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1 Introduction and definitions

Let A denote the class of functions f of the form

fle)=z+ Zanz”
n=2

which are analytic in the open unit disk
u-= {z:ze(Cand |z <1}.

We denote by A(p, n) the class of functions f of the form

fl2)=2""+ Zﬂk+pzk+” (mpeN={1,2,..})

k=n

which are analytic and multivalent in the open unit disk /.

The concept of neighborhood for f € A was first given by Goodman [1]. The concept of
8-neighborhoods Nj;(f) of analytic functions f € A was first introduced by Ruscheweyh [2].
Walker [3] defined a neighborhood of analytic functions having positive real part. Owa et
al. [4] generalized of the results given by Walker. In 1996, Altintas and Owa [5] gave (#, §)-
neighborhoods for functions f € A with negative coefficients. In 2007, new definitions
for neighborhoods of analytic functions f € A were considered by Orhan et al. [6]. The
authors gave the following definition of neighborhoods:

For f,g € A, f is said to be («, 8)-neighborhood for g if it satisfies

If (2) - e“g ()| <8 (zel)
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for some -7 <« <7 and § > v/2(1 — cosa). They denote this neighborhood by (¢, §) —
N(g).
Also, they saw that f € («, §) — M(g) if it satisfies
100y ey
z z

for some -7 <o <7 and § > /2(1 — cos ).
In 2009, Altuntas et al. [7] gave the following definition for neighborhood of analytic
functions f € A(p, n).
For f,g € A(p,n), f is said to be («, 8),-neighborhood for g if it satisfies
l% —e""‘% <8 (zel)

for some -7 <« < and & > p4/2(1 — cosa). They denote this neighborhood by («, §), —
N(g).
Also, they saw that f € («, §), — M(g) if it satisfies

zr /4

<8 (zel)

for some -7 <o <m and § > /2(1 — cos ).
Recently, Frasin [8] introduced the following definition of (&, 8, §)-neighborhood for an-
alytic function f in the form

f@)=z- Z a,z" (a,>0). (L1)

n=2

Let f be defined by (1.1). Then f is said to be («, 8, 8)-neighborhood for g =z—Y"", b,z"
(b, > 0) if it satisfies

’ei“ (Dkf(z)), — ¢ (Dkg(z))/‘ <$

for some -7 <o, B <m and § > /2(1 — cos(x — B)).

The differential operator DX was introduced by Salagean [9].
Now, we give the following equalities for the functions f € A(p, n)

Df(2) =f(2),

D'f(2) =2(D°f () =p" + )_(p + Karp2" 7,
k=n

D°f(2) = D(Df(2)) = p%2 + Y _(p + k)P axp 2.
k=n
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We define o : A(p, n) — A(p, n) such that

o(f2) = (1% - )\)Dﬂf(z) + %Z(Dﬂf(z))/ (o <A< 1%' QeNU {0}). 1.2)

We denote by gq,,) the class of analytic functions of the form (1.2) in U.
For f,g € o), f is said to be (¢, @, §, A, 2) ,-neighborhood for g if it satisfies

ol 9 (f@) i ©'(g(2))
zp—l zp—l

<8 (zel)

for some — < ¢ —a <7 and § > p/2(1 — cos(¢ — «)). We denote this neighborhood by
((0, o, 8; )‘-! Q)p - N(g)'
Also, we say that f € (¢, a, 3,1, ), — M(g) if it satisfies

2@ 9l
/4 /4

for some -7 < ¢ —a < and § > /2(1 — cos(¢ — a)).

We discuss some properties of f belonging to (¢, a, 8,1, 2), -N(g) and (¢,a,8, A, Q), -
M(g).

<68 (zel)

2 Main results
Theorem 2.1 Iff € o) satisfies

[e¢]

Q
Z <k1'¥> (k +p)(1+1kp® )| €% aryp — € b
k=n

58—p,/2{1—cos(<p—oz)} (2.1)
Sor some - <@ —a <7 and § > p\/2(1 - cos(p — «)), then f € (p,, 8,1, ), - N ().
Proof By virtue of (1.2), we can write

