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Abstract
In the present paper, we obtain some interesting results for neighborhoods of
multivalent functions. Furthermore, we give an application of Miller and Mocanu’s
lemma.
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1 Introduction and definitions
Let A denote the class of functions f of the form

f (z) = z +
∞∑
n=

anzn

which are analytic in the open unit disk

U =
{
z : z ∈C and |z| < 

}
.

We denote by A(p,n) the class of functions f of the form

f (z) = zp +
∞∑
k=n

ak+pzk+p
(
n,p ∈ N = {, , . . .})

which are analytic and multivalent in the open unit disk U .
The concept of neighborhood for f ∈ A was first given by Goodman []. The concept of

δ-neighborhoodsNδ(f ) of analytic functions f ∈ Awas first introduced byRuscheweyh [].
Walker [] defined a neighborhood of analytic functions having positive real part. Owa et
al. [] generalized of the results given byWalker. In , Altıntaş andOwa [] gave (n, δ)-
neighborhoods for functions f ∈ A with negative coefficients. In , new definitions
for neighborhoods of analytic functions f ∈ A were considered by Orhan et al. []. The
authors gave the following definition of neighborhoods:
For f , g ∈ A, f is said to be (α, δ)-neighborhood for g if it satisfies

∣∣f ′(z) – eiαg ′(z)
∣∣ < δ (z ∈U)

© 2013 Sağsöz and Kamali; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206720754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2013/1/152
mailto:faltuntas@atauni.edu.tr
http://creativecommons.org/licenses/by/2.0
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for some –π ≤ α ≤ π and δ >
√
( – cosα). They denote this neighborhood by (α, δ) –

N(g).
Also, they saw that f ∈ (α, δ) –M(g) if it satisfies

∣∣∣∣ f (z)z – eiα
g(z)
z

∣∣∣∣ < δ (z ∈U)

for some –π ≤ α ≤ π and δ >
√
( – cosα).

In , Altuntaş et al. [] gave the following definition for neighborhood of analytic
functions f ∈ A(p,n).
For f , g ∈ A(p,n), f is said to be (α, δ)p-neighborhood for g if it satisfies

∣∣∣∣ f ′(z)
zp–

– eiα
g ′(z)
zp–

∣∣∣∣ < δ (z ∈ U)

for some –π ≤ α ≤ π and δ > p
√
( – cosα). They denote this neighborhood by (α, δ)p –

N(g).
Also, they saw that f ∈ (α, δ)p –M(g) if it satisfies

∣∣∣∣ f (z)zp
– eiα

g(z)
zp

∣∣∣∣ < δ (z ∈U)

for some –π ≤ α ≤ π and δ >
√
( – cosα).

Recently, Frasin [] introduced the following definition of (α,β , δ)-neighborhood for an-
alytic function f in the form

f (z) = z –
∞∑
n=

anzn (an ≥ ). (.)

Let f be defined by (.). Then f is said to be (α,β , δ)-neighborhood for g = z–
∑∞

n= bnzn

(bn ≥ ) if it satisfies

∣∣eiα(
Dkf (z)

)′ – eiβ
(
Dkg(z)

)′∣∣ < δ

for some –π ≤ α,β ≤ π and δ >
√
( – cos(α – β)).

The differential operator Dk was introduced by Salagean [].
Now, we give the following equalities for the functions f ∈ A(p,n)

Df (z) = f (z),

Df (z) = z
(
Df (z)

)′ = pzp +
∞∑
k=n

(p + k)ak+pzk+p,

...

D�f (z) =D
(
D�–f (z)

)
= p�zp +

∞∑
k=n

(p + k)�ak+pzk+p.
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We define ℘ : A(p,n) → A(p,n) such that

℘
(
f (z)

)
=

(

p�

– λ

)
D�f (z) +

λ

p
z
(
D�f (z)

)′
(
≤ λ ≤ 

p�
,� ∈ N∪ {}

)
. (.)

