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Abstract

Waveform design is studied for a cognitive multiple-input multiple-output (MIMO) radar system faced with a
combination of additive Gaussian noise and signal dependent clutter. The linear frequency modulation (LFM) signals
are employed as transmitted waveforms. Based on the sensed statistics of the target and clutter-plus-noise, assuming
the LFM waveforms transmitted at different transmitters can have different starting frequencies and bandwidths,
these waveform parameters are designed to maximize the signal-to-clutter-plus-noise ratio at the receiver of the
cognitive MIMO radar system. The constraints of the allowable range of operating frequency and total transmit energy
are considered. We show that in the tested examples, the designed waveforms are nonorthogonal which leads to
superior performance compared with that of the frequency spread LFM waveforms commonly used in the traditional
MIMO radar systems.

Keywords: Cognitive multiple-input multiple-output radar; Cognitive radar; Waveform design; Linear frequency
modulation

1 Introduction
The advantages of multiple-input multiple-output
(MIMO) radar have drawn considerable attention in the
last decade [1-7]. MIMO radar systems employ multiple
antennas on both the transmit and receive sides. The
antennas can be either co-located or widely separated.
Geometry gains can be obtained for the former since the
antennas are located in several different directions with
respect to a target, while waveform gains can be pro-
duced for the latter by sending different waveforms with
different antennas.
Waveform design is a key issue in radar signal pro-

cessing. The transmit waveforms of MIMO radar are
usually optimized for specific goals, such as improving
the signal-to-clutter-plus-noise ratio (SCNR) [8], increas-
ing the resolution in the spatial and temporal domains,
enhancing the detection performance [5], reducing the
estimation error when approximating a desired beam-
pattern [4], or maximizing the mutual information (MI)
between the random target impulse response and the
reflected waveforms [9].
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The concept of cognitive radar (CR) was proposed
in [10] for optimizing the performance of a radar sys-
tem faced with interference and the constraint of lim-
ited resources. The CR system can intelligently learn the
state of the environment and store the information in
the database. The stored information can be used as an
available prior knowledge for the designs of radar systems
and transmit waveforms, which is helpful for improving
the performance of target detection and parameter esti-
mation. There have been many researches on waveform
design for CR systems [11-14]. In [11], the transmit signals
are designed by minimizing the mean-square error of the
estimate of the target reflection coefficient.
In [12], the waveform is designed to minimize the aver-

age ambiguity of the transmitted signal over certain range
Doppler bins. In [13,14], the waveform is optimized by
maximizing the signal-to-interference-plus-noise ratio for
CR radar systems.
The cognitive technique has been introduced to MIMO

radar systems [15-18] to enhance the robustness and
adaptability. During the learning process of a cognitive
MIMO radar system, the information of the environ-
ment, such as the prior knowledge of clutter and target
impulse responses and noise, are collected by multi-
ple receive antennas, which are transferred to multiple
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transmit antennas through a feedback mechanism for
adjusting system parameters. In [15], the authors present
an adaptive waveform design method to improve the
target recognition performance of the cognitive MIMO
radar. In [16], artificial intelligence algorithm is employed
to improve the robustness of target detection for the cog-
nitive MIMO radar system. In [17], the authors optimize
the waveforms based on the Bayesian Cramer-Rao bound
and the Reuven-Messer bound for cognitive MIMO radar
systems. In [18], a waveform optimization approach is
provided for cognitive MIMO radar based on the MI
between the target impulse response and the received
echoes and theMI between successive backscatter signals.
As a very common waveform for radar system, the