LB FE) (e

zP-1 -1
= (k+p\©
= |pe” + e Z (_p) (k +p)(1 + k/(pﬂ_l)ak+pzk - pe
p
k=n

—) e < (;p) (k +p)(L + 1kp® )by, 2°
k=n

00 Q
<py/2{1-cos(p —a)} + Z(k;p) (k +p) 1+ Akp® )| €% arsp — € bisp|.
k=n

If

oo

Q
Z(%) (k+p)(1+Akp9—1)|ak+p—eiabk+p|SB—p 2{1—cos(<p—a)},

k=n
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then we see that

LA USRS C (el
-1 21
Thus, f € (¢,a,8,1,2), - N (g). O

Example 2.2 For given
[e¢]
gz) =2+ ZBk+p(<p,a,8,A, Q"7 epqy (mpeN={L2,..})
k=n
we consider
[o¢]
flz)=2+ ZAk+p(<p,a,8,k, Q) e 2%t 2N (n,p eN={1, 2,...})
k=n

with

P28 — py/2(1 - cos(p — a)))

kep = (k + p)*+2(1 + AkpS 1) (k + p — 1)

n+p-1)e iy 4 glle- ‘ﬂBkﬂ,

Then we have that

= (k+p\® . ,
3 (—;p ) (k+p) (1+ Mhp® ) [ Ary — B |
k=n

> 1
=(n+p-1)(8-py/2(1-cos(p-a))) y —————. (2.2)
kz (k+p)k+p-1)

=n

Finally, in view of the telescopic sum, we can write

1 o 1 1
;m:qlggo;{(k+p—l)_(k+p)}

—lim{ ! — ! }
S| (mtp-1) (p+q)
1

- . (2.3)
n+p-1

Using (2.3) in (2.2), we have

% Q
Z(k;l’) (k +p)(1 + )»kpﬂfl){ei‘/’Ak,rp - ei"‘Bk+p| = (8 -p 2(1 —cos(p — (x))),

k=n

Therefore, f € (¢,,8,1,K), - N(g).

Corollary 2.3 Iff € p(q,) satisfies

0 Q
Z(%) (k +p) (1 + 1kp® ™| akspl = 1brapl| <8 = py/2(1 = cos(p - @)

k=n
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for some - < —a <7, 8> p\/2{1 -cos(p — a)}, and arg(ay.,) —arg(bx.p) =a— ¢ (n,p €
N={1,2,...}), thenf € (p,,8,1,K), - N(g).

Proof By Theorem 2.1, we see the inequality (2.1) which implies that f € (¢, @, 8,1, ), —
N(g).

Since arg(ax,p) — arg(bisp) = o — @, if arg(ar.p) = Prip, we see arg(br.p) = Prip — A + .
Therefore,

sy — € bip = €% |arple¥r — e |br | ) = (Jag,y| — |bry| )Pt

implies that
|eiwﬂk+p - embk+p| = ||ak+p| - |bk+p| | (24')
Using (2.4) in (2.1), the proof of the corollary is complete. d

Theorem 2.4 Iff € pq,) satisfies

oo

Q
Z(k;p) (1 + )»kPQ_l) |€iw6lk+p - embkﬂ?’ =8~ 2(1 —cos( - (/7))

k=n
Sfor some - < ¢ —a <mw and § > \/2{1 — cos(p — a)}, then f € (p,, 8,1, 2), — M(g).
The proof of this theorem is similar with Theorem 2.1.

Corollary 2.5 Iff € p(q,) satisfies

Z( ;p) (1 + 2kp™ ™) |laksp] = Brapl| <8 = /2(1 — cos(p — )

k=n

for some - < ¢ —a <m, 8 >/2{1 —cos(¢ — )}, and arg(ax.,) — arg(bi.p) = @ — @, then
f € ((0’01,5,)»; Q)p - M(g)

Next, we derive the following theorem.

Theorem 2.6 Iff € (¢,a,8,4,K), —~N(g), 0 < ¢ <o <7 and arg(e¥ a,p — €“bi.p) = ko,
then

0 Q
Z(k;p) (k +p) (1 + 1kp™ ) [e¥ asp — €“bpp| < § = pleos g — cosal.
k=n

Proof For f € (p,,8,1,K), — N(g), we have

L9 (f(2) 90 (g2)
e e

(e =)+ 30(E2) ko a1k ™) Py - by )
k=n
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00 Q
p(ei*" - ei"‘) + Z(—k;p) (k +p)(1 + Akpg_l) |ei‘pak+p - ei“bk+,, |eik‘”zk
k=n

<.

Let us consider z such that argz = —¢. Then z* = |z|¥e~¢. For such a point z € U, we see
that

L0 f2) 9 (gk)
e 1 ¢

o ke p\® : i
p(e —e) + Z(%) (k+p)(1+ 1kp® ) €% ar.p = e bisy|l2I*
k=n

2

>k Q ‘ ‘

= i [Z(%) (k +p)(1 + kkpg’l) |e“"ak+p —“bpip ’ |z|K + p(cos ¢ — cos a)j|
k=n

1
1
+p*(sing — sinoz)z}
<4.