We denote by ℘(�,λ) the class of analytic functions of the form (.) in U .
For f , g ∈ ℘(�,λ), f is said to be (ϕ,α, δ,λ,�)p-neighborhood for g if it satisfies

∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

∣∣∣∣ < δ (z ∈U)

for some –π ≤ ϕ – α ≤ π and δ > p
√
( – cos(ϕ – α)). We denote this neighborhood by

(ϕ,α, δ,λ,�)p –N (g).
Also, we say that f ∈ (ϕ,α, δ,λ,�)p –M(g) if it satisfies

∣∣∣∣eiϕ ℘(f (z))
zp

– eiα
℘(g(z))

zp

∣∣∣∣ < δ (z ∈U)

for some –π ≤ ϕ – α ≤ π and δ >
√
( – cos(ϕ – α)).

We discuss some properties of f belonging to (ϕ,α, δ,λ,�)p –N (g) and (ϕ,α, δ,λ,�)p –
M(g).

2 Main results
Theorem . If f ∈ ℘(�,λ) satisfies

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣
≤ δ – p

√

{
 – cos(ϕ – α)

}
(.)

for some –π ≤ ϕ – α ≤ π and δ > p
√
( – cos(ϕ – α)), then f ∈ (ϕ,α, δ,λ,�)p –N (g).

Proof By virtue of (.), we can write

∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

∣∣∣∣
=

∣∣∣∣∣peiϕ + eiϕ
∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)ak+pzk – peiα

–
∞∑
k=n

eiα
(
k + p
p

)�

(k + p)
(
 + λkp�–)bk+pzk

∣∣∣∣∣
< p

√

{
 – cos(ϕ – α)

}
+

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣.
If

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣ak+p – eiαbk+p

∣∣ ≤ δ – p
√

{
 – cos(ϕ – α)

}
,
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then we see that∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

∣∣∣∣ < δ (z ∈U).

Thus, f ∈ (ϕ,α, δ,λ,�)p –N (g). �

Example . For given

g(z) = zp +
∞∑
k=n

Bk+p(ϕ,α, δ,λ,�)zk+p ∈ ℘(�,λ)
(
n,p ∈N = {, , . . .})

we consider

f (z) = zp +
∞∑
k=n

Ak+p(ϕ,α, δ,λ,�)zk+p ∈ ℘(�,λ)
(
n,p ∈N = {, , . . . })

with

Ak+p =
p�(δ – p

√
( – cos(ϕ – α)))

(k + p)�+( + λkp�–)(k + p – )
(n + p – )e–iϕ + ei(α–ϕ)Bk+p.

Then we have that

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕAk+p – eiαBk+p

∣∣

= (n + p – )
(
δ – p

√

(
 – cos(ϕ – α)

)) ∞∑
k=n


(k + p)(k + p – )

. (.)

Finally, in view of the telescopic sum, we can write

∞∑
k=n


(k + p)(k + p – )

= lim
q→∞

q∑
k=n

{


(k + p – )
–


(k + p)

}

= lim
q→∞

{


(n + p – )
–


(p + q)

}

=


n + p – 
. (.)

Using (.) in (.), we have

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕAk+p – eiαBk+p

∣∣ = (
δ – p

√

(
 – cos(ϕ – α)

))
.

Therefore, f ∈ (ϕ,α, δ,λ,�)p –N (g).

Corollary . If f ∈ ℘(�,λ) satisfies

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣|ak+p| – |bk+p|

∣∣ ≤ δ – p
√

(
 – cos(ϕ – α)

)
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for some –π ≤ ϕ – α ≤ π , δ > p
√
{ – cos(ϕ – α)}, and arg(ak+p) – arg(bk+p) = α – ϕ (n,p ∈

N = {, , . . .}), then f ∈ (ϕ,α, δ,λ,�)p –N (g).

Proof By Theorem ., we see the inequality (.) which implies that f ∈ (ϕ,α, δ,λ,�)p –
N (g).
Since arg(ak+p) – arg(bk+p) = α – ϕ, if arg(ak+p) = ϕk+p, we see arg(bk+p) = ϕk+p – α + ϕ.