linear frequency modulation (LFM) signal can provide
advantages of high-resolution, anti-jamming, far detect-
ing distance, etc. [19-23]. Moreover, the LFM signal can
be conveniently generated and it has constant modu-
lus. For MIMO radar, the frequency spread (FS) LFM
signals are usually employed as a set of orthogonal sig-
nals for transmission [24,25]. The orthogonality of the
FS LFM signals can be obtained by increasing the fre-
quency offset between two waveforms transmitted by the
adjective antennas [26]. However, the maximum allow-
able operating bandwidth for radar system is often limited
as the frequency band source becomes more and more
crowded with the development of the communication and
radar applications. Therefore, it is important to know how
one can improve the radar performance through wave-
form design when the range of operating frequency is
constrained.
In this paper, the waveforms are designed for the cog-

nitive MIMO radar system. Since the detection probabil-
ity is a nondecreasing function of the SCNR under the
log-likelihood ratio test [27], we employ the SCNR max-
imization as the objective of the optimization problem
to improve the detection performance. LFM signals are
employed as the transmit waveforms. Unlike the FS LFM
signals usually adopted in MIMO radars [24,25], where
each of the transmit LFM signals has identical band-
width and transmit energy and equally spaced starting
frequencies, we propose to construct the transmit wave-
forms as a set of LFM signals whose starting frequencies,
bandwidths, and energies can be different and are to be
optimized. The prior information about the target and
clutter obtained by the cognitive process is used for the
waveform optimization. The constraints of the total trans-
mit energy and the allowable range of operating frequency
impose restrictions on our optimization problem.
The rest of the paper is organized as follows. In Section

2, the signal model of the cognitive MIMO radar is intro-
duced. In Section 3, the LFM-based waveform design
for limited maximum allowable frequency band and total
transmit energy is presented, and the algorithm for solving

the optimization problem is given. In Section 4, we show
the superior SCNR performance of our designed wave-
forms over the FS LFM signals through numerical exam-
ples. The effects of the number of transmit antennas are
also analyzed. Finally conclusions are drawn in Section 5.
Notation: Throughout this paper, we use superscripts

(·)H , (·)∗, and (·)T to denote the complex conjugate trans-
pose, conjugate, and transpose of a matrix, respectively.
The �·� denotes the operation of rounding down the value
to the nearest integer. The (i mod j) represents the
remainder of division of i by j. We use E {·} for expecta-
tion with respect to all the random variables within the
brackets. The symbol � stands for the convolution oper-
ator and ⊗ for the Kronecker product operator. We let
diag {·} denotes diagonal matrix. Finally, (A)ij denotes the
ijth entry of A, and IN denotes the identity matrix of size
N × N .

2 Signal model
Consider a cognitiveMIMO radar equipped withM trans-
mit antennas and L receive antennas. Each of the trans-
mitted waveforms is assumed to be narrowband. The
discrete-time waveform transmitted by the mth transmit
antenna is denoted by sm[ n], 0 ≤ n ≤ N − 1, where N is
the total number of time samples. Assume that the signal
propagation in the considered scenario is stable during the
observation interval so that the target and clutter returns
associated with each transmitter-to-receiver path can be
regarded as the responses of two linear time-invariant
(LTI) systems with the transmitted signal as input. Define
ht,ml[ n] and hc,ml[ n] as the target and clutter impulse
responses associated with them-th (m = 1, . . . ,M) trans-
mitter and the lth (l = 1, . . . , L) receiver. Then the signal
received by the lth receiver can be formulated as

rl [n] =
M∑

m=1
sm[ n]�

(
ht,ml [n] + hc,ml [n]

) + zl [n]

=
M∑

m=1

(
xt,ml[ n]+xc,ml[ n]

) + zl[ n] , (1)

where xt,ml[ n] and xc,ml[ n] denote the target and clutter
returns corresponding to themlth transmitter-to-receiver
path, and zl [n] is the noise at receiver l. Stacking the NR
observations (the choice of NR is discussed in Section 2.1)
that contain the target return for all L receive antennas
into a column vector, the LNR × 1 overall received signal
vector can be expressed as

r = (r1 [0] , . . . , rL [0] , . . . , r1 [NR − 1] , . . . , rL [NR − 1])T

= Hts + Hcs + z
= xt + xc + z, (2)

where xt denotes the target return vector, xc
denotes the clutter return vector, z = (z1[ 0] , . . . , zL
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[ 0] , . . . , z1[NR − 1] , . . . , zL[NR − 1] )T is the noise vector,
the waveform vector

s = (s1[ 0] , . . . , sM[ 0] , . . . , s1[N − 1] , . . . , sM[N − 1] )T .
(3)

