(zi – ) – (zi – )(zi– – )
z – 

= z
∏

j=

zk+j– – 
zj – 

.

Now assume that () holds for some l ∈N and every k ∈ N. Then, by using the induc-
tive hypothesis, we have

k∑

il+=

zil+

il+∑

il=

zil · · ·
i∑

i=

zi

= zl+
k∑

il+=

zil+–
l∏

j=

zil++j– – 
zj – 

=
zl+

∏l
j=(zj – )

k∑

il+=

∏l
j=(zil++j – ) –

∏l
j=(zil++j– – )

zl+ – 

= zl+
l+∏

j=

zk+j– – 
zj – 

,

for every k ∈N, from which along with () and the induction formula () follows. �

Let

Pk,l(z) := zl
l∏

j=

zk+j– – 
zj – 

, ()

where k, l ∈N, and where we use the following standard convention:

k–∏

j=k

aj = , k ∈N.

By using () into (), and a change in the order of the summation, we get

dk+l,k =
l∑

j=

dj,Pk,l–j(z) +
k∑

i=

zi di,i

k∑

i=i

zi · · ·
k∑

il=il–

zil . ()
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Now by using Lemma  and some calculation, we have

k∑

i=i

zi · · ·
k∑

il=il–

zil =
k∑

il=i

zil · · ·
i∑

i=i

zi

= z(i–)(l–)
k∑

il=i

zil–i+ · · ·
i∑

i=i

zi–i+

= z(i–)(l–)
k–i+∑

jl=

zjl · · ·
i–i+∑

j=

zj

= zi(l–)
l–∏

j=

zk–i+j – 
zj – 

. ()

By using () in () we get

dk+l,k =
l∑

j=

dj,Pk,l–j(z) +
k∑

i=

di,i zil–l+Pk–i+,l–(z), ()

for every l ∈N and k ∈N.
Hence, the following result holds.

Theorem  Let (uj)j∈N, (vj)j∈N be given sequences of complex numbers. Then the solution
to the following boundary value problem:

dn,k = dn–,k– + zkdn–,k ,  ≤ k < n,

dn, = un, dn,n = vn, n ∈ N,
()

is given by

dn,k =
n–k∑

j=

ujPk,n–k–j(z) +
k∑

i=

viz(i–)(n–k)+Pk–i+,n–k–(z). ()

Proof By choosing l = n – k in (), using the conditions in (), and some calculations,
equation () is easily obtained. �
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12. Stević, S, Diblik, J, Iričanin, B, Šmarda, Z: On a third-order system of difference equations with variable coefficients.

Abstr. Appl. Anal. 2012, Article ID 508523 (2012)
13. Aloqeili, M: Dynamics of a kth-order rational difference equation. Appl. Math. Comput. 181, 1328-1335 (2006)
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22. Stević, S, Iričanin, B, Šmarda, Z: On a product-type system of difference equations of second order solvable in closed

form. J. Inequal. Appl. 2015, Article ID 327 (2015)
23. Cheng, SS: Partial Difference Equations. Taylor & Francis, London (2003)
24. Cheng, SS, Hsieh, LY, Chao, ZT: Discrete Lyapunov inequality conditions for partial difference equations. Hokkaido

Math. J. 19, 229-239 (1990)
25. Cheng, SS, Lin, JY: Green’s function and stability of a linear partial difference scheme. Comput. Math. Appl. 35(5),

27-41 (1998)
26. Cheng, SS, Lu, YF: General solutions of a three-level partial difference equation. Comput. Math. Appl. 38(7-8), 65-79

(1999)
27. Lin, YZ, Cheng, SS: Stability criteria for two partial difference equations. Comput. Math. Appl. 32(7), 87-103 (1996)
28. Slavik, A, Stehlik, P: Explicit solutions to dynamic diffusion-type equations and their time integrals. Appl. Math.

Comput. 234, 486-505 (2014)
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