Therefore,

eiϕak+p – eiαbk+p = eiϕ |ak+p|eiϕk+p – eiα|bk+p|ei(ϕk+p–α+ϕ) =
(|ak+p| – |bk+p|

)
ei(ϕk+p+ϕ)

implies that

∣∣eiϕak+p – eiαbk+p
∣∣ = ∣∣|ak+p| – |bk+p|

∣∣. (.)

Using (.) in (.), the proof of the corollary is complete. �

Theorem . If f ∈ ℘(�,λ) satisfies

∞∑
k=n

(
k + p
p

)�(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣ ≤ δ –
√

(
 – cos(α – ϕ)

)

for some –π ≤ ϕ – α ≤ π and δ >
√
{ – cos(ϕ – α)}, then f ∈ (ϕ,α, δ,λ,�)p –M(g).

The proof of this theorem is similar with Theorem ..

Corollary . If f ∈ ℘(�,λ) satisfies

∞∑
k=n

(
k + p
p

)�(
 + λkp�–)∣∣|ak+p| – |bk+p|

∣∣ ≤ δ –
√

(
 – cos(ϕ – α)

)

for some –π ≤ ϕ – α ≤ π , δ >
√
{ – cos(ϕ – α)}, and arg(ak+p) – arg(bk+p) = α – ϕ, then

f ∈ (ϕ,α, δ,λ,�)p –M(g).

Next, we derive the following theorem.

Theorem . If f ∈ (ϕ,α, δ,λ,�)p –N (g),  ≤ ϕ < α ≤ π and arg(eiϕak+p – eiαbk+p) = kϕ,
then

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣ ≤ δ – p{cosϕ – cosα}.

Proof For f ∈ (ϕ,α, δ,λ,�)p –N (g), we have

∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

∣∣∣∣
=

∣∣∣∣∣p(eiϕ – eiα
)
+

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)(eiϕak+p – eiαbk+p

)
zk

∣∣∣∣∣
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=

∣∣∣∣∣p(eiϕ – eiα
)
+

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣eikϕzk
∣∣∣∣∣

< δ.

Let us consider z such that arg z = –ϕ. Then zk = |z|ke–ikϕ . For such a point z ∈ U , we see
that ∣∣∣∣eiϕ ℘ ′(f (z))

zp–
– eiα

℘ ′(g(z))
zp–

∣∣∣∣
=

∣∣∣∣∣p(eiϕ – eiα
)
+

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣|z|k
∣∣∣∣∣

=

{[ ∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣|z|k + p(cosϕ – cosα)

]

+p(sinϕ – sinα)
} 



< δ.

This implies that

{ ∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣|z|k + p(cosϕ – cosα)

}

< δ

or

p(cosϕ – cosα) +
∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣|z|k < δ

for z ∈U . Letting |z| → –, we have that

∞∑
k=n

(
k + p
p

)�

(k + p)
(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣ ≤ δ – p(cosϕ – cosα). �

Theorem . f ∈ (ϕ,α, δ,λ,�)p –M(g),  ≤ ϕ < α ≤ π and arg(eiϕak+p – eiαbk+p) = kϕ,
then

∞∑
k=n

(
k + p
p

)�(
 + λkp�–)∣∣eiϕak+p – eiαbk+p

∣∣ ≤ δ + cosα – cosϕ.

The proof of this theorem is similar with Theorem ..

Remark . Taking ϕ = , � = , λ =  and p =  in Theorem ., we obtain the following
theorem due to Orhan et al. [].

Theorem . If f ∈ (α, δ) –N (g) and arg(an – eiαbn) = (n – )ϕ (n = , , , . . .), then

∞∑
n=

n
∣∣an – eiαbn

∣∣ ≤ δ + cosα – .

http://www.journalofinequalitiesandapplications.com/content/2013/1/152
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Remark . Taking ϕ = , � =  and λ =  in Theorem ., we obtain the following
theorem due to Altuntaş et al. [].