TheHt andHc in (2) are LNR×MN matrices, the expres-
sions of which are given in Appendix 1.
To enhance the system performance, a receive filter with

impulse response

hr = (hr1 [0] , . . . , hrL [0] , . . . , hr1 [NR − 1] , . . . , hrL [NR − 1])T

(4)

is used to process the receiver signal r at the receive end
[12,28], as shown in Figure 1. Thus, the SCNR at the
output of the receive filter is defined as

SCNR = E
{|hHr Hts|2

}
E

{|hHr Hcs|2
} + E

{|hHr z|2} . (5)

As a cognitive MIMO radar system has the ability of
learning, the prior knowledge of the environment state
can be obtained from previous measurements. Using a
specific environment database which contains the statis-
tics of the target and clutter impulse responses and noise,
the statistics of the target return xt and the clutter return
xt can be derived. Next, we discuss the statistics of the tar-
get impulse response ht[ n], the clutter impulse response
hc[ n], and the noise z.

2.1 Statistics of target return
Consider an extended target and assume the length of the
target impulse response of the potential extended target is
Nt such that ht[ n] �= 0 for n in [ 0,Nt − 1] and ht[ n]= 0
otherwise. Then it can be shown from (1) that the target
return xt,ml[ n]= 0 for allm and lwhen n is outside [ 0,N+
Nt − 2]. So the number of the observations can be chosen
as NR = N + Nt − 1. Define the target impulse response
vector

Figure 1 System block diagram.

ht =
(
ht,11[ 0] , . . . , ht,1L[ 0] , . . . , ht,M1[ 0] , . . . , ht,ML[ 0] , . . . ,

ht11[Nt − 1] , . . . , ht,1L[Nt − 1] , . . . , ht,M1[Nt − 1] , . . . ,

ht,ML[Nt − 1]
)T

.

(6)

From (2), the statistic of the target return vector xt is
determined by the statistic of the target impulse response
vector ht , as described in the following lemma.

Lemma 1. Given Hε , s, and hε as in (2), (3), and (6)/(9),
the E{HεssHHH

ε } can be defined in terms of E{hεhHε },
where the ijth entry of E{HεssHHH

ε } is given by

(
E

{
HεssHHH

ε

})
ij=

N−1∑
nτ ,n′

τ =0

M∑
m,m′=1

sm [nτ ] s∗m′
[
n′

τ

] (
E

{
hεhHε

})
ab,

(7)

where a = (N − nτ + �(i − 1)/L� − 1)ML+ (m−1)L+ l̃,
b = (

N − n′
τ + ⌊

(j − 1)/L
⌋ − 1

)
ML + (m′ − 1)L + l̃′, l̃ =

((i − 1) mod L) + 1, and l̃′ = (
(j − 1) mod L

) + 1.

Proof of Lemma. See (S Wang, Q He, Z He, RS Blum,
Waveform design for MIMO over-the-horizon radar
detection, submitted).

In this paper, the target impulse response ht is assumed
to be zero-mean complex Gaussian distributed with
covariance matrix Rht = E{hεhHε }. Since any linear trans-
formation of a complex Gaussian random vector produces
another complex Gaussian random variable [29], the xt in
(2) also follows a zero-mean complex Gaussian distribu-
tion, whose covariance matrix

Rt = E
{
xtxHt

} = E
{
HtssHHH

t
}

(8)

can be computed using Lemma 1.