This implies that

2

iz( : +p) (k +p)(1+ 1kp® )€ ar,p — €y |12]* + pcosp —cosa) p < 8
p
k=n

or

00 Q
k ) )
p(cos g —cosa) + E <£> (k+p) (1 + )\kpﬂ’l) ‘e"pmﬁp - e”"bk+p| |z|k )
p
k=n

for z € U. Letting |z| — 1, we have that

[e¢]

Q
Z(%) (k +p)(1 + A/(pﬂ_l) ’ei‘pak+p - ei“bk+p| <& —pl(cosp — cosa).

O
k=n

Theorem 2.7 f € (¢,2,8,1,Q), — M(g), 0 < ¢ < a < 7 and arg(e“ay,, — €*by,p) = ko,
then

oo

Q
Z(k;l’) (1 + Akp9—1)|eiwakw —e‘ubk+p| <&+ cosa —cos .
k=n

The proof of this theorem is similar with Theorem 2.6.

Remark 2.8 Taking ¢ =0, Q2=0,1=0andp =1 in Theorem 2.6, we obtain the following
theorem due to Orhan et al. [6].

Theorem 2.9 Iff € («,8) — N (g) and arg(a, — *b,) = (n-1)¢ (n=2,3,4,...), then

oo
E nla, —€“b,| <8 +cosa - 1.
n=2
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Remark 2.10 Taking ¢ =0, 2 =0 and A = 0 in Theorem 2.6, we obtain the following
theorem due to Altuntas et al. [7].

Theorem 2.11 Iff € («,8), — N(g) and arg(ax,, — €“bi.p) = ke, then

oo
Z(k +D)|@ksp — € brap| <8 = p(1 - cosa).
k=n

We give an application of following lemma due to Miller and Mocanu [10].

Lemma 2.12 Let the function
W(2) = by2" + bpZ"™ + bz + - (neN)

be regular in the unit disk U with w(z) # 0 (z € U). If zo = roe’® (ry < 1) and |w(zo)| =
Max,; <y, [W(z)|, then zow'(zo) = mw(zo) where m is real and m > n > 1.

Theorem 2.13 Iff € p(q,,) satisfies
W' @) 9 (k) /
e“’pg_l —e pz(f_l <8(p+n)—p 2(1—cos(g0—a))

forsome -1 <¢p—-a <mwand$ > (ﬁ)‘&(l —cos(p — ), then

e P (2) — e pE2) <8+ 1/2(1 —cos(g —a)) (ze U).

zr zr

Proof Let us define w(z) by

e KJ(QEZ)) — e BO(‘ZSZ)) =€ — e + Sw(z). (2.5)

Then w(z) is analytic in U and w(0) = 0. By logarithmic differentiation, we obtain from

(2.5) that
Up'(fe)-e"p'@) p_ W@
evp(f(z) —ep(g(z)) z e —e+5w(z)
Since
(@) -e9'e@) p W@
(e —e +5w(z)  z e —e +iwl(2)
we see that
o E T 2D (e o) vowta)(p 2 ),
This implies that

e pg_(f)) - e pz(f_(f)) ‘ = ‘P(ei“’ - ) +8w(z) <17 + Z::(Z)) }
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We claim that

2D oGO 54511y o1 conty o)

inU.
Otherwise, there exists a point zo € U such that zow/(z9) = mw(zo) (by Miller and Mo-

canu’s lemma) where w(zy) = ¢ and m > n > 1.

Therefore, we obtain that

& ' (f(20)) _ el ' (g(20)) _ ’p(ei‘” _ eia) 186’ (p + m)‘

2 %
>38(p+m)— \p(ei‘/’ — ei"‘)|
> 8(p +n) —py/2(1 - cos(p — a)).
This contradicts our condition in Theorem 2.13. O

Hence, there is no zg € U such that |w(zo)| = 1. This implies that |w(z)| <1 for all z € U.
Thus, we have that

& £ (f(2)) e £ (g(2))

o p = \(ei“’ - ei") + 8w(z)|

< ‘ei‘” —ei“’ +3|w(z)|
< 5+,/2(l—cos(<p—a)).

Letting ¢ =0, 2 =0, = 0 and & = 7 in Theorem 2.13, we can obtain the following corol-

lary.
Corollary 2.14 Iff € A(p, n) satisfies

fle) g

=7

prm i <8(p+n)-pv2 (zel)

for some 8 > /2(-L-), then

p+n

flo)  g)

— L =

<8+v2 (zeU).
/4
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