Theorem . If f ∈ (α, δ)p –N (g) and arg(ak+p – eiαbk+p) = kϕ, then

∞∑
k=n

(k + p)
∣∣ak+p – eiαbk+p

∣∣ ≤ δ – p( – cosα).

We give an application of following lemma due to Miller and Mocanu [].

Lemma . Let the function

w(z) = bnzn + bn+zn+ + bn+zn+ + · · · (n ∈ N)

be regular in the unit disk U with w(z) 
≡  (z ∈ U). If z = reiθ (r < ) and |w(z)| =
max|z|≤r |w(z)|, then zw′(z) =mw(z) where m is real and m ≥ n≥ .

Theorem . If f ∈ ℘(�,λ) satisfies

∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

∣∣∣∣ < δ(p + n) – p
√

(
 – cos(ϕ – α)

)

for some –π ≤ ϕ – α ≤ π and δ > ( p
p+n )

√
( – cos(ϕ – α)), then

∣∣∣∣eiϕ ℘(f (z))
zp

– eiα
℘(g(z))

zp

∣∣∣∣ < δ +
√

(
 – cos(ϕ – α)

)
(z ∈ U).

Proof Let us define w(z) by

eiϕ
℘(f (z))

zp
– eiα

℘(g(z))
zp

= eiϕ – eiα + δw(z). (.)

Then w(z) is analytic in U and w() = . By logarithmic differentiation, we obtain from
(.) that

eiϕ℘ ′(f (z)) – eiα℘ ′(g(z))
eiϕ℘(f (z)) – eiα℘(g(z))

–
p
z
=

δw′(z)
eiϕ – eiα + δw(z)

.

Since

eiϕ℘ ′(f (z)) – eiα℘ ′(g(z))
zp(eiϕ – eiα + δw(z))

=
p
z
+

δw′(z)
eiϕ – eiα + δw(z)

,

we see that

eiϕ
℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

= p
(
eiϕ – eiα

)
+ δw(z)

(
p +

zw′(z)
w(z)

)
.

This implies that

∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))
zp–

∣∣∣∣ =
∣∣∣∣p(eiϕ – eiα

)
+ δw(z)

(
p +

zw′(z)
w(z)

)∣∣∣∣.
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We claim that
∣∣∣∣eiϕ ℘ ′(f (z))

zp–
– eiα

℘ ′(g(z))
zp–

∣∣∣∣ < δ(p + n) – p
√

(
 – cos(ϕ – α)

)

in U .
Otherwise, there exists a point z ∈ U such that zw′(z) =mw(z) (by Miller and Mo-

canu’s lemma) where w(z) = eiθ andm ≥ n≥ .
Therefore, we obtain that

∣∣∣∣eiϕ ℘ ′(f (z))
zp–

– eiα
℘ ′(g(z))

zp–

∣∣∣∣ = ∣∣p(eiϕ – eiα
)
+ δeiθ (p +m)

∣∣
≥ δ(p +m) –

∣∣p(eiϕ – eiα
)∣∣

≥ δ(p + n) – p
√

(
 – cos(ϕ – α)

)
.

This contradicts our condition in Theorem .. �

Hence, there is no z ∈ U such that |w(z)| = . This implies that |w(z)| <  for all z ∈ U .
Thus, we have that

∣∣∣∣eiϕ ℘(f (z))
zp

– eiα
℘(g(z))

zp

∣∣∣∣ = ∣∣(eiϕ – eiα
)
+ δw(z)

∣∣
≤ ∣∣eiϕ – eiα

∣∣ + δ
∣∣w(z)∣∣

< δ +
√

(
 – cos(ϕ – α)

)
.

Letting ϕ = , � = , λ =  and α = π
 in Theorem ., we can obtain the following corol-

lary.

Corollary . If f ∈ A(p,n) satisfies

∣∣∣∣ f ′(z)
zp–

– i
g ′(z)
zp–

∣∣∣∣ < δ(p + n) – p
√
 (z ∈U)

for some δ >
√
( p

p+n ), then

∣∣∣∣ f (z)zp
– i

g(z)
zp

∣∣∣∣ < δ +
√
 (z ∈U).
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