2.2 Statistics of clutter return
Define the clutter impulse response vector

hc =
(
hc,11[ 1 − N] , . . . , hc,1L[ 1 − N] , . . . , hc,M1[ 1 − N] , . . . ,

hc,ML[ 1 − N] , . . . ,
hc11[NR − 1] , . . . , hc,1L[NR − 1] , . . . , hc,M1[NR − 1] , . . . ,

hc,ML[NR − 1]
)T

.

(9)

From (2), the statistic of the clutter return vector xc is
determined by the statistic of the clutter impulse response
vector hc, as described in Lemma 1.



Wang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:89 Page 4 of 9
http://asp.eurasipjournals.com/content/2014/1/89

Assume the clutter impulse response vector hc is
zero-mean complex Gaussian distributed with known
covariance matrix Rhc = E{hchHc }. Thus, xc also fol-
lows a zero-mean complex Gaussian distribution, whose
covariance matrix

Rc = E
{
xcxHc

} = E
{
HcssHHH

c
}

(10)

can be computed using Lemma 1.

2.3 Statistics of noise
The noise term z = (z1[ 0] , . . . , zL[ 0] , . . . , z1[NR − 1] ,
. . . , zL[NR − 1] )T is assumed to obey complex Gaussian
distribution with mean zero and covariance matrix Rz =
E{zzH} = σ 2

z ILNR , which is assumed to be independent of
the target and clutter returns.

3 Waveform design with constrained bandwidth
In this section, waveform design for the SCNR maximiza-
tion problem is introduced for cognitive MIMO radar
systems. The waveforms are constructed as LFM signals
where the starting frequencies and bandwidths for each
of the LFM signals will be optimized. The optimization
problem with the constraints of the allowable range of
operating frequency and total transmit energy is pre-
sented. The method to solve the optimization problem is
given subsequently.

3.1 Waveform design for SCNRmaximization
Design the waveform transmitted by the mth transmit
antenna at the nth , n = 0, . . . ,N−1, discrete-time sample
as

sm[ n]=
√
Em
N

exp
{
j2π

[
fmnTs + bm

2T
(nTs)

2
]}

, (11)

where Em is the transmitted energy of the mth waveform
within the time duration T , Ts is the sampling period,
and fm and bm are the staring frequency and bandwidth
of themth waveform sm[ n], such that the frequency band
occupied by sm[ n] is [ fm, fm + bm]. Use F to denote the
set of allowable operating frequencies. Thus, for any m,
m = 1, . . . ,M, the frequency band [ fm, fm + bm] should
be within the set F . Considering fixed total transmit
energy and the constrained allowable frequency band,
our goal is to optimize the waveform parameter vector
p = [ f1, . . . , fM, b1, . . . , bM,E1, . . . ,EM] and the receiver
impulse response vector hr to maximize the SCNR as
defined in (5). The optimization problem is given by

max
p,hr

SCNR = E
{|hHr Hts|2

}
E

{|hHr Hcs|2
} + E

{|hHr z|2}
s.t. [ fm, fm + bm]⊆ F , ∀m, m = 1, . . . ,M∑M

m=1
Em = E0,

(12)

where E0 is the total transmit energy. The objective func-
tion in (12) is not a convex function, so that the convex
optimization approaches do not work for this problem.
Instead, we adopt the iterative approach proposed in [28]
to solve the optimization problem in (12). We first fix
the waveform p to optimize the receiver impulse response
hr , and then fix hr to optimized p. These two steps are
executed iteratively until the stopping criterion is met.

3.2 Optimization with fixed waveform
When the waveform parameter vector p is fixed, the
problem in (12) is reduced to

max
hr

hHr E
{
HtssHHH

t
}
hr

hHr E
{
HcssHHH

c
}
hr + hHr Rzhr

. (13)

From (8) and (10), the problem in (13) can be rewritten
as

max
hr

hHr Rthr
hHr (Rc + Rz)hr

. (14)

Defining u � YHhr where Y is a lower triangular matrix
which satisfies YYH = Rc +Rz, the optimization problem
can be expressed in terms of u as

max
u

uH�u
uHu

, (15)

where � = Y−1Rt
(
YH)−1. Solving the problem in (15)

with Lagrange multiplier method, the solution of u is
obtained as

u� = φmax, (16)

where φmax is the eigenvector corresponding to the largest
eigenvalue of �. Thus, the solution of hr is given by

hr,� = (
YH)−1

φmax. (17)

3.3 Optimization with fixed hr
When the receiver impulse response hr is fixed, the prob-
lem in (12) can be recast to

max
p

sHE
{
HH

t hrhHr Ht
}
s

sHE
{
HH

c hrhHr Hc
}
s + hHr Rzhr

s.t. [ fm, fm + bm]∈ F , ∀m, m = 1, . . . ,M∑M

m=1
Em = E0,

(18)
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where the expressions of E
{
HH

t hrhHr Ht
}

and E{
HH

c hrhHr Hc
}
are also determined by the statistics of ht

in (6) and hc in (9), as described in the following lemma.

Lemma 2. GivenHε in (2), hr in (4), and hε in (6) or (9),
the E

{
HH

ε hrhHr Hε

}
can be defined in terms of E{hεhHε },

where the ijth entry of E
{
HH

ε hrhHr Hε

}
is given by

(
E

{
HH

ε hrhHr Hε

})
ij =

NR−1∑
n,n′=0

L∑
l,l′=1

hrl [n] h∗
rl′

[
n′] (

E
{
hεhHε

})
de,

(19)

where d = (
N + n′ − �(j − 1)/M� − 1

)
ML+ (

l′ − 1
)
M+

m̃′, e = (N + n − �(i − 1)/M� − 1)ML + (l − 1)M + m̃,
m̃ = ((i− 1) mod M) + 1, and m̃′ = ((j− 1) mod M) + 1.

Proof of Lemma. See ( S Wang, Q He, Z He, RS Blum,
Waveform design for MIMO over-the-horizon radar
detection, submitted to IEEE Transactions on Aerospace
and Electronic Systems).

As the problem in (18) is highly nonlinear, it is solved
numerically using the interior point method. The opti-
mized solution is denoted as p�.

3.4 Summary of the iterative method
The above discussed iterative method that solves the
problem in (12) can be summarized in the following
algorithm:

Algorithm 1
1. Set values for the target and clutter impulse response

covariances Rht and Rhc and noise covariance Rz based
on the learning output of the cognitive MIMO radar.
Initialize the waveform parameter vector p(0). Initialize
the iteration index κ = 0.

2. Let κ = κ + 1. Compute hr,(κ) using (17) based on
p(κ−1).

3. Compute p(κ) by solving (18) based on hr,(κ).
4. Compute the objective function SCNR(κ) in (12) using

p(κ) and hr,(κ).
5. Go back to step 2 until

∣∣SCNR(κ) − SCNR(κ−1)
∣∣ < ε

(in dB).

Then, both of the optimized waveform parameter vec-
tor popt and receiving impulse response vector hr,opt are
achieved. The optimized waveform sopt can be obtained
by plugging popt into (11).

4 Simulations
In this section, we present a few numerical results.
Assume the cognitive MIMO radar has L = 2 receive

antennas and M = 4 transmit antennas. The total trans-
mit energy is E0 = 4. Suppose the allowable operating
frequency band is F = [ 0,B]= [ 0, 2 kHz]. Assume the
time duration of transmit waveforms N = 40 and the
length of the target impulse responseNt = 8. The number
of the observation is NR = N + Nt − 1 = 47. Assume the
σ 2
z in the noise covariance matrix is σ 2

z = 40. Assume the
covariance matrix of the clutter impulse response vector
hc in (9) satisfies Rhc = CT ⊗ CS, where CS denotes the
spatial correlation between clutter impulse responses cor-
responding to different transmitter to receiver paths for
a fixed time index, and CT denotes the temporal correla-
tion between clutter impulse responses corresponding to
different time delays for a fixed spatial index [30]. Assume
the ijth element of the spatial correlation matrix CS is

CS,ij = σ 2
S ρS|i−j|, (20)

where σ 2
S = 40 and ρS = 0.9 denotes one-lag correlation

coefficient. The temporal correlation matrix CT is con-
sidered by the conventional time-varying autoregressive
(TVAR) [31,32] modeling (see [33] for details).

4.1 Optimal waveform design
According to the theoretical analysis in Section 3, the opti-
mal waveforms should satisfy the optimization problem in
(12), which can be solved by applying Algorithm 1. In the
simulations, the parameter ε in the stopping condition of
Algorithms is set to be 10−3. The SCNR obtained at each
iteration is plotted in Figure 2. Obviously, the value of the
SCNR has been converged well before the 51th iteration,
so that the parameter vectors obtained at the 51th itera-
tion can be regarded as the optimized parameters popt and
hr,opt. The optimized starting frequency, bandwidth, and
transmit energy for each of the waveforms in vector popt
are listed in Table 1. Plugging popt into (11), the designed

Figure 2 SCNR at each iteration.
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Table 1 Starting frequencies, bandwidths, and transmit
energies in the waveform parameter vector p for
optimized LFM signals

sm[n] fm/Hz bm/Hz Em

m = 1 170.35 1,684.6 0.6625

m = 2 209.00 1,621.7 2.4429

m = 3 255.81 1,537.0 0.7964

m = 4 1,100.6 556.60 0.1000

LFM signals are obtained. The real parts and frequencies
of the designed LFM signals are shown in Figure 3.
For comparison, the real parts and frequencies of the FS

LFM signals, which are commonly used in MIMO radar
systems, are plotted in Figure 4. The low-pass component
of the mth FS LFM signal at the nth, n = 0, . . . ,N − 1,
discrete-time sample is set as [24-26]

um [n] =
√

E0
MN

exp
{
j2π

[
(m − 1)�fnTs + Bu

2T
(nTs)

2
]}

,

(21)

where �f is the frequency offset between the waveforms
sent from two adjacent transmit antennas which is fixed
to k/T to attain approximate orthogonality [26], where
k is a positive integer. When the operating frequency is
constrained in F = [ 0,B], the Bu should satisfy Bu +
(M − 1)�f ≤ B. In this example, we let �f = 2/T ,
Bu = B−(M−1)�f , and the value of the other parameters
are the same as those in the previous example. Obviously,
the optimized LFM signals in Figure 3 and the FS LFM
signals in Figure 4 are very different. Unlike the FS LFM
signals, where each waveform has identical bandwidth

and the frequency offset between adjacent waveforms are
identical, the optimized LFM signals may have differ-
ent bandwidths and the offsets between different pairs
of adjacent waveforms may be different, providing more
degrees of freedom, which may lead to superior system
performance.

4.2 SCNR performance
Now, we compare the SCNR performance of the cogni-
tive MIMO radar using the LFM waveforms designed by
the proposed method with that of the system using FS
LFM signals. Assume that the other parameters are the
same as the previous examples. For different values of M
and E0/σ 2

z , the waveforms are designed and the resulting
SCNRs (solid curves) are plotted in Figure 5. The SCNRs
obtained using the FS LFM signals (dashed curves) are
plotted in the same figure for comparison. The curves
with points marked with circles and stars correspond to
the cases forM = 2 and 4. It is seen that the SCNR curves
of the systems employing the optimized LFM signals are
uniformly higher than that of the systems employing FS
LFM signals, indicating the superiority of our designed
signals over the conventionally used FS LFM signals for
any tested value ofM. In the studied examples, the SCNR
performance is improved when the number of transmit-
ter M is increased from 2 to 4. Thus, employing more
transmit antennas can be helpful in increasing the SCNR.
In Figure 6, we consider a cognitive MIMO radar with

M = 2 transmitters. For different values of σ 2
S (20), which

is a scaling factor of the clutter covariance matrix, the
LFM waveforms are designed using the proposed method
and the resulting SCNRs (solid curve with point marked
with circle) are plotted in Figure 6. The other simulation

Figure 3 Real parts and frequencies of the optimized LFMwaveforms.
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Figure 4 Real parts and frequencies of the FS LFM signals.

settings are the same as those used in Figure 5. The SCNRs
obtained using the FS LFM signals (dashed curve with
point marked with square) are plotted in the same figure
for comparison. It is observed that the SCNR decreases
with the increase of the clutter covariance scaling fac-
tor σ 2

S . The SCNR performance of the system using our
designed signals is better than that of the system using FS
LFM signals for all the tested values of σ 2

S .

5 Conclusions
In this paper, the waveforms are proposed to be con-
structed by a group of LFM signals with undetermined
starting frequencies, bandwidths, and transmit ener-
gies. The waveform parameters and the receiver impulse

Figure 5 SCNR versus E0/σ 2
z curves. SCNR versus E0/σ 2

z curves for
systems employing the optimized LFM signals (solid curves) and
systems using the FS LFM signals (dashed curves) for different
number of transmittersM.

response are jointly designed by maximizing the SCNR
performance of a cognitive MIMO radar system under
the constraints of allowable range of operating fre-
quency and total transmit energy. The algorithm for
solving the waveform optimization problem was pre-
sented. We showed through numerical examples that the
systems using the proposed waveforms have superior
SCNR performance than the systems using the FS LFM
signals.

Appendix 1
Convolution matrices
From (1), letting ε = t or c, the target or clutter return
received by the lth receiver can be expressed as

Figure 6 SCNR versus σ 2
S curves for a cognitive MIMO radar

system. SCNR versus σ 2
S curves for a cognitive MIMO radar system

withM = 2 transmit antennas employing the optimized LFM signals
(solid curve) and the FS LFM signals (dashed curve).
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xε,l[ n] =
M∑

m=1

N−1∑
nτ =0

sm[ nτ ] hε,ml[ n − nτ ]

=
⎡
⎢⎣

m=1︷ ︸︸ ︷
hε,1l[ n], . . . ,

m=M︷ ︸︸ ︷
hε,Ml[ n]︸ ︷︷ ︸

nτ =0

, . . . ,
m=1︷ ︸︸ ︷

hε,1l[ n − N + 1], . . . ,
m=M︷ ︸︸ ︷

hε,Ml[ n − N + 1]︸ ︷︷ ︸
nτ =N−1

⎤
⎥⎦

⎡
⎢⎣

s[ 0]
...

s[N − 1]

⎤
⎥⎦ , (22)

where s[ n]= (s1[ n] , . . . , sM[ n] )T. Based on (22), the LNR × 1 overall target/clutter vector can be expressed as

xε = (
xε,1[ 0], . . . , xε,L[ 0], . . . , xε,1[NR − 1], . . . , xε,L[NR − 1]

)T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hε,11[ 0] · · · hε,M1[ 0] · · · hε,11[ 1 − N] · · · hε,M1[ 1 − N]
...

. . .
...

. . .
...

. . .
...

hε,1L[ 0] · · · hε,ML[ 0] · · · hε,1L[ 1 − N] · · · hε,ML[ 1 − N]
...

. . .
...

. . .
...

. . .
...

hε,11[NR − 1] · · · hε,M1[NR − 1] · · · hε,11[NR − N] · · · hε,M1[NR − N]
...

. . .
...

. . .
...

. . .
...

hε,1L[NR − 1] · · · hε,ML[NR − 1] · · · hε,1Ln[NR − N] · · · hε,ML[NR − N]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s

= Hεs (23)

where s is the overall waveform vector as defined in (3) and Hε denotes the convolution matrix for target or clutter, in
which hε,ml[ n] is defined in (1).
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